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This supplement elaborates upon methodology details and presents additional figures that could not be in-
cluded in the Manuscript [1] due to page restrictions. Section S.I provides visualizations of scan parameter
optimization problem (9) in the Manuscript and relates min-max scan design to prior art. Section S.II de-
scribes methods for latent object parameter estimation from optimized scan profiles. Section S.III presents
images and histograms corresponding to Manuscript Section IV.A. Section S.V elaborates upon image
reconstruction and parameter estimation details for phantom and in vivo experiments (Manuscript Sec-
tions IV.B-IV.C). Lastly, Section S.VI explores the effect of model mismatch due to multi-exponential
relaxation on single-component T2 estimation.

S.I Optimized Scan Design: Further Details

S.I.A Scan Profile Comparisons

Fig. S.1 displays heat maps of worst-case latent parameter standard deviations σ̃t
T1

, σ̃t
T2

and worst-case
cost Ψ̃t as pairs of flip angles are varied away from the optimized scan design P∗. When present hereafter,
boxes group subfigures corresponding to the same scan profile. Viewing the bottom row of subfigures,
it is evident that Ψ̃t(P∗) takes similar values for the different scan profiles. However, it is apparent that
the (CSPGR, CDESS) = (0, 2) profile is substantially more robust to flip angle variation than other tested
profiles (namely, (2, 1) and (1, 1)). Optimized worst-case cost over broadened latent parameter ranges
Ψ̃b(P∗) captures this by expanding the range of possible flip angles fromKt = [0.9, 1.1] toKb = [0.5, 2] to
account for factor-of-two spatial variation in relative flip angle κ. As a result, we find that the properties of
“broad” search criterion Ψ̃b(·) provide a stronger reason to select the (0, 2) scan for joint T1, T2 estimation
in the brain than the properties of “tight” search criterion Ψ̃t(·).

S.I.B Relation to Prior Art

To relate our work to other scan design methods, we apply min-max scan design to the well-studied
problem of scan design for T1 estimation from two SPGR scans and compare our results with those of
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(a) σ̃t
T1

for nominal (T1, κ), without TR optimization
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(b) σ̃t
T1

for nominal (T1, κ), with TR optimization
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(c) σ̃t
T1

for GM/WM, without TR optimization
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(d) σ̃t
T1

for GM/WM, with TR optimization

Figure S.2: Worst-case standard deviation σ̃t
T1

versus pairs of nominal SPGR flip angles, holding other
scan parameters fixed at selected profile P∗. Fig. S.2a (replicated from [2]) illustrates σ̃t

T1
(at single-

point design ranges Xt := ME,t × T1,t ← (1, 1000ms) and Nt := K ← 1) as flip angles are varied
but TR ← [800, 800]Tms remains fixed. Fig. S.2b (related to [3]) shows that lower σ̃t

T1
is achievable by

allowing TR to vary as well. Figs. S.2c and S.2d illustrate how corresponding optimized designs change
when σ̃t

T1
is instead evaluated over GM/WM ROIs Xt ← 1× [800, 1400] ms and Kt ← [0.9, 1.1]. Selected

scan parameters (starred) are within δ = 1% of global minimizers. Colorbar ranges are in milliseconds.

[2, 3]. We study [2, 3] over other works [4–6] because our purpose here is to demonstrate the utility of
considering a range of design parameters, perhaps through our min-max formulation. The methods of
[2, 3] are amenable to this purpose, as they study special cases of min-max optimization problem (6) in
which the object parameter space Xt ×Nt is a single point.
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Subfigure [Method] S.2a [2] S.2b [3] S.2c [1] S.2d [1]
T1,t 1000ms 1000ms [800, 1400]ms [800, 1400]ms
Kt 1 1 [0.9, 1.1] [0.9, 1.1]

TR,SPGR [800,∞)ms [12.2,∞)ms [800,∞)ms [12.2,∞)ms
A0,SPGR [1, 120]◦ [1, 120]◦ [1, 120]◦ [1, 120]◦

TR,max 1600ms 1600ms 1600ms 1600ms

α̂spgr
0 (29, 112)◦ (31, 100)◦ (23, 107)◦ (24, 102)◦

T̂ spgr
R (800, 800)ms (1010, 590)ms (800, 800)ms (870, 730)ms

σ̃tT1
(P∗), single-pt Xt ×Nt 1.97ms 1.89ms 2.04ms 1.99ms

σ̃tT1
(P∗), WM/GM Xt ×Nt 3.47ms 3.41ms 3.18ms 3.13ms

Run Time 6s 5m11s 2m29s 2h5m13s

Table S.1: Description and performance summary of four methods for optimization of two SPGR scans
for precise T1 estimation. Columns correspond with subfigures of Fig. S.2. Column 2 replicates results
given in [2], which optimizes α at fixed TR and nominal x,ν values. Column 3 uses ideas presented in [3]
to improve [2] by optimizing both α and TR, under a time constraint. Columns 4-5 repeat the experiments
of Columns 2-3, but over Xt ×Nt corresponding to WM/GM at 3T.

