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S.1 Model Embellishment Details

This section details some of the model embellishments only briefly mentioned in the paper.

More flexible unimodal distributions

The mixture of normals (2.3) implies that g is not only unimodal, but also symmetric. Further-
more, even some symmetric unimodal distributions, such as those with a flat top, cannot be
well approximated by a mixture of zero-centered normals. Therefore, we implemented a more
general approach based on

g(·;π) =
K∑
k=0

πkfk(·), (S.1.1)

where f0 is a point mass on 0, and fk (k = 1, . . . ,K) are pre-specified component distributions
with one of the following forms:

(i) fk(·) = N(·; 0, σ2
k), (“ash.n”)

(ii) fk(·) = U [·;−ak, ak], (“ash.u”)

(iii) fk(·) = U [·;−ak, 0] and/or U [·; 0, ak], (“ash.hu”)

where U [·; a, b] denotes the density of a uniform distribution on [a, b]. (In (iii) we include both
components in the mixture (S.1.1), so a grid of values a1, . . . , aK defines 2K + 1 mixture com-
ponent densities, and π is a 2K + 1 vector that sums to 1.)

Moving from (i) to (iii) the representation (S.1.1) becomes increasingly flexible. Indeed, using
a large dense grid of σ2

k or ak, (i)-(iii) can respectively approximate, with arbitrary accuracy,
(i) any scale mixture of normals; (ii) any symmetric unimodal distribution about 0; (iii) any
unimodal distribution about 0. The latter two claims are related to characterizations of unimodal
distributions due to Khintchine (1938) and Shepp (1962); see Feller (1971), p158. In other words,
(ii) and (iii) provide fully non-parametric estimation for g under the constraints that it is (ii)
both unimodal and symmetric, or (iii) unimodal only.
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Replace normal likelihood with t likelihood

We generalize the normal likelihood (2.4) by replacing it with a t likelihood:

β̂j |βj , ŝj ∼ Tν(βj , ŝj) (S.1.2)

where Tν(βj , ŝj) denotes the distribution of βj + ŝjTν where Tν has a standard t distribution
on ν degrees of freedom, and ν denotes the degrees of freedom used to estimate ŝj (assumed
known, and for simplicity assumed to be the same for each j). The normal approximation (2.4)
corresponds to the limit ν → ∞. This generalization does not complicate inference when the
mixture components fk in (S.1.1) are uniforms; when the fk are normal the computations with
a t likelihood are considerably more difficult and not implemented.

Equation (S.1.2) is, of course, motivated by the standard asymptotic result

(β̂j − βj)/ŝj ∼ Tν . (S.1.3)

However (S.1.3) does not imply (S.1.2), because in (S.1.3) ŝj is random whereas in (S.1.2) it
is conditioned on. In principle it would be preferable, for a number of reasons, to model the
randomness in ŝj ; we are currently pursuing this improved approach in joint work with M.Lu.

Non-zero mode

An addition to our software implementation, due to C.Dai, allows the mode to be estimated
from the data by maximum likelihood. This involves a simple grid search.

S.2 Implementation Details

Likelihood for π

We define the likelihood for π to be the probability of the observed data β̂ conditional on ŝ:

L(π) := p(β̂|ŝ, π) =
∏
j

p(β̂j |ŝ, π), (S.2.1)

where the right hand side comes from our conditional independence assumptions. [One might
prefer to define the likelihood as p(β̂, ŝ|π) = p(β̂|ŝ, π)p(ŝ|π), in which case our definition comes
down to assuming that the term p(ŝ|π) does not depend on π.]

Using the prior βj ∼
∑K

k=0 πkfk(βj) given by (S.1.1), and the normal likelihood (2.4), inte-
grating over βj yields

p(β̂j |ŝ, π) =
K∑
k=0

πkf̃k(β̂j) (S.2.2)

where

f̃k(β̂j) :=

∫
fk(βj)N(β̂j ;βj , ŝ

2
j ) dβj (S.2.3)
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denotes the convolution of fk with a normal density. These convolutions are straightforward to
evaluate whether fk is a normal or uniform density. Specifically,

f̃k(β̂j) =

{
N(β̂j ; 0, ŝ2

j + σ2
k) if fk(·) = N(·; 0, σ2

k),
Ψ((β̂j−ak)/ŝj)−Ψ((β̂j−bk)/ŝj)

bk−ak if fk(·) = U(·; ak, bk),
(S.2.4)

where Ψ denotes the cumulative distribution function (c.d.f.) of the standard normal distribu-
tion. If we replace the normal likelihood with the tν likelihood (S.1.2) then the convolution for
fk uniform the convolution is still given by (S.2.4) but with Ψ the c.d.f. of the tν distribution
function. (The convolution for fk normal is tricky and we have not implemented it.)

