Eggshell membrane ameliorates hepatic fibrogenesis in human C3A cells and rats through changes in PPARγ-Endothelin 1 signaling

Huijuan Jia, Wanping Aw, Kenji Saito,

Manaka Hanate, Yukio Hasebe and Hisanori Kato

Supplementary Methods

The levels of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF- α) in plasma were measured by a Quantikine enzyme-linked immunosorbent assay kit (ELISA) (R&D Systems, Minneapolis, MN, USA). The plasma levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), phospholipid (PL) and non-esterified fatty acid (NEFA) were determined enzymatically using commercial kits (Wako, Tokyo). Hepatic lipids were also measured using the same enzymatic kits after extraction from the frozen livers using the procedure described by Folch ¹.

For the evaluation of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in plasma and liver were analyzed using an ELISA kit (Japan Institute for the Control of Aging, Fukuroi, Japan) followed by total DNA extraction from liver by using a kit (Qiagen, Valencia, CA). The activities of plasma antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) were measured using a kit (Cayman Chemicals, Ann Arbor, MI).

The principle of Sirius red/Fast green (SF) staining is the coloring of collagenous protein by Sirius red and non-collagenous proteins by fast green. The absorbance of the colors was read at 540 and 605 nm by a Microplate Reader (Multiskan JX, LabSystems, Tokyo). The collagen content of three sections for each animal was calculated using the formula below.

Fibrosis index (collagen content) = microgram collagen per milligram total protein, where:

Collagen (μ g/slide) = [OD 550 – (OD 595 × 0.254)]/40.8 × 1000

Non-collagen protein (μ g/slide) = OD 605 /2.04 × 1000

Total protein = Collagen + Non-collagen protein

Supplementary Results

1. General characteristics

The organ weights are listed in Supplementary Table S2. The relative liver and spleen weights were significantly increased after CCl₄ injection compared to the CON group, with no significant differences between the CCl₄ and ESM groups. The rats in the CCl₄ group had

significantly lower abdominal fat weights, and the ESM diet partially prevented this fat loss, resulting in improved body weights in the ESM group. There were no significant differences in kidney, muscle or testis weights.

No significant differences were found in the albumin and total protein levels among the three groups (Table 1). CCl₄ induced increased TNF- α concentrations that were approximately twofold higher than those of the controls, and ESM partially prevented the increase of this inflammatory cytokine, although not significantly (Suppl. Table S3).

With the CCl₄ administration, the hepatic TG, TC and PL levels were elevated and the plasma TG, TC and HDL levels were lowered (Suppl. Table 3). However, dietary ESM treatment lowered the hepatic TG and TC levels to some extent, and the plasma TG levels were slightly increased (without statistical significance) compared to those of the CCl₄ group. These results indicate that ESM partially repaired the impaired lipoprotein transport system and normalized the lipid imbalances caused by CCl₄.

In addition, the level of plasma 8-OHdG in the CCl_4 -administered rats was significantly increased compared to the control rats, which may be a result of strong oxidative stress and enhanced reactive oxygen species formation. In contrast, ESM treatment attenuated the 8-OHdG levels in both tissues, although not significantly. Unexpectedly, the ESM treatment had no effect on SOD, CAT or Gpx activity (Suppl. Table 3).

2. Variations in lipid metabolism and the expressions of stress-related genes

Fatty acid synthase (Fas), fatty acid binding protein 4 (Fabp4), lipoprotein lipase (Lpl) and fatty acid translocase CD36 (Fat/CD36), which are associated with fatty acid metabolism, were down-regulated with ESM treatment. In contrast, cytochrome P450 7a1 (Cyp7a1) expression was significantly up-regulated in the rats fed ESM. In addition, one of the upstream genes of cyp7a1, farnesoid X receptor (Fxr) also showed up-regulation (1.2-fold).

In addition, Heat shock 70kD protein 1A1 (*Hspa1a1*), which is induced in response to various stresses; cytochrome P450, family 2, subfamily b, polypeptide 1 (*Cyp2b1*), which is related to drug metabolism; and some inflammatory genes such as S100 calcium binding protein A11 (*S100a11*) and *Ccl2* were down-expressed in the ESM group. These changes were validated by a quantitative real-time RT-PCR and were generally consistent with the two techniques (Suppl. Figure).