Table S.1 summarizes how, with appropriate choices of parameter spaces, weights, and constraints, previ-
ous methods relate to min-max scan design (corresponding illustrations provided in Fig. S.2). To assess
the utility of min-max design, we compare worst-case standard deviation σ̃t

T1
(computed with unity M0

and constant noise variance σ2 ← 1.49 × 10−7 as in the Manuscript) over the same WM/GM parameter
space Xt×Nt. Comparing Columns 2 and 4, we observe an 8.7% reduction in WM/GM σ̃t

T1
through min-

max consideration for flip angle optimization. Similarly comparing columns 3 and 5, we observe an 8.6%
reduction in WM/GM σ̃t

T1
through min-max consideration for flip angle and repetition time optimization.

Each min-max grid-search takes roughly 25× longer than its min-only counterpart. This substantial in-
crease in (offline) computation time could likely be reduced through gradient-based optimization, at the
expense of forgoing global for instead local optima.

S.II Latent Object Parameter Estimation
from Optimized Scan Profiles

To experimentally validate scan designs, we require a method to obtain parameter estimates from data
collected using the optimized scan parameters P∗. Here, we describe maximum-likelihood (ML) and
regularized least-squares (RLS) optimization approaches for latent object parameter estimation.

When the reconstructed images have V voxels centered at positions r1, . . . , rV , an ML estimator X̂ML(N,P∗)
minimizes over X the negative log-likelihood

ΨML(X;N,P∗) =
1

2

∥∥Σ−1/2 (Y − F(X;N,P∗))
∥∥2
F
, (S.1)

where matrices Y := [y(r1), . . . ,y(rV )] ∈ CD×V , X := [x(r1), . . . ,x(rV )] ∈ CL×V , and N :=
[ν(r1), . . . ,ν(rV )] ∈ CK×V are discretizations over V voxel locations of vector counterparts; matrix
function F : CL×V ×CK×V ×CP×D 7→ CD×V naturally extends f ; P∗ remains the optimized scan profile
from (9); and ‖·‖F denotes the Frobenius norm.
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Often, it is reasonable to assume that each latent object parameter map is (possibly piecewise) smooth. To
exploit this prior knowledge, we estimate X by minimizing over search space X V an extension of (S.1)
that includes regularization:

X̂RLS (N,P∗) ∈ arg min
X∈XV

ΨRLS(X;N,P∗), where (S.2)

ΨRLS(X;N,P∗) = ΨML(X;N,P∗) +
L∑
l=1

Rl([X]Tl ) (S.3)

and [·]r extracts the rth row of its argument. Here, we have introduced regularizer functions Rl(·) : CV 7→
R for l ∈ {1, . . . , L}, which in this work are chosen as

Rl(·) := βl

J∑
j=1

φl

(
[C(·)]j

)
, (S.4)

where βl is a regularization parameter; φl : C 7→ R is a (possibly edge-preserving) convex penalty
function, selected based on expected properties of the lth latent object parameter; C ∈ RJ×V is a finite
differencing matrix; and j indexes a total J direction-dependent differencing operations.

Typically, ΨRLS(X;N,P∗) is non-convex in X, precluding global optimization. We instead seek a local
minimizer of (S.3) using the projected Levenberg-Marquardt method [7] with a step-halving line search to
ensure monotonic convergence in cost.

For non-convex cost functions like (S.3), initialization quality is important. In this work, we initialize (S.2)
by first isolating nonlinear dependencies via the “variable-projection” method [8], and then minimizing
(S.1) using a nonlinear least-squares (NLS) algorithm. Specifically, we note that ΨML(X;N,P∗) is voxel-
wise separable, and thereby find a global minimizer of (S.1) in a single iteration of matching pursuit [9, 10]
with a precomputed dictionary of signal vectors.