Penalty term on π

To make lfdr and lfsr estimates from our method “conservative” we add a penalty term log(h(π;λ))
to the log-likelihood logL(π) to encourage over-estimation of π0:

h(π;λ) =

K∏
k=0

πλk−1
k (S.2.5)

where λk ≥ 1 ∀k. The default is λ0 = 10 and λk = 1, which yielded consistently conservative
estimation of π0 in our simulations (Figure 2b).

Although this penalty is based on a Dirichlet density, we do not interpret this as a “prior
distribution” for π: we chose it to provide conservative estimates of π0 rather than to represent
prior belief.

Problems with removing the penalty term in the half-uniform case

It is straightforward to remove the penalty term by setting λk = 1 in (S.2.5). We note here
an unanticipated problem we came across when using no penalty term in the half-uniform case
(i.e. fk(·) = U [·;−ak, 0] and/or U [·; 0, ak] in (S.1.1)): when the data are nearly null, the
estimated g converges, as expected and desired, to a distribution where almost all the mass is
near 0, but sometimes all this mass is concentrated almost entirely just to one side (left or right)
or 0. This can have a very profound effect on the local false sign rate: for example, if all the
mass is just to the right of 0 then all observations will be assigned a very high probability of
being positive (but very small), and a (misleading) low local false sign rate. For this reason we
do not recommend use of the half-uniform with no penalty.

Optimization

With this in place, the penalized log-likelihood for π is given by:

logL(π) + log h(π) =

n∑
j=1

log(

K∑
k=0

πklkj) +

K∑
k=0

(λk − 1) log πk (S.2.6)

where the lkj := f̃k(β̂j) are known. This is a convex optimization problem, which can be solved
very quickly and reliably using interior point (IP) methods. We used the KWdual function from
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the R package REBayes (Koenker, 2015), which uses Rmosek (Mosek Aps, 2016). We also found a
simple EM algorithm (Dempster et al., 1977), accelerated using the elegant R package SQUAREM

(Varadhan and Roland, 2008), to provide adequate performance. In our EM implementation we
initialized πk = 1/n for k = 1, . . . ,K, with π0 = 1−π1−· · ·−πK , and the one-step updates are:

wkj = πklkj/
∑
k′

πk′ lk′j (S.2.7)

nk =
∑
j

wkj + λk − 1 [E Step] (S.2.8)

πk = nk/
∑
k′

nk′ [M step]. (S.2.9)

One benefit to the EM algorithm is fewer software dependencies. Both EM and IP methods are
implemented in the ashr package; results shown here are from the IP method, but graphs from
EM are essentially the same. See http://stephenslab.github.io/ash/analysis/checkIP.

html and http://stephenslab.github.io/ash/analysis/IPvsEM.html for comparisons.

Conditional distributions

Given π̂, we compute the conditional distributions

p(βj |π̂, β̂, s) ∝ g(βj ;π)L(βj ; β̂j , ŝj). (S.2.10)

Each posterior is a mixture on K + 1 components:

p(βj |π̂, β̂, s) =
K∑
k=0

wkjpk(βj |β̂j , ŝj) (S.2.11)

where the posterior weights wkj are computed as in (S.2.7) with π = π̂, and the posterior mixture
component pk is the posterior on βj that would be obtained using prior fk(βj) and likelihood

L(βj ; β̂j , ŝj). All these posterior distributions are easily available. For example, if fk is uniform
and L is tν then this is a truncated t distribution. If fk is normal and L is normal, then this is
a normal distribution.

Choice of grid for σk, ak

When fk is N(0, σk) we specify our grid by specifying: i) a maximum and minimum value
(σmin, σmax); ii) a multiplicative factor m to be used in going from one grid-point to the other,
so that σk = mσk−1. The multiplicative factor affects the density of the grid; we used m =

√
2

as a default. We chose σmin to be small compared with the measurement precision (σmin =

min(ŝj)/10) and σmax = 2
√

max(β̂2
j − ŝ2

j ) based on the idea that σmax should be big enough

so that σ2
max + ŝ2

j should exceed β̂2
j . (In rare cases where max(β̂2

j − ŝ2
j ) is negative we set

σmax = 8σmin.)
When the mixture components fk are uniform, we use the same grid for the parameters ak

as for σk described above.
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Our goal in specifying a grid was to make the limits sufficiently large and small, and the grid
sufficiently dense, that results would not change appreciably with a larger or denser grid. For a
specific data set one can of course check this by experimenting with the grid, but these defaults
usually work well in our experience.

