SUPPLEMENTAL MATERIAL

Wolf et al., https://doi.org/10.1084/jem.20160499

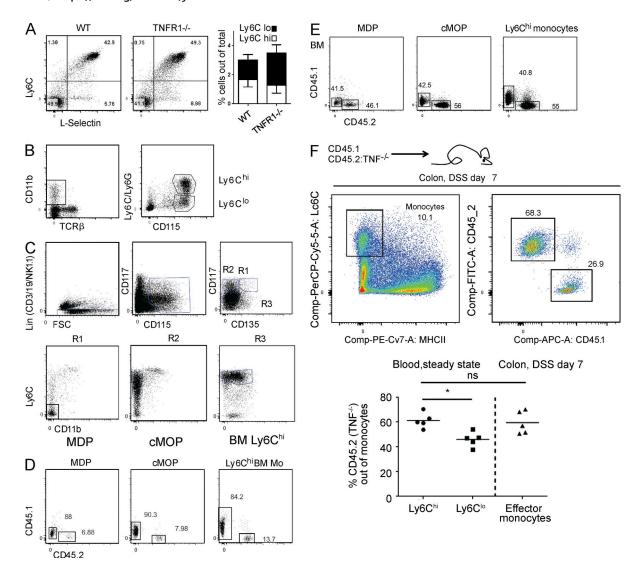


Figure S1. Flow cytometric analysis of monocytes and monocyte precursors in the BM. (A) FACS analysis of blood monocytes from nonchimeric WT and TNFR1^{-/-} mice in steady state. n = 8. Results are expressed as means \pm SEM. (B) FACS analysis illustrating definition of blood monocyte subsets. (C) FACS analysis illustrating definition of monocyte precursors. FSC, forward scatter. (D) FACS analysis of myeloid BM precursors: MDPs, cMOPs, and BM Ly6C^{hi} monocytes in [TNFR1^{-/-}/WT > WT] mixed BM chimeras. (E) FACS analysis of indicated myeloid BM precursors in [TNF/WT > WT] mixed BM chimeras as in F. Mo, monocyte. (F) FACS analysis of colons of [CD45.2 TNF^{-/-}/CD45.1 WT > WT] mice treated with 2% DSS for 7 d. Each mouse was assessed for frequency of CD45.2⁺ steady-state blood monocytes before DSS administration, as in Fig. 1 E. n = 5. *, P < 0.05; Mann-Whitney U test was used.