Supplementary Discussion

One of the earliest manifestations of CCl_4 -induced liver injury is the accumulation of lipids, as shown in the plasma and hepatic lipid profiles. This results from an imbalance among the hepatic fatty acid flow, triglycerol synthesis, and excretion. The results of the genomics approach showed that three genes associated with fatty acid metabolism (*Fas*, an enzyme that catalyzes fatty acid synthesis, *Fabp4*, which plays an important role in the

storage and transport of fatty acids into the liver, and *Lpl*, a rate-limiting enzyme for the intravascular hydrolysis of lipoprotein-rich triglyceride particles) were down-regulated with ESM treatment. Decreased fatty acid synthesis and uptake as well as lipoprotein hydrolysis may thus have contributed to the low hepatic fat accumulation in the ESM group.

The up-regulated expression of Cyp7a1, a rate-limiting enzyme in the conversion of cholesterol to bile acids ², indicates the influence of ESM on lipid cholesterol metabolic outputs in the liver. Additionally, one of the upstream genes of Cyp7a1, farnesoid X receptor (*Fxr*) also showed up-regulation. *Fxr* activation will not only help release the bile acids overload in liver, but it can prevent bile acid-induced cell death and other deleterious effects on normal liver repair pathways ³. In this respect, by promoting regeneration and preventing cell death, ESM up-regulated *Fxr* and *Cyp7a1* are essential to promote liver repair after CCl₄-induced injury. However, the up-regulation of *Cyp7a1* was confirmed by PCR with high individual variability, and thus no significant difference was observed in the hepatic TC levels of the ESM group.

As oxidative stress plays a critical role in the activation of HSCs during liver fibrosis, and because our results showed that ESM reduced the elevated contents of TBARS and 8-OHdG, we checked the expression of genes involved in oxidative stress. Glutathione peroxidase, cytochrome b-245, alpha polypeptide, glutamate-cysteine ligase and more, were all up-regulated with CCl₄ but not changed by ESM, except for Cyp2b1 and Hspa1a1, which were down-regulated following the ESM diet. Heat shock proteins are induced in response to various stresses and correlate with the degree of damage ⁴. CYP2B1, one of the cytochrome P450 enzymes, can activate CCl_4 to form the free radical (CCl_3), (CCl_3OO) which in turn results in lipid peroxidation, DNA damage and protein denaturation ⁵. After propagation of the peroxidation process, lipids are finally degraded in small molecules such as TBARS. Similarly, damaged DNA, e.g., 8-OHdG will be produced. With the ESM diet, the down-regulation of Cyp2b1 and Hspa1a1 indicated that less oxidative stress CCl₃ radical formation, and resulted in lower TBARS levels. However, this decreased lipid peroxidation in the ESM group was not associated with anti-oxidative enzyme activity, as the SOD, CAT, Gpx activities and their expressions were not affected by ESM. Additionally, the ESM group showed signs of attenuated liver inflammation as indicated by decreased plasma serum AST and ALT activities. The protein and transcriptional down-regulation in ALT/AST levels may contribute to the decreased ALT/AST, which indicated that the chronic injury induced by CCl₄ was repaired.

In addition, the autocrine signaling by PDGF, which binds to and activates PDGF receptor (Pdgfr), is also regarded as one of the potent mitogens and chemotactics for HSCs, as PDGF can induce the proliferation of ECM-producing cells mediated by stimulating ERK activity ^{6, 7}. Moreover, IGF binding proteins (IGFBPs) can activate HSCs and increase the ECM, which is associated with the TGF β 1/Smad3 signaling pathways ^{8, 9}. The

overexpression of VEGFD, an important fibrogenic and angiogenic factor involved in fibrosis, has a stimulatory effect on collagen production by activated HSCs. This can occur independently of TGF β 1 overexpression¹⁰, which may give an alternative explanation for the lack of a change in *Tgf\beta1* expression. As such, the antifibrogenic activity of ESM may therefore also be attributed to its inhibitory effect on Igfbp, Pdgfr and Vegfd expression, and the inactivation of HSCs.