Following an analysis similar to that of [11] for the NLS objective (S.1), one can show that if f is a smooth,
injective mapping and dictionary quantization error is neglected, then X̂ML(N,P∗) is asymptotically effi-
cient. At reasonable noise levels, we thus expect P∗ to permit low ML estimation variance. For suitable
regularizers, minimizing (S.3) with initialization X̂ML(N,P∗) then only further reduces variance.

Even for nonlinear f(·), the ML estimate X̂ML is asymptotically unbiased. For Gaussian noise models,
increasing sample size is statistically equivalent to increasing signal-to-noise ratio (SNR). Thus, in re-
gions where the data provides sufficiently high SNR (and is thus approximately Gaussian-distributed even
in magnitude [12]), X̂ML will exhibit negligible bias, and the CRB can be used to reliably predict ML
estimation error. Table II in Section IV empirically explores the validity of this high-SNR assumption,
through simulations at realistic noise levels.

S.III Numerical Simulations

Fig. S.3 displays latent object parameter estimates T̂ML
1 and T̂ML

2 from the optimized scan profiles along-
side (5× magnified) absolute differences with respect to the ground truth (corresponding sample statistics
within WM/GM regions of interest are summarized in Table II). Difference images suggest that, with care-
ful scan optimization, all three scan profiles permit T1 and T2 to be jointly estimated with low error.
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Figure S.3: T1 and T2 ML estimates and corresponding errors, from data synthesized using the op-
timized scan profiles in Table I. Subfigures (a)-(d), (e)-(h), and (i)-(l) correspond to scan profiles
(CSPGR, CDESS) = (2, 1), (1, 1), and (0, 2) SPGR and DESS scans, respectively. Colorbar ranges cor-
responding to TML

1 and TML
2 estimates are [0, 2000]ms and [0, 200]ms, respectively. Magnitude error maps

are computed with respect to latent, ground truth (m) T1 and (n) T2 maps, and are respectively presented
with 5× magnified colorbar ranges [0, 400]ms and [0, 40]ms to aid comparison.
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770 790 810 830 850 870 890

Empirical
Worst-case SD
Latent SD in WM

(a) T̂ML
1 (ms) in voxels with true WM-like T1 ← 832

1240 1260 1280 1300 1320 1340 1360 1380 1400 1420

Empirical
Worst-case SD
Latent SD in GM

(b) T̂ML
1 (ms) in voxels with true GM-like T1 ← 1331

76 78 80 82

Empirical
Worst-case SD
Latent SD in WM

(c) T̂ML
2 (ms) in voxels with true WM-like T2 ← 79.6

103 105 107 109 111 113 115 117

Empirical
Worst-case SD
Latent SD in GM

(d) T̂ML
2 (ms) in voxels with true GM-like T2 ← 110

Figure S.4: Histograms of T1 and T2 estimates from noisy independent measurements of a single nominal
WM or GM value. In each plot, two normal distributions are overlaid, each with latent means T1 and T2.
In (a)-(b) and (c)-(d), the solid green curve isN (T1, (σ̃

t
T1

)2) andN (T2, (σ̃
t
T2

)2), respectively. In (a)-(d), the
dashed maroon curves have variances computed from the Fisher information at a priori unknown T1, T2
values in WM or GM. These plots correspond to an optimized (0, 2) scan profile; analogous plots for other
profiles are visually similar. At realistic noise levels, parameter estimates distribute with minimal bias and
near-Gaussian shape. Thus, the CRB can be used to reliably approximate T̂ML

1 and T̂ML
2 errors.

7



Fig. S.4 histograms (voxel-wise independent) ML estimates T̂ML
1 and T̂ML

2 from the (0, 2) scan profile.
Each histogram is over a WM or GM ROI, within which all voxels are assigned the same single-component
true T1 and T2 nominal value, listed in Table II.

Overlaid in dashed maroon are normal distributions with latent means T1 and T2 and variances computed
from the Fisher matrix at T1, T2 values in WM or GM. It is apparent that despite finite SNR and Rician
noise, T̂ML

1 and T̂ML
2 exhibit negligible bias and near-Gaussian shape, suggesting locally linear behavior

of the DESS signal model in T1 and T2 (T̂ML
1 and T̂ML

2 distributions from other profiles are similar).

