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In our Pt/BT-BFO/Nb:STO devices, the conduction mechanisms were determined by fitting both 

the HRS and LRS I-V curves and are shown in Fig. S1. During HRS, the Ohmic conduction was 

responsible for current transport when the voltage was varied from 0 to 0.5 V (Fig. S1(a)). 

However, space charge limited conduction (SCLC) conduction mechanism comes into play when 

the higher voltage was applied from 0.6 to 3 V (Fig. S1(b)). During LRS, both the thermionic and 

thermionic field emission were responsible at low voltages (from 0 to 0.5 V). At higher voltages 

(1 to 3 V), SCLC conduction mechanism was responsible for the current transport. 
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Figure S1 | Transport properties. During HRS, the I-V characteristics of Pt/BT-BFO/Nb:STO 

(a) from 0 to 0.5 V show that Ohmic conduction was responsible for the current transport. Whereas, 

from 0.5 to 1 V, the slope 1.99 indicates that the current was due to SCLC. However, from 1 to 3 

V, the slope 2.746 depicts that the current is also due to SCLC. On the other hand, during LRS, (c) 

the I-V characteristics from 0 to 1 V, both the TE and TFE was responsible for the current transport, 

and (d) from 1 to 3 V, the slope 2.947 represents that the current was mainly due to SCLC. 

Figure S2 shows the transmission spectrum of BT-BFO and a sharp absorption peak around 423 

nm was found which is attributed to the direct band-to-band transition. Well known Tauc’s 

relationship has been utilized to determine the bandgap of BT-BFO and the value was found to be 

3 eV. The XPS survey spectra were recorded from Nb:STO substrates (Fig. S3(a)) and thick BT-

BFO (Fig. S3(b)) films for a binding energy range of 0 eV to 800 eV. The Nb-related peaks were 

absent during XPS scan from Nb:STO, because the doping concentration of Nb (0.7%) is way 

below the XPS detection limits. To further verify the presence of Nb within the as-deposited BT-

BFO, SIMS depth profiling was performed and the presence of Nb was identified (see Fig. S4).  
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Figure S2 | Optical band-gap studies of BT-BFO thin films. (a) Transmission spectra for BT-

BFO thin films deposited on glass substrate. A sharp absorption peak found around 423 nm can be 

attributed to the direct band-to-band transition; and (b) ( h )2 vs h to determine the optical 

bandgap of BT-BFO and it was found to be 3 eV. 

 

 

Figure S3 | Surface survey spectra using XPS. (a) Survey spectrum for Nb:STO substrates; and 

(b) survey spectrum for BT-BFO thin film. 

 

Figure S4 | SIMS depth profile of a 300 nm BT-BFO films onto Nb:STO substrates. 

 

 