PPAR γ has several inhibitory effects on inflammation, including the reduction of the transcriptional activities of NF-kB, a redox-sensitive transcription factor that transactivates the promoters of many types of inflammation, infection and stress genes, including cytokines. It is also known that the key to HSC proliferation (which is stimulated by oxidative stress) is the activation of NF-kB, gene expression of which is induced only in activated, but not in quiescent HSCs¹¹. In the present study, the expressions of NF-kB and a monocyte-attracting chemokine, *Ccl*₂ (which is involved in inflammation and regulated by NF-kB) were significantly decreased in the ESM group. Therefore, the antifibrogenetic effect of ESM is due, at least in part, to an up-regulation of PPAR γ and decreased NF-kB activities on inactivating matrix-producing HSCs, thereby blocking or attenuating oxidative stress, inflammatory processes and fibrosis progression. Further studies are necessary to elucidate the underlying molecular mechanisms involved in this process.

References

- 1. Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. *J Biol Chem* **226**, 497-509 (1957).
- Guo J, et al. A new TCM formula FTZ lowers serum cholesterol by regulating HMG-CoA reductase and CYP7A1 in hyperlipidemic rats. Journal of Ethnopharmacology 135, 299-307 (2011).
- Meng Z, et al. FXR Regulates Liver Repair after CCl4-Induced Toxic Injury. Molecular Endocrinology 24, 886-897 (2010).
- Domitrović R, Jakovac H, Milin Č, Radošević-Stašić B. Dose- and time-dependent effects of luteolin on carbon tetrachloride-induced hepatotoxicity in mice. *Experimental and Toxicologic Pathology* 61, 581-589 (2009).
- 5. Knockaert L, *et al.* Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver. *Laboratory Investigation* **92**, 396-410 (2011).
- 6. Qiang H, *et al.* Differential expression genes analyzed by cDNA array in the regulation of rat hepatic fibrogenesis. *Liver Int* **26**, 1126-1137 (2006).
- Yasuda Y, et al. (-)-Epigallocatechin gallate prevents carbon tetrachloride-induced rat hepatic fibrosis by inhibiting the expression of the PDGFR8 and IGF-1R. *Chemico-Biological Interactions* 182, 159-164 (2009).
- Liu LX, Zhang HY, Zhang QQ, Guo XH. Effects of insulin-like growth factor binding protein-related protein 1 in mice with hepatic fibrosis induced by thioacetamide. *Chin Med J (Engl)* 123, 2521-2526 (2010).
- Liu L-X. Insulin-like growth factor binding protein-7 induces activation and transdifferentiation of hepatic stellate cellsin vitro. *World Journal of Gastroenterology* 15, 3246 (2009).
- Shi H, Dong L, Bai Y, Zhao J, Zhang Y, Zhang L. Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats. *European Journal of Pharmacology* 623, 119-124 (2009).
- 11. Chávez E, et al. Resveratrol prevents fibrosis, NF-kB activation and TGF-8 increases

induced by chronic CCl4 treatment in rats. Journal of Applied Toxicology 28, 35-43 (2008).