The subfigures of Fig. S.4 superimpose in solid green a second set of normal distributions, with the same
means T1 and T2 as before, but worst-case standard deviations σ̃t

T1
and σ̃t

T2
. The separations between these

distribution pairs visually depict how estimator variances specific to WM or GM T1 and T2 values differ
from worst-case variances. Using the fixed latent object parameters to optimize scan profiles can tailor
scans for precise estimation in either WM or GM. In contrast, the proposed min-max formulation finds
scan parameters that ensure precise estimation in both WM and GM.

S.IV Flip Angle Scaling Calibration

In initial experiments, we found that even small (e.g., ∼5%) modifications of flip angle scaling esti-
mate κ̂ from Bloch-Siegert (BS) shifted SPGR scans resulted in significant (e.g., ∼10-15%) changes in
SPGR/DESS T̂1 estimates. Here, we investigate possible κ̂ estimation bias by comparing (via a separate
study) κ̂ from Bloch-Siegert (BS) [13] versus reference Double Angle (DA) [14] measurements.

We collect 8-channel BS and DA data in a structureless FIRST-BIRN gel phantom [15] (T1 ≈ 520ms via
separate IR measurements). For DA (SPGR) scans, we prescribe nominal flip angles α̂0 ← [45◦, 90◦]T

and long repetition times TR ← [3200, 3200]Tms. Except for a reduced 256 × 256 × 6 matrix, all other
BS and SPGR acquisition details are the same as in Section IV.B.1.

We separately normalize and combine (via an extension of [16]) each pair of BS and DA coil datasets.
To reduce errors due to k-space truncation in regularized κ estimates, we mask out coil-combined image
voxels outside and very near the phantom encasing. Initializing with respective method-of-moments esti-
mates, we apply the methods of [17] and [18] to produce regularized κ estimates from coil-combined BS
versus DA images.

Fig. S.5 reveals that well inside the phantom, BS and DA κ estimates exhibit paraboloidal spatial profiles
(as expected), but differ in scaling. Specifically, within a centered ROI of 6758 voxels, the ratio of RLS
DA κ̂ to RLS BS κ̂ has ROI sample mean ± ROI sample standard deviation of 1.050± 0.0044.

To reduce error propagation due to κ̂ bias but retain the speed of BS acquisitions, we choose to scale up
BS κ estimates in all phantom and in vivo experiments by 5.0%. We find empirically that even this crude
correction factor greatly improves T̂1 agreement across SPGR/DESS and reference IR/SE scan profiles.

S.V Experimental Details

This section provides further details on phantom and in vivo experiments discussed in Sections IV.B and
IV.C. Sections S.V.A and S.V.B provide phantom reconstruction details about SPGR/DESS and IR/SE
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Figure S.5: Method of Moments (top) and RLS (bottom) estimates of flip angle scaling κ in a FIRST-
BIRN gel phantom, from Bloch-Siegert (left) and Double-Angle (right) data. Well away from the phantom
encasing, both estimates exhibit a paraboloidal spatial profile, but differ in scaling by 4.8± 0.71%.
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experiments. Unless explicitly mentioned in Section IV.C, these details pertain to brain reconstructions
as well. Sections S.V.C and S.V.D discuss additional phantom and in vivo images and tables; in addition,
Section S.V.D provides image registration details.

S.V.A SPGR/DESS (Phantom) Reconstructions

We acquire all phantom datasets using a GE Discovery™ MR750 3.0T scanner with an 8-channel re-
ceive head array. We separately normalize and combine coil data from each scan profile using a natural
extension of [16] to the case of multiple datasets. For each optimized SPGR/DESS scan profile P∗,
we pre-cluster known parameter maps N into 10 clusters using k-means++ [19] and use each of the 10
cluster means to compute a corresponding dictionary of signal vectors from 300 T1 and T2 values loga-
rithmically spaced between [101.5, 103.5] and [100.5, 103], respectively. We then iterate over clusters and
use each dictionary in conjunction with corresponding coil-combined magnitude image data to produce
ML parameter estimates X̂ML(N,P∗). We subsequently solve RLS problem (S.2) with initialization
X̂ML(N,P∗) to obtain regularized estimates X̂RLS(N,P∗) for each P∗. We design regularizers to en-
courage parameter estimates from different scan profiles to exhibit similar levels of smoothness. Letting
l ∈ {1, 2, 3} enumerate latent object parameters {M0/E,T1,T2}, we choose mild regularization parame-
ters (β1, β2, β3) := D × (2−26, 2−21, 2−23) to scale with the number of datasets. For all scan profiles, we
use a corner-rounded approximation to the `1 potential function,

φl(·) := γ2l

[√
1 + |·/γl|2 − 1

]
(S.5)

where (γ1, γ2, γ3) := (2−2, 25 ms, 22 ms) are fixed to values on the order of anticipated standard deviations.
We iteratively update X until convergence criterion∥∥X(n) −X(n−1)∥∥

F
< 10−7

∥∥X(n)
∥∥
F

(S.6)

is satisfied. For all steady-state profiles tested, ML initializations and RLS reconstructions of phantom
datasets require less than 3m30s and 9s, respectively.

