Additional file 1 for
“The importance of censoring in competing risks
analysis of the subdistribution hazard”

Mark W Donoghoe and Val Gebski

Simulating competing risks data under the pro-
portional subdistribution hazards model

Let T; denote the time of the first event for subject i, and d; the type of that
first event (where d; = 1 denotes the event of interest and §; = 2 any competing
risk, without loss of generality). Let p(x;) = Pr(T; < 00,8; = 1 | ;) be the
probability of experiencing the event of interest for a subject with covariate
vector x;, and pg = p(0) is this probability for an individual with the ‘reference’
covariate vector. p(x;) = 1 for all x; implies that the event of interest will
eventually occur for every subject. g(x;) =1 — p(x;) = Pr(T; < 00,6, =2 | x;)
is the probability of experiencing the competing risk, and gg = 1 — pg.

In a proportional subdistribution hazards model with parameter vector 3, exp(5,)
is the subdistribution hazard ratio associated with a one-unit increase in the pth
component of the covariate vector.

A proportional subdistribution hazards model can be obtained by defining the
subdistribution for the event of interest as
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That we have the desired model can be verified by using the relation
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to obtain
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To simulate the competing risks data, we first generate the event type J; for
each subject using a binomial random variable with the probability of the event
of interest occurring as the first event:
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If the simulated §; = 1, the distribution of event times is
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and we can use the inverse of this cumulative distribution function to simulate
event times T; from simulated uniform random variables U; ~ UJ0, 1] as

T, = —log <(1 — Ui [1 = (1 = po)orBe0]) "0 — (1 —po)>
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If §; = 2, we can assign event times in any way we see fit, possibly including a
relationship with some covariate vector z; (which may include components of
@;). In our simulation study, we simply used exponentially distributed event
times for all individuals:

Pr(T; <t|d§; =2)=1—exp(—t)

Censoring times C; are simulated independently of event times, but may be
related to the covariates x; and/or z;. If end of follow-up is the only reason
for censoring, C; may be fixed at a certain time, or generated from a uniform
distribution in the case of a clinical trial with a constant accrual rate.

For our simulations, we generated two potential censoring times for each in-
dividual: C;; and Cjs. Cj; represented censoring due to end of study with
constant accrual, and was drawn from a uniform distribution U|0, ¢1], with ¢y,
chosen so that the desired proportion of subjects pc, would have a censoring
time prior to their event time 7}, using:

1
pcl ~ Pr(Cil < TZ | €Ty = O) = — — efcm.
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In our simulations, we used pc, = 0.1, so ¢, ~ 10.

C;2 represented censoring due to loss to follow-up, drawn independently from
an exponential distribution, depending on some covariate vector n; (in our case,

age group):

Pr(Cix < c|m) =1—exp(—cAcexp(Bemn;))
with A¢ chosen so that approximately pc, = 10% of subjects with 7; = 0
(young) would have Cjo < Tj:
N Ao+ 17
that is A\c = 1/9, and B¢ varied across scenarios. Each individual’s censoring
time was taken as the first of either type, that is, C; = min(Cjy1, Ci2).

Pc, ~ PI’(CiQ <T; | Tq = Oan’b = 0)

Each subject’s time-to-event Z; is then the minimum of 7; and C;, and we

set 0; = 0 if the subject is censored before experiencing an event (that is, if
C; < Ti).



