
S2 Text

Asymmetric Branching and Murray’s Law

In symmetric branching, Murray’s Law of cubic scaling for branch radii has the implication of a
strict increase in the total cross-sectional area of the child branches when compared to the parent
branch. For constant laminar flow of an incompressible fluid, this strict increase in area results in
the slowing down of fluid flow, a necessary condition in the cardiovascular system a blood flow rates
in the capillaries are slower than those in the arteries. Our interest stems in how the introduction of
branching asymmetry influences the increase in cross-sectional area, and thus the subsequent
slowing of blood flow.

Recalling the form of Murray’s Law as expressed in Eq. (20) of the main text, we have,

r3j = r3j+1,µ + r3j+1,ν (1)

To examine how asymmetric branching influences the generational scaling of cross-sectional area, we
can re-write Eq. (1) in terms of the cross-sectional areas associated with each branch,

Ajrj = Aj+1,µrj+1,µ +Aj+1,νrj+1,ν (2)

where Aj = πr2j is the cross-sectional area of a branch with radius rj . Substituting the definitions
for the scale factors from Eq. (4) of the main text, and solving for Aj gives

Aj = Aj+1,µβj,µ +Aj+1,νβj,ν (3)

Expressing βj,µ and βj,ν in terms of the average and difference scale factors, we can write the
cross-sectional area of the parent branch, Aj , in terms of the sum and difference of the
cross-sectional areas of the child branches,

Aj = (Aj+1,µ +Aj+1,ν)βj + (Aj+1,µ −Aj+1,ν)∆βj (4)

From here, we can now solve for the total cross-sectional area of the child generation to examine its
dependence on asymmetric branching. Doing so, we have,

Aj+1,µ +Aj+1,ν =
1

βj
{Aj + [Aj+1,ν −Aj+1,µ] ∆βj} (5)

The cross-sectional areas of the child branches on the right-hand-side of the above equation can be
expressed in terms of the averages and differences in the child radii to arrive at,

Aj+1,µ +Aj+1,ν =
1

βj
{Aj − 4πrj+1∆rj+1∆βj} (6)

Recalling the definitions for the average and difference radial scale factors, βj = rj+1/rj and
∆βj = ∆rj+1/rj respectively, allows us to simplify the above expression to,

Aj+1,µ +Aj+1,ν =
1

βj
Aj − 4π∆r2j+1 (7)
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As we are interested in examining how asymmetric branching influences the area-increasing
interpretation of Murray’s Law, we can factor Aj = πr2j from the right hand side of the above
expression to arrive at,

Aj+1,µ +Aj+1,ν = Aj

(
1

βj
− 4∆β2

j

)
(8)

In the symmetric limit, where ∆βj = 0 and 1/βj = 21/3, Eq. (8) reduces to the symmetric WBE
model result where the cross-sectional area increases across each generation, from parent to child,
by a factor of approximately 1.26. However, in the asymmetric limit, where ∆βj = 0.5 and βj = 0.5,
Eq. (8) reduces to Aj+1,µ +Aj+1,ν = Aj . That is, cross-sectional area is preserved across
generations. As βj monotonically decreases as a function of ∆βj (see Fig. 6 in the main text), we
can conclude that there is a steady transition from increasing cross-sectional area to constant
cross-sectional area as radial asymmetry is increased in the constant laminar flow regime.

The dependance of Eq. (8) on ∆βj is significant because it demonstrates the ability of
asymmetric branching to control the flow rate of blood. Treating blood as an incompressible fluid,
then Eq. (8) indicates that maximal symmetry results in the the greatest rate of increase in
cross-sectional area across a bifurcation, which in turn causes the blood flow to slow down at the
greatest rate. On the other hand, maximal asymmetry results in constant cross-sectional area across
a bifurcation, which in turn maintains blood flow at a constant speed across branching.
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