Dependence of effects on standard errors

The model (3.11) for general α can be fitted using the algorithm for α = 0. To see this, define
bj := βj/ŝ

α
j , and b̂j := β̂j/ŝ

α
j . Then b̂j is an estimate of bj with standard error ŝ′j := ŝ1−α

j .

Applying the algorithm for α = 0 to effect estimates b̂1, . . . , b̂J with standard errors ŝ′1, . . . , ŝ
′
J

yields a posterior distribution p(bj |ŝj , b̂j , π̂, α), which induces a posterior distribution on βj =
bj ŝ

α
j .

S.3 Supplementary Figures and Tables

Scenario Alternative distribution, g1

spiky 0.4N(0, 0.252) + 0.2N(0, 0.52) + 0.2N(0, 12), 0.2N(0, 22)
near normal 2/3N(0, 12) + 1/3N(0, 22)

flattop (1/7)[N(−1.5, .52) +N(−1, .52) +N(−.5, .52)+
N(0, .52) +N(0.5, .52) +N(1.0, .52) +N(1.5, .52)]

skew (1/4)N(−2, 22) + (1/4)N(−1, 1.52) + (1/3)N(0, 12) + (1/6)N(1, 12)
big-normal N(0, 42)

bimodal 0.5N(−2, 12) + 0.5N(2, 12)

Table 1: Summary of simulation scenarios considered
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spiky near−normal flat−top skew big−normal bimodal
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(a) Average estimated cdfs across ∼ 10 data sets compared with truth; methods here use penalty (S.2.5)
which leads to systematic overestimation of π0 in some scenarios.

spiky near−normal flat−top skew big−normal bimodal
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(b) Average estimated cdfs across ∼ 10 data sets compared with truth; methods here do not use penalty
(S.2.5) so π0 is not systematically overestimated. Systematic differences from the truth in “skew” and
“bimodal” scenarios highlight the effects of model mis-specification.

Figure 1: Comparisons of average estimated cdfs of g with and without penalty term. See Figure
2b for simulation scenarios. In most cases the three different ash methods are very similar and
so the lines lie on top of one another.
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(a) Comparison of true and estimated lfsr when data are simulated with no point mass at zero (π0 = 0),
and also analyzed by ash with no point mass on 0 (and mixture of normal components for g). Black line
is y = x and red line is y = 2x. The results illustrate how estimates of lfsr can be more accurate in this
case. That is, assuming there is no point mass can be beneficial if that is indeed true.

(b) Comparison of true and estimated lfsr when data are simulated with point mass at zero (drawn
uniformly from [0,1] in each simulation), but analyzed by ash with no point mass on 0 (and mixture of
normal components for g). Black line is y = x and red line is y = 2x. The results illustrate how estimates
of lfsr can be anti-conservative if we assume there is no point mass when the truth is that there is a point
mass.

Figure 2: Illustration of effects of excluding a point mass from the analysis.
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spiky near-normal flat-top skew big-normal bimodal

ash.n.s 0.95 0.95 0.95 0.95 0.96 0.96
ash.u.s 0.94 0.95 0.95 0.94 0.96 0.96

ash.hu.s 0.88 0.92 0.92 0.92 0.93 0.93

(a) All observations

spiky near-normal flat-top skew big-normal bimodal

ash.n.s 0.95 0.95 0.98 0.93 0.95 0.97
ash.u.s 0.89 0.92 0.90 0.92 0.94 0.94

ash.hu.s 0.89 0.92 0.91 0.94 0.95 0.94

(b) “Significant” negative discoveries.

spiky near-normal flat-top skew big-normal bimodal

ash.n.s 0.94 0.94 0.92 0.88 0.95 0.94
ash.u.s 0.93 0.93 0.92 0.88 0.95 0.95

ash.hu.s 0.34 0.60 0.52 0.54 0.79 0.82

(c) “Significant” positive discoveries.

Table 2: Table of empirical coverage for nominal 95% lower credible bounds for methods without
the penalty term).
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