S.V.B IR/SE (Phantom) Reconstructions

We first jointly coil-combine all 8-channel IR and SE phantom datasets to produce complex images. We
next estimate T1 along with nuisance parameters M0 exp (−TE/T2) and inversion efficiency map ε via
(S.1) and (S.3) from the 4 complex coil-combined IR images. By using the same flip angle scaling map κ̂
as is used for SPGR/DESS profiles, we estimate T1 using a signal model similar to one proposed in [20],
which accounts for imperfect excitation/refocusing and imperfect inversion. We then take both T1 and κ as
known and estimate T2 along with nuisance parameter M0 (accounting for imperfect excitation/refocusing
and incomplete recovery) via (S.1) and (S.3) from the 4 complex coil-combined SE images. We hold all
other reconstruction details identical to those of SPGR/DESS reconstructions. For all steady-state scan
profiles tested, ML initializations and RLS reconstructions of brain datasets require less than 3m and 7s,
respectively.

As an aside: we initially attempted to circumvent sequential T1, then T2 estimation by instead jointly
estimating M0, T1, T2, and ε from the IR and SE datasets together. Even using magnitude data and
signal models, this resulted in heavily biased parameter maps, possibly due to the dependence of adiabatic
inversion efficiency on relaxation parameters [21].
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Figure S.6: Colorized T1 and T2 ML and RLS estimates from an HPD® quantitative phantom. Columns
correspond to scan profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS),
and (4 IR, 4 SE) acquisitions. Rows distinguish T1 and T2 ML and RLS estimators. Fig. S.7 provides
identical grayscale images which enumerate vials. Colorbar ranges are in milliseconds.

S.V.C Phantom Images and Tables

Figs. S.6 and S.7 compare phantom T1 and T2 ML and RLS estimates in color and grayscale from opti-
mized scan profiles. Vials are enumerated in Fig. S.7 in descending T1 and T2 order. Vials corresponding
to tight Xt and broad Xb parameter ranges are highlighted with orange and yellow labels, respectively.
Within these vials of interest, parameter maps from different scans appear visually similar.
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Figure S.7: Grayscale T1 and T2 ML and RLS estimates from an HPD® quantitative phantom. Columns
correspond to scan profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS), and
(4 IR, 4 SE) acquisitions. Rows distinguish T1 and T2 ML and RLS estimators. Vials are enumerated
and color-coded to correspond with data points in Fig. S.8. Fig. S.6 provides identical colorized images.
Colorbar ranges are in milliseconds.

In higher-T1 vials (and the surrounding water), more bias is apparent in T̂1 ML and RLS estimates from
the (0, 2) scan profile than from the (2, 1) and (1, 1) scan profiles. With the signal models used in this
study, the images suggest that scan profiles consisting of at least one SPGR scan may offer increased
protection against T1 estimation bias.

Fig. S.8 expands Fig. 1 by plotting phantom within-ROI sample statistics of both ML and RLS T1,T2

estimates. Table S.2 replicates sample statistics in Fig. S.8 for vials 5-8. Compared to ML initializations,
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Figure S.8: Phantom within-ROI sample statistics of T1 and T2 estimates from optimized SPGR/DESS
and reference IR/SE scan profiles, vs. NIST NMR measurements [22]. Markers and error bars indicate
ROI sample means and ROI sample standard deviations within the 14 labeled and color-coded vials in
Fig. S.7. Figs. S.8a-S.8b correspond with ML estimates and replicate Figs. 1a-1b for sake of compari-
son. Figs. S.8c-S.8d correspond with RLS estimates. Tight Xt and broad Xb latent parameter ranges
are highlighted in orange and yellow, respectively. Table S.2 replicates sample statistics within Vials 5-
8. Our MR measurements are at 293K, while NIST NMR measurements are at 293.00K. Within the
designed parameter ranges, estimates from different acquisitions are in reasonable agreement with NIST
measurements.
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(2SP,1DE) (1SP,1DE) (0SP,2DE) (4IR,4SE) NIST NMR
V5 T̂ML

