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Lagrange Multipliers On Asymmetric Networks

Minimizing F With Respect To Radius Ratios.

The objective function that we are to minimize is,
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Varying F with respect to βi,µ, by evaluating ∂F/∂βi,µ = 0, gives,
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Varying F with respect to βi,ν , by evaluating ∂F/∂βi,ν = 0, gives,
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The above two equations can be combined to arrive at,
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As the above equality holds for any i and for all k, then we can set each term within the summation
to zero,
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From here we can solve for λ to find,
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Substituting the above expression for λ into either ∂F/∂βi,µ = 0, or ∂F/∂βi,ν = 0, gives
γj,ν/γj,µ = βj,ν/βj,µ. Additionally, being that λ is a constant quantity, our result must hold for all
values of k. Setting λ|k = λ|k+1 leads to,
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Upon substitution of γj,ν/γj,µ = βj,ν/βj,µ, the above expression reduces to,
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which is the familiar Murray’s Law of cubic-powered radial scaling, but in the context of
asymmetric branching. Note that, unlike the symmetric result of β = 1/21/3, different values of β
and ∆β at each branching point may be exhibited as long as Murray’s Law is still maintained. In
other words, self-similarity in the radial dimension is not strictly maintained from one generation to
the next, although it may be still be exhibited stochastically.

Minimizing F With Respect To Length Ratios.

Varying F with respect to γi,µ and γi,ν , by evaluating ∂F/∂γi,µ = 0 and ∂F/∂γi,ν = 0, leads to,
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Substituting our earlier expression for λ results in,
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Again, as the above equation holds for any value i and for all k, then we can set each term within
the summation to zero and solve for λk to arrive at,
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As done before for λ, we can substitute the above expression for λk into either ∂F/∂γi,µ = 0 or
∂F/∂γi,ν = 0 also results in γj,ν/γj,µ = βj,ν/βj,µ, the same relationship found before from
minimizing F with respect to the radii. Furthermore, as λk = k + 1, we have,
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Using the conditions βj,µ/βj,ν = γj,µ/γj,ν and 1 = β3
j,µ + β3

j,ν , the above expression results in
γj,ν = βj,ν and γj,µ = βj,µ. These equalities between the length and radius scale factors have a
significant interpretation regarding the whole network architecture.

First, when substituted into our asymmetric variation of Murray’s Law, Eq. (8), we find that,
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which is the asymmetric version of space-filling exhibited at the nodal level. Eq. (13) differs from
the symmetric result of γ = 1/21/3, which means that, like our asymmetric variation of Murray’s
Law, self-similarity in the length dimension is not strictly adhered to. Although, self-similarity may
be stochastically exhibited. It should also be noted that, for Hagens-Pouiseille flow, the cubic-law
relationships for the length and radii scale factors, Eqs. (8) and (13), also satisfy impedance
matching.

Secondly, when combining the definitions of the scale factors with the results of γj,ν = βj,ν and
γj,µ = βj,µ we find that γj = βj and ∆γj = ∆βj . Recalling that the switch from the positive
asymmetry network to negative asymmetry network involves fixing ∆γ to fall within the domain of
[0, 0.5) while restricting ∆β to the domain of (−0.5, 0], we find a contradiction with the result that
∆γj = ∆βj , except for the symmetric limit in which all of these conditions are satisfied. In other
words, the method of undetermined Lagrange multipliers, used to determine the network
parameters that minimizes energy loss due to viscous friction in the constant laminar flow regime,
predicts that negative asymmetry branchings violate energy minimization, and therefore ought to
be suppressed in favor of either positive asymmetric, or strict symmetric, branching. Thus, the
overall network architecture of the cardiovascular system is predicted to exhibit either type of
asymmetric branching (positive or negative) in the pulsatile regime and only positive asymmetry
branching in the constant laminar flow regime, with the potential for symmetric branching
throughout. Within these flow regimes, the branches are further predicted to simultaneously adhere
to nodal variations of cross-sectional area preservation and space-filling (pulsatile), and nodal
variations of Murray’s Law and space-filling (constant laminar).

Showing the proportionality of total volume to mass.

Substituting our expression for λk back into the objective function F results in,

F = λVTOT + λMM (14)

where we have written the total network volume as V TOT. To examine how total network volume,
V TOT, varies with mass M, we vary the objective function F with respect to mass by evaluating
∂F/∂M = 0 to arrive at,
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Solving for ∂VTOT /∂M gives,
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Given that the lagrange multipliers are constants, we can finally solve for V TOT with using the
separation of variables to show that VTOT ∝M for an asymmetrically bifurcating vascular network.
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