Supplementary Table S1. The primer sequences for RT-PCR

A. Human primers

Gene	Accession no	Primer sequence	Probe Set ID	
		Forward CGACATCAGGAAGGACCTGT		
ACTA1	NM_001100	Reverse CCGATCCACACCGAGTATTT	203872_at	
		Forward AAGAGCTGGTTTGGGGGCTAT		
ASPN	NM_017680	Reverse CCAAGCAAGGTCTTCCAAAG	219087_at	
	840729	Forward GCAATTTCCCCAAGTCTCTG	21/500	
CCL2	569/38	Reverse CCCTAGCTTTCCCCAGACAT	216598_s_at	
	DE001010	Forward AACAGCCGCTTCACCTACAG	1556400 a at	
COLIAI	BE221212	Reverse TGGGATGGAGGGAGTTTACA	1556499_s_at	
COL3A1	A 1012750	Forward CACCTTCATTTGACCCCATC	201952 v. et	
	A1813/38	Reverse TACGGCAATCCTGAACTTCC	201852_x_at	
EDN1	105008	Forward CCGGCTAATGAAAGAGGTTG	222802 at	
EDNI	102008	Reverse TTGACAGGCAAAACAAAGCA	222802_at	
ΕΓΝΙΡΑ	NM 001057	Forward CGCCAGACAGATTGCTGATA	204464 s. at	
LUINKA	INIVI_001937	Reverse TATGATGCGCCAGTGGAATA	204404_5_at	
FDNRB	M74921	Forward GTCATGCTTATGCTGCTGGT	204271 s at	
LUNKD	11/4721	Reverse CGGAAGTTGTCATATCCGTGA	2042/1_5_at	
GAPDH	AK026525	Forward CTCATGACCACAGTCCATGC	217398 x at	
GAPDH	AIX020323	Reverse CTCATGACCACAGTCCATGC	217570_A_at	
Ι ΤΌΟΙ	NM 000627	Forward TGCAGTTCCTTGGCTACTGTT	202729 s at	
	1111_000027	Reverse CTGCTCCACAGGACAGACAA	202727_5_at	
SPON1	AB018305	Forward GACAGCAGATTCCCCACATT	209437 s at	
SPUNI	SLOWI	AD010303	Reverse ACCCAACATCAATGCTCCTC	207137_5_u

Forward CTGTTGTTGCTGTGGCTGAT

TIMP1

NM_003254

Reverse CATCCCCTAAGGCTTGGAAC

201666_at

B. Rat primers

1				
Gene	Accession no		Primer sequence	Probe Set ID
Acth	NM 13/376	Forward	TTGCTGACAGGATGCAGAAG	1367555 at
Actu	11111_134320	Reverse	GTACTTGCGCTCAGGAGGAG	1507555_at
Aspn	NM 001014008	Forward	AGGAAAGCCCTTTGGAAGAG	1380726 at
	1111_001014008	Reverse	TTCCAGGGATTACCTAATGTGC	1380720_at
Cel2	NM 031530	Forward	CAAGAGAATCACCAGCAGCA	1367073 at
CCI2	NW_031330	Reverse	CCTTATTGGGGTCAGCACAG	1507975_at
Cela1	NIM 012552	Forward	CTTGGTGAACGGCCAGTATT	1297910 of
	NW_012552	Reverse	GCCACTGGACTCAGGAAGAC	1307019_at
Col1a1	NIM 052204	Forward	GGGCAAGACAGTCATCGAAT	1200116 of
	NWI_055504	Reverse	AGATTGGGATGGAGGGAGTT	1300110_at
C_{0}	NIM 052256	Forward	CTCCAAGGAAATGGCAACTC	1270155 at
Conaz	NW_055550	Reverse	CAATGCTGTTCTTGCAGTGG	1570155_at
Cyp2h1	NNI 001134844	Forward	CCCAAGGACATTGACCTCAC	1371076 at
Cyp201	ININI_001134644	Reverse	TTCAGTGCCATTCACAGGAA	1371070_at
Cup7a1	NM 012042	Forward	ATTCTTGTGCGGTGATGGTT	1368/158 at
Cyp/a1	NW_012942	Reverse	ATGTGCCTTCCCAAGTA	1500458_at
Edn1	NM 012548	Forward	ACCTGTCTTCGTTTGCATCC	1360510 at
	1NIVI_012340	Reverse	GCCTGAGTCAGACACGAACA	1307317_at
Ednra	13836/11 of	Forward	TGCCACTGAGTAACACACACC	BE414702
Ednra	1303041_al	Reverse	GTTCCTTGTCGGAAATGTGG	DI'414/02