JEM S15

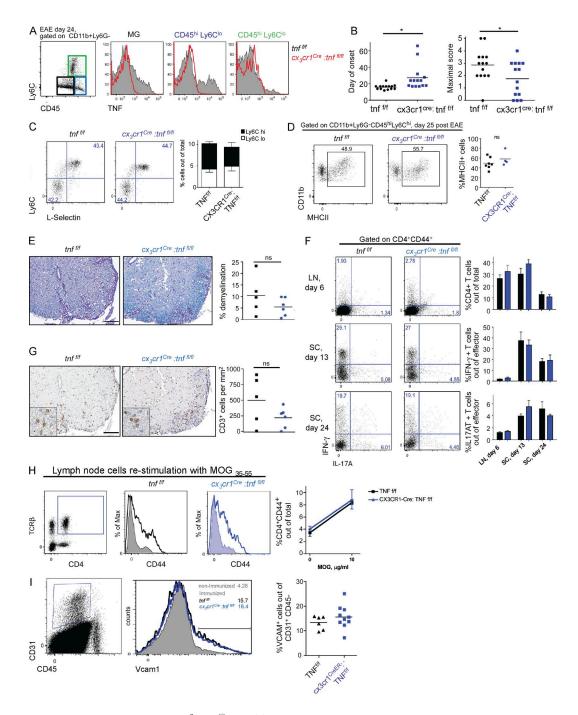


Figure S2. **Additional characterization of** $cx3cr1^{Cre}:tnf^{f/f}$ mice. (A) FACS analysis of intracellular TNF expression in different myeloid populations in the inflamed spinal cord of $tnf^{f/f}$ and $cx3cr1^{cre}:tnf^{f/f}$ mice. MG, microglia. (B) Pooled day-of-onset (left) and maximal-score (right) data of MOG₃₅₋₅₅-immunized $tnf^{f/f}$ and $cx3cr1^{cre}:tnf^{f/f}$ mice from three independent experiments. n=14. *, P<0.05. Student's t test was used. (C) FACS analysis of blood monocytes from $tnf^{f/f}$ and $cx3cr1^{cre}:tnf^{f/f}$ mice in steady state. n=8-7. (D) FACS analysis of CD45^{hi}Ly6C^{hi}MHCII+ effector monocytes (gated as in Fig. 3 A) from spinal cords of MOG₃₅₋₅₅-immunized $tnf^{f/f}$ and $cx3cr1^{cre}:tnf^{f/f}$ mice 24 d after immunization (the same cells are shown also in Fig. 4 C). n=4-7. (E) Histological analysis of demyelination by luxol-fast blue stain in spinal cords of in $tnf^{f/f}$ and $cx_3cr1^{Cre}:tnf^{f/f/f}$ mice at day 24 after immunization. n=5-6. (F) FACS analysis of Th1 and Th17 cells in lymph nodes (LN) at day 6 after immunization or in spinal cord (SC) at days 13 and 24 in $tnf^{f/f}$ and $cx_3cr1^{Cre}:tnf^{f/f/f}$. n=4-6. (G) CD3 histological stain in spinal cords of $tnf^{f/f}$ and $cx_3cr1^{Cre}:tnf^{f/f/f}$ mice at day 24 after immunization. n=5-6. (E and G) Bars, 100 µm. (H) FACS analysis of lymph node T cells of $tnf^{f/f}$ and $cx_3cr1^{Cre}:tnf^{f/f/f}$ mice immunized with MOG₃₅₋₅₅ in vivo and restimulated ex vivo with 10 µg/ml MOG₃₅₋₅₅. Shaded histograms represent nonstimulated cells. Unshaded histograms represent stimulated cells. n=3 biological repeats. (I) FACS analysis for the activation marker VCAM1 on endothelial cells (CD31+CD45) isolated from spinal cord of $tnf^{f/f}$ and $cx_3cr1^{Cre}:tnf^{f/f/f}$ mice 9 d after MOG₃₅₋₅₅ immunization. n=6-10. Results are expressed as means \pm SEM.

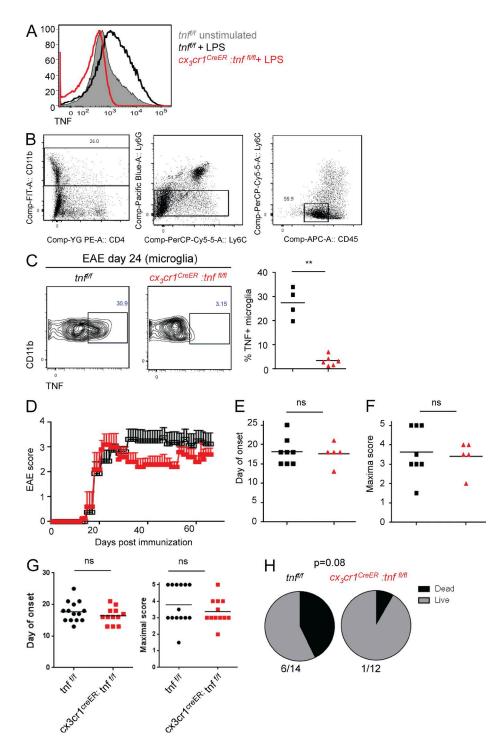


Figure S3. **Microglia–restricted TNF deletion does not affect EAE onset.** (A) Intracellular FACS staining for TNF expression of microglia isolated from $tnf^{fl/fl}$ and $cx_3cr1^{CreER}:tnf^{fl/fl}$ animals 6 wk after TAM treatment. Microglia were treated ex vivo with 10 μ g/ml LPS for 4 h or left unstimulated. Data are representative of three biological repeats. (B) Gating strategy for microglia in the inflamed spinal cord. (C) TNF production by microglia (CD11b+CD45^{int}Ly6C-Ly6G-) in spinal cords of TAM-treated $tnf^{fl/fl}$ and $cx_3cr1^{CreER}:tnf^{fl/fl}$ mice 24 d after MOG_{35–55} immunization, analyzed by FACS. n=4-6.

***, P < 0.01. Mann-Whitney U test was used. (D-F) EAE disease course, individual day of onset, and individual maximal score of TAM-treated $tnf^{fl/fl}$ and $cx_3cr1^{CreER}:tnf^{fl/fl}$ mice immunized with MOG_{35–55}. n=5-8. Data are representative of three independent experiments. Results are expressed as means \pm SEM. (G) Pooled day of onset (left) and maximal score (right) of MOG_{35–55}-immunized $tnf^{fl/fl}$ and $cx_3cr1^{creER}:tnf^{fl/fl}$ mice from three independent experiments. n=12-14. (H) Mortality rate of pooled $tnf^{fl/fl}$ and $tnf^{fl/fl}$ mice shown in G. Numbers indicate the death incidence out of total mice in each group. $tnf^{fl/fl}$ test was performed to assess the significance.

JEM S17

JEM

Tables S1 and S2 are included as Excel files. Table S1 lists genes up-regulated in spinal cord effector monocytes at EAE day 9 compared with Ly6Chi monocytes. Table S2 lists genes down-regulated in spinal cord effector monocytes at EAE day 9 compared with Ly6Chi monocytes.