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Deriving the Metabolic Scaling Exponent for an Asymmetric Vascular
Network with a Sharp Generational Transition

Here we present the derivation for the metabolic scaling exponent in a vascular network that
exhibits asymmetric branching and a transition in the values of the scale factors that occurs in a
given branching generation. Within generations the scale factors do not change, however. For
generality, we will start with assuming that inter-generational variation in the scale factors exists,
while intra-generational variation does not. The latter assumption will not change throughout this
document. We begin with Eq. (9) from the main text. Assuming that i > k, we can express the
total volume of the i th generation in terms of the k th generation as,

Vi,TOT = Vk,TOT

i−1∏
j=k

[
β2
j,µγj,µ + β2

j,νγj,ν
]

(1)

Solving for V k,TOT, summing from k = 0 to k = N , where N is the maximum number of
generations in the network, and setting i = N , we can write an expression for the total volume in
the network as,

VTOT = VN,TOT

N∑
k=0


N−1∏
j=k

[
β2
j,µγj,µ + β2

j,νγj,ν
]−1

 (2)

To model a sharp generational transition, we will first re-write the above expression as two
summations; the first running from k = 0 to k =M , and the second from k =M + 1 to k = N .

VTOT = VM,TOT

M∑
k=0


M−1∏
j=k

[
β2
j,µγj,µ + β2

j,νγj,ν
]−1

+VN,TOT

N∑
k=M+1


N−1∏
j=k

[
β2
j,µγj,µ + β2

j,νγj,ν
]−1


(3)

Imposing the assumption that the scale factors are constant across generations, we can remove the
product over j and replace it with the appropriate exponent. However, to keep track of the two sets
of scale factors that exists before and after generation M, we will adopt the naming convention used
in West et al. Science 1997, where the less than symbol, <, used as a subscript, represents scale
factors preceding the transition, and the greater than symbol, >, used as a subscript, represents
scale factors after the transition. Under these assumptions and notations, the total volume of
network takes the form of,

VTOT = VM,TOT

M∑
k=0

[
β2
<,µγ<,µ + β2

<,νγ<,ν
]−(M−k)

+ VN,TOT

N∑
k=M+1

[
β2
>,µγ>,µ + β2

>,νγ>,ν
]−(N−k)

(4)
By setting m =M − k and n = N − k, we can reset the dummy indices to simplify the above
expression to the following,

VTOT = VM,TOT

M∑
m=0

[
β2
<,µγ<,µ + β2

<,νγ<,ν
]−m

+ VN,TOT

N−M−1∑
n=0

[
β2
>,µγ>,µ + β2

>,νγ>,ν
]−n

(5)

Recognizing the above expressions as geometric series, we can remove the summations using the

formula
∑b
k=a r

k = ra−rb+1

1−r , assuming that r 6= 1. The condition of r 6= 1 can be physically
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interpreted as meaning that volume is strictly not preserved across generations, but in fact varies.
Making the appropriate replacements results in the following,

VTOT = VM,TOT

{
1−

[
β2
<,µγ<,µ + β2

<,νγ<,ν
]−(M+1)

1−
[
β2
<,µγ<,µ + β2

<,νγ<,ν
]−1

}
+VN,TOT

{
1−

[
β2
>,µγ>,µ + β2

>,νγ>,ν
]−(N−M)

1−
[
β2
>,µγ>,µ + β2

>,νγ>,ν
]−1

}
(6)

With some rearrangement, the above can be expressed in a slightly more intuitive manner that
allows for easier approximation,

VTOT =
VM,TOT[

β2
<,µγ<,µ + β2

<,νγ<,ν
]M

{
1−

[
β2
<,µγ<,µ + β2

<,νγ<,ν
](M+1)

1−
[
β2
<,µγ<,µ + β2

<,νγ<,ν
] }

+
VN,TOT[

β2
>,µγ>,µ + β2

>,νγ>,ν
]N
{(

1−
[
β2
>,µγ>,µ + β2

>,νγ>,ν
](N+1)

1−
[
β2
>,µγ>,µ + β2

>,νγ>,ν
] )

−

(
1−

[
β2
>,µγ>,µ + β2

>,νγ>,ν
](M+1)

1−
[
β2
>,µγ>,µ + β2

>,νγ>,ν
] )}

(7)

Now we need to express VM,TOT in terms of VN,TOT by again using Eq. (9) from the main text, but
now for the case where N > M , taking the form of,

VN,TOT = VM,TOT

N−1∏
j=M

[
β2
j,µγj,µ + β2

j,νγj,ν
]

(8)