Edurh	X57764	Forward	CGCTCTGTATTTGGTGAGCA	1297146 a at
Eunio	A37704	Reverse	GGAGCGGAAGTTGTCGTATC	1307140_a_at
Fabr/	NM 052265	Forward	AAATCACCCCAGATGACAGG	1268271 o ot
raop4	INIM_055505	Reverse	TCGACTTTCCATCCCACTTC	13082/1_a_at
Foon	NIM 012508	Forward	TCAAATTGCTGCTTGGGTTT	1267708 a at
174511	NW_012598	Reverse	GGGACAGCATCAAGAGCATT	1507708_a_at
Got1	NM 012571	Forward	CCGGATTCTGACCATGAGAT	1368272 at
0011	NW_012571	Reverse	GATGTGCTTCTCGTTGACCA	1508272_at
Gnt	NM 031030	Forward	TGTGCCTCCTGGAAGAGACT	1387052 at
Opt	NW_031039	Reverse	TGTTGCGTCAGAGACTGTCC	1567052_at
Henala	NM 031071	Forward	TCGAGGAGGTGGATTAGAGG	1368247 at
IIspara	NWL_051971	Reverse	TAAGAATCGTGCACCAGCAG	1500247_at
I alen I	NM_019904	Forward	GTTGAACCTGGGGAAAGACA	1367628 at
Lgaisi		Reverse	AGCTTGATGGTCAGGTCAGC	1507028_at
Inl	NM_012598	Forward	TCACCAGCATCCCCATTATT	1386965 at
црі		Reverse	CACAACAGCGTTTCCAGTGT	1500705_at
I thn1	NM 021587	Forward	CTTGGTCCGGAGACTTTGAA	1367912 at
Ltop1	10101_021507	Reverse	ATCCAATTGACAGGCAATCC	1507712_dt
I thn/	hp/ NM 001170336	Forward	TGTGATTGTTTCGACGGCTA	1371500 at
Ltop4	14141_001170330	Reverse	CGGAAGGAACCATCAGTGTT	15/1500_at
Pdgfra	NM 012802	Forward	CCAACATGGTGGTGTGGTAA	13709/1_st
	1111_012002	Reverse	CATGAACACGGGTATCTGGA	1370741_at
Pnary	NM 013124	Forward	CGAGGACATCCAAGACAACC	1360170 a at
τpark	11111_013124	Reverse	TCAGCGACTGGGACTTTTCT	1507177_a_ai
S100a11	NM_001004095	Forward	GATGCATCGAGTCCCTGATT	1375170_at

_

		Reverse	TAGCTGCCCATCACTGTTGA	
Spon1	NM 172067	Forward	AGCACCCTAAACCCAGGAGT	1270212 at
Spon	INIVI_172007	Reverse	AAAGGATGTGGTGGTGCTTT	1370312_at
Spp1	Spp1 NM 012981	Forward	GATCGATAGTGCCGAGAAGC	1367581 a at
Spp1	INIM_012001	Reverse	CTTGTCCTCATGGCTGTGAA	1507581_a_at
T - A-2	NM 012174	Forward	CTAGACACCTTCCGGGTCAG	1367850 at
1 g105	INIM_013174	Reverse	GTCTAGGGCAGGAGGGAAAC	1307839_at
Timp1	NM 052810	Forward	CATGGAGAGCCTCTGTGGAT	1367712 of
Timpi	INIM_055619	Reverse	TCAGATTATGCCAGGGAACC	1307712_at
Vegfd	NM 031761	Forward	GGTGATTCCCCAATTCACTG	1373882 at
	11111_031/01	Reverse CAGO	CAGGCAACCTTTTCTCGTTC	1575002_at

Supplementary Table S2. Changes in food intake and tissue weights (%)

	CON	CCl ₄	ESM
Total food intake (kg)	1.00 ± 0.04^{a}	0.89 ± 0.03^{b}	0.91 ± 0.11^{b}
Liver	2.65 ± 0.03^a	3.16 ± 0.13^{b}	2.91 ± 0.07^{b}
Kidney	0.63 ± 0.04	0.61 ± 0.02	0.58 ± 0.02
Spleen	0.22 ± 0.02^a	0.28 ± 0.01^{b}	0.29 ± 0.01^{b}
Gastrocnemius muscle	0.58 ± 0.01	0.63 ± 0.02	0.61 ± 0.01
Testis	0.95 ± 0.07	0.97 ± 0.03	0.89 ± 0.04
Epididymal fat	2.27 ± 0.21^a	1.65 ± 0.09^{b}	$2.05\pm0.22^{a,b}$
Perirenal fat	1.87 ± 0.23	1.58 ± 0.19	1.96 ± 0.15
Omental fat	1.40 ± 0.13	1.27 ± 0.11	1.47 ± 0.08
Abdominal fat	5.54 ± 0.50^a	4.50 ± 0.31^{b}	5.48 ± 0.27^{a}

CON, control rats; CCl₄, rats administered CCl₄; ESM, rats administered CCl₄ and ESM (20 g kg⁻¹). Data are mean \pm SE in each group (n=6). Data with different letters (a,b,c) in the same column are significantly different at *P* < 0.05 by Dunnett's test.