1 1450± 50. 1380± 41 1600± 130 1380± 44 1332± 0.8

V5 T̂RLS
1 1450± 26 1370± 16 1540± 98 1380± 37

V6 T̂ML
1 1100± 30. 1050± 39 1120± 39 1100± 74 1044± 3.2

V6 T̂RLS
1 1100± 15 1040± 14 1110± 16 1100± 64

V7 T̂ML
1 870± 22 830± 29 880± 29 870± 25 801.7± 1.70

V7 T̂RLS
1 865± 7.1 820± 11 860± 18 870± 21

V8 T̂ML
1 680± 12 640± 18 670± 12 658± 8.8 608.6± 1.03

V8 T̂RLS
1 674± 7.6 637± 7.4 662± 6.6 658± 7.1

V5 T̂ML
2 131± 5.5 140± 10. 141± 8.4 143± 4.9 133.27± 0.073

V5 T̂RLS
2 131± 5.2 145± 9.1 139± 7.1 142± 4.8

V6 T̂ML
2 91± 3.5 99± 6.0 95± 4.2 96± 2.7 96.89± 0.049

V6 T̂RLS
2 91± 3.4 104± 6.2 93± 3.7 96± 2.6

V7 T̂ML
2 64± 2.2 69± 3.9 65± 2.1 69± 1.2 64.07± 0.034

V7 T̂RLS
2 65± 2.1 71± 4.3 64± 1.9 69± 1.2

V8 T̂ML
2 46± 1.5 50.± 2.3 46± 1.1 47.6± 0.87 46.42± 0.014

V8 T̂RLS
2 46± 1.5 50.± 2.3 46± 1.0 47.5± 0.85

Table S.2: Phantom within-ROI sample means± sample standard deviations of T1 and T2 estimates from
optimized SPGR/DESS and reference IR/SE scan profiles, vs. NIST NMR measurements (cf. slide 22 of
e-poster corresponding to [22]). For sake of brevity, sample statistics corresponding only to phantom vials
within (or nearly within) tight design range Xt (color-coded orange in Fig. S.7) are reported. Fig. S.8 plots
sample statistics for all vials. ‘V#’ abbreviates vial numbers. All values are reported in milliseconds.

(weakly) regularized estimates reduce error bars without introducing substantial additional bias.

S.V.D Brain Registration Details, Images, and Tables

For each coil-combined dataset, we compute a separate 2D rigid transformation (with respect to the
TI = 50ms IR dataset) via the MATLAB® function imregtform and then apply the transformation
via imwarp. We choose to use rigid transformations instead of affine distortions to avoid scaling; how-
ever in doing so we sacrifice compensating for small through-plane rotations. We do not find registration
to substantially change subsequently estimated relaxation maps; however, this extra step substantially im-
proves alignment of (especially cortical GM) ROIs in T̂1 and T̂2 estimates from different scan profiles.

Fig. S.9 expands Fig. 2 by comparing both ML and RLS T1,T2 estimates across scan profiles. Fig. S.10
replicates Fig. S.9 in grayscale. Table S.3 is similar to Table IV, except for RLS estimates. Compared to
ML counterparts, RLS estimates in general reduce within-ROI sample variation without incurring signifi-
cant additional bias.

S.VI Multi-exponential Relaxation
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Figure S.9: Grayscale T1 and T2 ML and RLS estimates from the brain of a healthy volunteer. Columns
correspond to profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS), and
(4 IR, 4 SE) acquisitions. Rows distinguish T1 and T2 ML and RLS estimators. Fig. S.10 provides
identical grayscale images. Colorbar ranges are in milliseconds.
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Figure S.10: Grayscale T1 and T2 ML and RLS estimates from the brain of a healthy volunteer. Columns
correspond to profiles consisting of (2 SPGR, 1 DESS), (1 SPGR, 1 DESS), (0 SPGR, 2 DESS), and
(4 IR, 4 SE) acquisitions. Rows distinguish T1 and T2 ML and RLS estimators. Fig. S.9 provides identical
colorized images. Colorbar ranges are in milliseconds.
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ROI (color) (2SP,1DE) (1SP,1DE) (0SP,2DE) (4IR,4SE)

