Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga *Chlamydomonas* sp. JSC4

Shih-Hsin Ho, Akihito Nakanishi, Yuichi Kato, Hiroaki Yamasaki, Jo-Shu Chang, Naomi Misawa, Yuu Hirose, Jun Minagawa, Tomohisa Hasunuma*, Akihiko Kondo.

Supplementary Figure S1. TEM micrographs of JSC4 cultivated under 0% and 2% SS.

0% SS (Starch-rich)

2% SS (Lipid-rich)

Supplementary Figure S2. Time course of ¹³C fraction under different SS concentrations (0% and 2%) at Days 3, 5, and 7.

 \circ (pink) and \bullet (blue) indicate 0% SS and 2% SS, respectively. Error bars indicate the SD of three replicate experiments (*: p < 0.05 by Student's t-test).

Supplementary Table S1. Comparison of lipid productivity of *Chlamydomonas* sp. JSC4 with those of other green algae, as reported in the literature.

Strain	Biomass productivity (mg L ⁻¹ d ⁻¹)	Lipid productivity (mg L ⁻¹ d ⁻¹)	Reference
Nannochloropsis sp. F&M-M24	180	55	1
Dunaliella tertiolecta ATCC30929	100	70	2
Isochrysis zhangjiangensis	345	141	3
Nannochloropsis oculata NCTU-3	480	142	4
Chlorella vulgaris	358	167	5
Chlorella sorokiniana	246	189	6
Chlamydomonas sp. JSC4 (1% SS)	775	358	This study

1. Rodolfi, L. *et al.* Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. *Biotechnol. Bioeng.* **102**, 100-112 (2009).

2. Takagi, M., Karseno & Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae *Dunaliella* cells. J. *Biosci. Bioeng.* **101**, 223-226 (2006).

3. Feng, D., Chen, Z., Xue, S. & Zhang, W. Increased lipid production of the marine oleaginous microalgae *Isochrysis zhangjiangensis* (Chrysophyta) by nitrogen supplement. *Bioresour. Technol.* **102**, 6710-6716 (2011).

4. Chiu, S. Y. *et al.* Lipid accumulation and CO_2 utilization of *Nannochloropsis oculata* in response to CO_2 aeration. *Bioresour. Technol.* **100**, 833-838 (2009).

5. Chen, W. *et al.* A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. *J. Microbiol. Methods* **77**, 41-47 (2009).

6. Chen, C. Y. *et al.* Enhancing microalgal oil/lipid production from *Chlorella sorokiniana* CY1 using deep-sea water supplemented cultivation medium. *Biochem. Eng. J.* **77**, 74-81 (2013).

Supplementary Table S2. Sequences of primers used for qPCR.

Primer name	Definition	Primer sequence (5' to 3')
RPL32 F	Pibosomal protein I 32	acaagaagactcgccacacg
RPL32 R	Ribbsoniai protein E32	cgttgatgacgcagatgttg
PGI F	Phogehoglupogo isomorogo	cacgaccatacaccccaatc
PGI R	r nosphogracose isomerase	gccttgttccacaccatcc
PGM F	Phasphagluaamutasa	tcagccgctacgactacgag
PGM R	Filosphogracomatase	cggacaggcggaaaatg
AGPP F	ADD glugoga phogphogylaga	aactccacctcgctcaacc
AGPP R	ADF-glucose phospholylase	ctcgatggccctgttcttg
SP1 F	Starch phosphorylase 1	tctacttcctgcccgactacaac
SP1 R	Staten phosphorylase 1	gaacacgaacacctcctccac
SP2 F	Starch phosphorylase 2	aacacccaccacctcaacaac
SP2 R	Staten phosphorylase 2	gatttcatgcaccaagccatac
AMY1 F	α_{-} A mylase 1	tcagcgtcggaatcaaacc
AMY1 R	u-Amylase 1	taaacacctccgtccatctcatc
AMY2 F	a Amulase ?	catcaagatcaacggcaagg
AMY2 R	u-Amylase 2	cgcaacagcacatacacagg
PFOR F	Pyruvate ferredovin ovidoreductase	cgtggcggtgtttgaga
PFOR R	i yiuvate ienedoxiii oxidoreduetase	ggtgttgctggcgatga
PDH F	Pyruvate dehydrogenase	acctgccccttatcgtcatc
PDH R	i yruvute denyulogenuse	gtggttgcgtcttgcgtatc
PDC F	Pyruvate decarboxylase	acgcgtatggggtaaagatacg
PDC R	i yiuvate decarboxyiuse	atagcgcgagaaaaccgttg
ALDH F	Aldehyde dehydrogenase	tcgtgcacgagtctgtatacg
ALDH R	Aldenyde denydrogenase	ttgttgaactggtcgctgtc
ACS1 F	AcCoA synthetase 1	caccetgeetcaatagtgtee
ACS1 R	recort syntheuse 1	atggeteggettettetee
ACS2 F	AcCoA synthetase 2	cccgtcaacatccagttcttc
ACS2 R	recort syntheuse 2	tctggcggtatgtgattgtg
ACS3 F	AcCoA synthetase 3	ctggagcaagcccatatacaac
ACS3 R	riccorr synthetase s	ccctcccagtagaacgcaac
GPDH F	Glycerol 3-nhosnhate dehydrogenase	aacacgctgcacgaaaacac
GPDH R	Giyeeror 5 phosphate denyarogenase	ttgctgacgcagatgatgg
BCCP F	Biotin carboxyl carrier protein	aaatgcagctcaacctgacg
BCCP R	Biotin eurooxyr eurier protein	cgtcgaacgccatcatgttc
BC F	Biotin carboxylase	tggagatgaacacccgcatc
BC R	Biotin eurooxytuse	acacgatgtcctcctgcttg
αCT F	carboxyl transferase a subunit	aacctcatcatgcagaacgc
αCT R	eurooxyr dunsieruse a subunt	tccatgacgccgaacttgac
βСТ F	carboxyl transferase ß subunit	caagatggccaaggctgttg
βCT F	carooxyr transferase p subuint	ttgcagccaaagcagatgtg