Supplementary Table S3. Biochemical changes

	CON	CCl ₄	ESM
TNF-α level (pg/mL)	45.20 ± 4.82^{a}	97.13 ± 11.13^{b}	82.88 ± 4.13^{b}
8-OHdg (ng/mL)	0.055 ± 0.013^{a}	0.095 ± 0.008^b	0.085 ± 0.013^{ab}
SOD activity (U/dL)	69.08 ± 6.61	54.75 ± 6.73	53.46 ± 4.52
CAT activity (µM)	41.56 ± 4.26^{a}	26.19 ± 3.02^{b}	29.25 ± 3.34^b
Gpx activity (nmol/min/mL)	3.08 ± 0.42	2.27 ± 0.29	2.42 ± 0.07
Liver 8-OHdg (µg/g liver DNA)	1.43 ± 0.28	3.05 ± 0.67	2.34 ± 0.45
Plasma lipid			
TG (g/dL)	82.72 ± 13.26	68.37 ± 7.83	86.81 ± 13.26
TC (g/dL)	73.01 ± 7.43	67.13 ± 2.75	65.11 ± 2.75
PL (g/dL)	110.61 ± 7.92	119.68 ± 8.84	125.66 ± 6.19
HDL (g/dL)	56.59 ± 6.47^a	35.39 ± 4.12^{b}	39.40 ± 1.75^{b}
NEFA (Eq/L)	0.65 ± 0.07	0.73 ± 0.08	0.63 ± 0.03
Hepatic lipid			
Hepatic TG (mg/g)	20.16 ± 1.53^a	62.98 ± 3.78^{b}	57.91 ±5.69 ^b
Hepatic TC (mg/g)	3.71 ± 0.21^a	6.71 ± 0.20^{b}	6.54 ± 0.34^{b}
Hepatic PL (mg/g)	8.69 ± 1.91^a	13.47 ± 0.86^b	13.91 ± 0.50^{b}
Hepatic HDL (mg/g)	4.14 ± 0.37	4.79 ± 0.29	4.83 ± 0.39
Hepatic NEFA (mg/g)	8.07 ± 0.93	9.03 ± 0.83	8.15 ± 1.00

CON, control rats; CCl₄, rats administered CCl₄; ESM, rats administered CCl₄ and ESM (20 g kg⁻¹); 8-OHdG, 8-hydroxy-2'-deoxyguanosine; SOD, superoxide dismutase; CAT, catalase; Gpx, glutathione peroxidase; HDL, high-density lipoprotein cholesterol; TG, triglyceride; TC, total cholesterol; PL, phospholipid and NEFA, non-esterified fatty acid.

Data are mean \pm SE in each group (n=6). Data with different letters (a,b,c) in the same column are significantly different at P < 0.05 by Dunnett's test.

Up-regulated get	nes		Fold	change
Probe Set	Symbol	Gene Title	CCl ₄ vs. CON	ESM vs. CCl4
1370711_a_at	Nupl1	nucleoporin like 1	0.41	2.83
1374367_at	Grxcr1	glutaredoxin, cysteine rich 1	0.76	2.83
1387819_at	Cela1	chymotrypsin-like elastase family, member 1	0.31	2.14
1392189_at	Rfx4	Regulatory factor X, 4 (influences HLA class II expression)	0.41	2.14
1370491_a_at	Hdc	histidine decarboxylase	0.62	2.00
1368458_at	Cyp7a1	cytochrome P450, family 7, subfamily a, polypeptide 1	1.62	1.87
1370394_at	IgG-2a	gamma-2a immunoglobulin heavy chain	1.07	1.87
1370778_at	Mup5	major urinary protein 5	1.07	1.74
1384007_at	Atl1	atlastin GTPase 1	0.76	1.74
1368155_at	Cyp2c12	cytochrome P450, family 2, subfamily c, polypeptide 12	0.87	1.62
1370150_a_at	Thrsp	thyroid hormone responsive	0.87	1.62
1375043_at	Fos	FBJ osteosarcoma oncogene	0.87	1.62
1377209_at	Klhl25	kelch-like 25 (Drosophila)	0.81	1.62
1372665_at	Psat1	phosphoserine aminotransferase 1	0.76	1.52
1382363_at	Mpp5	membrane protein, palmitoylated 5	0.93	1.52
1390284_at	Ccdc77	coiled-coil domain containing 77	0.87	1.52
1369179_a_at	Pparg	peroxisome proliferator-activated receptor gamma	0.7	1.23
Down-regulated	genes			
Probe Set	Symbol	Gene Title	CCl ₄ vs. CON	ESM vs. CCl ₄
1371942_at	Gstt3	glutathione S-transferase, theta 3	3.48	0.35
1369864_a_at	Sds	serine dehydratase	1.32	0.44