Since the set of scale factors {βj,µ, γj,µ, βj,ν , γj,ν} are fixed to be equal to {β>,µ, γ>,µ, β>,ν , γ>,ν}
for M ≤ j ≤ N , then we can remove the product from the above expression and solve for VM,TOT

to arrive at,

VM,TOT = VN,TOT
[
β2
>,µγ>,µ + β2

>,νγ>,ν
]M−N

(9)

Substituting this expression into V TOT, we have,

VTOT =
VN,TOT[

β2
>,µγ>,µ + β2

>,νγ>,ν
]N

(
β2
>,µγ>,µ + β2

>,νγ>,ν

β2
<,µγ<,µ + β2

<,νγ<,ν

)M (
1−

[
β2
<,µγ<,µ + β2

<,νγ<,ν
](M+1)

1−
[
β2
<,µγ<,µ + β2

<,νγ<,ν
] )

+

(
1−

[
β2
>,µγ>,µ + β2

>,νγ>,ν
](N+1)

1−
[
β2
>,µγ>,µ + β2

>,νγ>,ν
] )

−

(
1−

[
β2
>,µγ>,µ + β2

>,νγ>,ν
](M+1)

1−
[
β2
>,µγ>,µ + β2

>,νγ>,ν
] )}

(10)

At this point we will make several assumptions to simplify the above expression. The first is
that the network is large, or N >> 1. Additionally is that the transition in the scale factors occurs
closer to the terminal end of the network, such that M >> 1. Lastly, we assume that the scale
factor values are such that, for any given bifurcation, the volumes of the child branches sum to be
strictly less than the volume of the corresponding parent branch. This last assumption translates
into the two following inequalities, β2

>,µγ>,µ + β2
>,νγ>,ν < 1, and β2

<,µγ<,µ + β2
<,νγ<,ν < 1. These

four assumptions allows us to approximate each the three quotients with the form of 1−xb
1−x , to be on

the order unity, where x = β2
>,µγ>,µ + β2

>,νγ>,ν or x = β2
<,µγ<,µ + β2

<,νγ<,ν , and b = N + 1 or
b =M + 1. Alternatively phrased, the quantity within the curly brackets is dominated by the ratio(
β2
>,µγ>,µ+β

2
>,νγ>,ν

β2
<,µγ<,µ+β

2
<,νγ<,ν

)M
. Thus, we can simplify the above expression to take the form of,
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VTOT ≈
VN,TOT[

β2
>,µγ>,µ + β2

>,νγ>,ν
]N
(
β2
>,µγ>,µ + β2

>,νγ>,ν

β2
<,µγ<,µ + β2

<,νγ<,ν

)M
(11)

We can now use the proportionality relationship between total volume and total mass and
substitute our expression for the total volume into the relationship for the metabolic scaling

exponent as a function of body mass, θ = ln(Nc)
ln(M/M0)

, and replacing VN,TOT with NcVc (replacing the

total volume of the N th generation with the volume of a single capillary times the number of
capillaries), gives us,

θ =
ln(Nc)

ln

{
Nc[β2

>,µγ>,µ+β
2
>,νγ>,ν ]

M−N

[β2
<,µγ<,µ+β

2
<,νγ<,ν ]

M

} (12)

Using log-arithmetic rules, we can express the above in a more intuitive form as,

θ =
ln(Nc)

ln(Nc) + (M −N) ln
[
β2
>,µγ>,µ + β2

>,νγ>,ν
]
−M ln

[
β2
<,µγ<,µ + β2

<,νγ<,ν
] (13)

In Eq. 13 we can parameterize the metabolic scaling of a network with a sharp transition by the
number of terminal tips, N c, the total number of generations in the network, N, the generation at
which the transition occurs, M, and the sets of scale factors that describe the network architecture
before and after the transition. To graph Eq 13 in such a way as to understand how varying the
transition generation affects the metabolic scaling exponent landscape, Eq. 13 can be re-written by
first substituting Nc = 2N , and then factoring out the variable N , giving,

θ =
ln(2)

ln(2) + (c− 1) ln
[
β2
>,µγ>,µ + β2

>,νγ>,ν
]
− c ln

[
β2
<,µγ<,µ + β2

<,νγ<,ν
] (14)

where c =M/N . Thus when c = 1 the entire network is described by the pre-transition scale
factors, when c = 0 the entire network is described by the post-transition scale factors, and for any
other values of c the network is described by a mixture. An array of colormaps have been made for
values of c varying from [0, 1], then turned into an animation for easier visualization (see S2
Video). It should be pointed out that in these colormaps a specific morphological form of the
networks has been assumed. When the transition in flow type occurs within the networks, the same
values for the difference scale factors are used, but the equations that determine the average scale
factors switch from Eqs. (16) and (17) to Eqs. (18c) and (18d) with respect to the main text.
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