T̂RLS
1

anterior right WM (yellow) 840± 24 770± 20. 840± 43 780± 20.
anterior left WM (magenta) 740± 51 670± 37 740± 54 760± 23
posterior right WM (green) 890± 79 860± 61 960± 82 810± 24

posterior left WM (blue) 870± 62 850± 50. 880± 78 820± 35
anterior GM (cyan) 1200± 200 1200± 220 1300± 230 1300± 180

T̂RLS
2

anterior right WM (yellow) 40.± 1.3 54± 3.4 46± 1.5 55± 1.9
anterior left WM (magenta) 40.± 1.7 50.± 4.4 43± 1.7 53± 1.8
posterior right WM (green) 43± 2.8 60.± 6.7 51± 3.7 58± 2.3

posterior left WM (blue) 43± 1.7 57± 4.7 49± 2.5 57± 1.8
anterior GM (cyan) 50± 12 60± 15 60± 11 59± 6.4

Table S.3: Within-ROI sample means ± within-ROI sample standard deviations of T1 and T2 RLS es-
timates from the brain of a healthy volunteer. Sample statistics are computed within ROIs indicated in
Fig. 2. All values are reported in milliseconds.

ROI (color) [10, 30]T [10, 60]T [10, 150]T

T̂ML
2

anterior right WM (yellow) 54± 3.0 56± 1.9 54± 2.4
anterior left WM (magenta) 50.± 2.2 54± 1.8 54± 2.4
posterior right WM (green) 55± 2.6 58± 2.2 61± 2.6

posterior left WM (blue) 50± 2.2 57± 2.0 61± 2.1
anterior GM (cyan) 58± 6.5 61± 6.8 57± 7.3

Table S.4: Within-ROI sample means ± within-ROI sample standard deviations of monoexponential T2

ML estimates, from pairs of in vivo SE datasets. Column headers indicate echo times TE (ms) of SE
datasets. Sample statistics are computed within ROIs indicated in Fig. 2. Single-component T̂ML

2 estimates
in WM depend on SE echo times.

This section explores the effect of model mismatch due to multi-component relaxation on single-component
T2 estimation bias, through numerical simulations and in vivo experiments.

We simulate multi-exponential data to arise from three non-exchanging pools of myelinated water (T1, T2)←
(500, 20)ms, intracellular and extracellular water (T1, T2) ← (1000, 80)ms, and free water (T1, T2) ←
(3500, 250)ms [23, 24]. We assign pool fractions of (0.15, 0.80, 0.05) in WM and (0, 0.95, 0.05) in
GM to the 81st slice of the BrainWeb digital phantom [25, 26] to create ground truth M0, T1, and
T2 compartment-wise maps. We simulate component-wise IR signals (acquisition parameters in Sec-
tion IV.B.1) and add them to yield noiseless multi-component IR data. We likewise simulate and then
add component-wise SE signals to construct three scan profiles consisting of pairs of multi-component SE
datasets with variable TE ∈

{
[10, 30]T, [10, 60]T, [10, 150]T

}
. To avoid confounding sources of bias, we

assume knowledge of a uniform transmit field and a uniform sensitivity profile of a single-channel receive
coil. We estimate a single-component T̂1 ML map from multi-component IR data, which we then use to
estimate a single-component T̂2 ML map from each multi-exponential SE scan profile.

The upper rows of Figs. S.11 and S.12 compare (in color and grayscale) T̂2 maps from simulated multi-
exponential SE data. The lower rows compare in vivo T̂2 maps from corresponding subsets of the SE
reference profile discussed in Section IV.C. As echo times are further separated, T̂2 in WM approaches T̂2
in GM, creating an apparent reduction in T̂2 WM/GM contrast.
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Figure S.11: Colorized monoexponential T2 ML estimates from pairs of (top) multi-exponential simulated
and (bottom) in vivo SE datasets. Columns denote SE dataset echo times. Fig. S.12b provides identical
grayscale images. Colorbar ranges are in milliseconds.

Table S.4 summarizes T̂ML
2 sample means and sample standard deviations (computed within WM/GM

ROIs depicted in Fig. 2) from in vivo SE scan profiles. Single-component T̂ML
2 estimates depend on

SE echo times more significantly in WM than in GM. Comparing with Table IV, trends suggest that
disagreement in T̂ML

2 estimates across scan profiles may in part be attributable to the substantial differences
of acquisition parameters (e.g. echo time) used in different pulse sequences.
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