Supplementary Table S4. Differentially expressed genes in rat liver

1370583_s_at	Abcb1a/1b	ATP-binding cassette, sub-family B (MDR/TAP), member 1A / 1B	3.03	0.44
1370912_at	Hspala	heat shock 70kD protein 1A	4.00	0.44
1388694_at	RT1-T24-3	RT1 class I, locus T24, gene 3	2.00	0.44
1390672_at	Rprm	reprimo, TP53 dependent G2 arrest mediator candidate	0.50	0.44
1391262_at	Senp5	Sumo1/sentrin/SMT3 specific peptidase 5	0.71	0.44
1368247_at	Hspala/1b	heat shock 70kD protein 1A / 1B	4.00	0.47
1368007_at	Dmbt1	deleted in malignant brain tumors 1	1.52	0.50
1371111_at	RT1-EC2	RT1 class Ib, locus EC2	1.15	0.50
1373882_at	Figf	c-fos induced growth factor	2.64	0.50
1376100_at	Tubb6	tubulin, beta 6	2.83	0.50
1383291_at	C7 /// Tubb2c	complement component 7 /// tubulin, beta 2c	4.92	0.50
1386965_at	Lpl	lipoprotein lipase	4.29	0.50
1387011_at	Lcn2	lipocalin 2	2.83	0.50
1370312_at	Spon1	spondin 1, extracellular matrix protein	2.00	0.54
1370956_at	Dcn	decorin	3.25	0.54
1390781_at	Abcb10	ATP-binding cassette, sub-family B (MDR/TAP), member 10	1.52	0.54
1367859_at	Tgfb3	transforming growth factor, beta 3	2.0	0.54
1370026_at	Cryab	crystallin, alpha B	2.46	0.54
1367568_a_at	Mgp	matrix Gla protein	5.66	0.57
1370445_at	Pla1a	phospholipase A1 member A	3.03	0.57
1372219_at	Tpm2	tropomyosin 2, beta	1.41	0.57
1377353_a_at	Tnfsf13	tumor necrosis factor (ligand) superfamily, member 13	1.74	0.57
1377907_at	Snrnp48	small nuclear ribonucleoprotein 48k (U11/U12)	1.00	0.57
1380726_at	Aspn	Asporin	2.30	0.57

1388557_at	Tubb2c	tubulin, beta 2c	4.29	0.57
1398373_at	B3galnt1	beta-1,3-N-acetylgalactosaminyltransferase 1	6.96	0.57
1368671_at	Srpx	sushi-repeat-containing protein, X-linked	2.00	0.62
1370155_at	Col1a2	collagen, type I, alpha 2	2.30	0.62
1371500_at	Ltbp4	latent transforming growth factor beta binding protein 4	1.62	0.62
1371527_at	Emp1	epithelial membrane protein 1	2.30	0.62
1371700_at	Mfap4	microfibrillar-associated protein 4	5.66	0.62
1372615_at	Aoc3	amine oxidase, copper containing 3 (vascular adhesion protein 1)	1.52	0.62
1373223_at	Fam171b	family with sequence similarity 171, member B	2.00	0.62
1374204_at	Wsb1	WD repeat and SOCS box-containing 1	1.00	0.62
1374235_at	Rcan2	regulator of calcineurin 2	1.15	0.62
1387609_at	Car5a	carbonic anhydrase 5a, mitochondrial	1.15	0.62
1392965_a_at	Smoc2	SPARC related modular calcium binding 2	4.29	0.62
1367581_a_at	Spp1	secreted phosphoprotein 1	1.41	0.66
1367712_at	Timp1	TIMP metallopeptidase inhibitor 1	1.74	0.66
1367894_at	Insig1	insulin induced gene 1	2.14	0.66
1367912_at	Ltbp1	latent transforming growth factor beta binding protein 1	1.87	0.66
1368160_at	Igfbp1	insulin-like growth factor binding protein 1	2.83	0.66
1368187_at	Gpnmb	glycoprotein (transmembrane) nmb	2.83	0.66
1368271_a_at	Fabp4	fatty acid binding protein 4, adipocyte	3.03	0.66
1368778 at	Slebah	solute carrier family 6 (neurotransmitter transporter, taurine),	0.03	0.66
1308778_at	Sicouo	member 6	0.95	0.00
1370056_at	Lубс	Ly6-C antigen	1.87	0.66
1370156_at	Prnp	prion protein	1.23	0.66
1371537_at	B4galt5	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide	1.41	0.66

		5		
1372658_at	Synm	synemin, intermediate filament protein	1.00	0.66
1373135_at	Aarsd1	alanyl-tRNA synthetase domain containing 1	1.07	0.66
1373718_at	Tubb2a	tubulin, beta 2a	1.41	0.66
1375170_at	S100a11	S100 calcium binding protein A11 (calizzarin)	1.74	0.66
1379677_at	Tnfsf13	tumor necrosis factor (ligand) superfamily, member 13	1.52	0.66
1382021_at	Pkd2	polycystic kidney disease 2 homolog (human)	1.62	0.66
1382984_at	<i>Tor1b</i>	torsin family 1, member B	1.52	0.66
1384274_at	LOC367746	similar to Spindlin-like protein 2 (SPIN-2)	0.38	0.66
1385211_at	LOC100361585	rCG31991-like	0.93	0.66
1385247_at	Ugt2b	UDP glycosyltransferase 2 family, polypeptide B	0.87	0.66
1385248_a_at	Ogn	osteoglycin	1.52	0.66
1387854_at	Col1a2	collagen, type I, alpha 2	2.64	0.66
1388199_at	Epcam	epithelial cell adhesion molecule	1.15	0.66
1388792_at	Gadd45g	growth arrest and DNA-damage-inducible, gamma	0.81	0.66
1391635_at	Ctdspl	CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like	1.07	0.66
1391701_at	Myst3	MYST histone acetyltransferase (monocytic leukemia) 3	1.15	0.66
1393060_at	Adamtsl2	ADAMTS-like 2	2.83	0.66
1398484_at	RGD1308221	similar to TBC1 domain family, member 8; vascular Rab-GAP/TBC-containing	1.62	0.66
1367973_at	Ccl2	chemokine (C-C motif) ligand 2	2.6	0.66
1387146_a_at	Ednrb	endothelin receptor type B	2.5	0.66
1369519_at	Edn1	endothelin 1	1.6	0.71
1370941_at	Pdgfra	platelet derived growth factor receptor, alpha polypeptide	1.6	0.76

1388116_at	Collal	collagen, type I, alpha 1	1.6	0.76
1367708_a_at	Fasn	fatty acid synthase	1.1	0.76
1387052_at	Gpt	glutamic-pyruvate transaminase (alanine aminotransferase)	1.6	0.76
1368272_at	Got1	glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)	1.2	0.81
1371076_at	Cyp2b1 Cyp2b2	<pre>/// cytochrome P450, family 2, subfamily b, polypeptide 1 /// cytochrome P450, family 2, subfamily b, polypeptide 2</pre>	1.2	0.87
1383641_at	Ednra	endothelin receptor type A	1.1	0.87

Supplementary Figure 1. Expression of genes involved in fatty acid metabolism, stress and inflammation. CON, control rats; CCl₄, rats administered CCl₄; ESM, rats administered CCl₄ and ESM (20 g kg⁻¹). Results are means \pm SE in each group (n=6). Data with different letters (a,b,c) are significantly different at *P* < 0.05 by Dunnett's test.