SUPPLEMENTAL MATERIAL

Li et al., https://doi.org/10.1084/jem.20161105

Figure S1. **Generation of myeloid conditional** *Cul3* **gene deletion mice** ($Cul3^{4mye}$). (A) Genotyping was performed to detect floxed Cul3 allele (left) or lysosome M-Cre transgene (right). Primers used during genotyping PCR were as follows: for floxed Cul3 allele, forward 5′-TTAAAAACCGGAAAGGCCAG-3′ and reverse 5′-CAGCCAAAACAAACAAACACACAC-3′; for lysosome M-Cre transgene, WT forward 5′-TTACAGTCGGCCAGGCTGAC-3′, transgene forward 5′-CCC AGAAATGCCAGATTACG-3′, and common reverse 5′-CTTGGGCTGCCAGAATTTCTC-3′. (B) Immunoblotting was performed to detect CUL3 protein in $Cul3^{6l/fl}$ and $Cul3^{4mye}$ BMMs. (C and D) $Cul3^{6l/fl}$ and $Cul3^{4mye}$ BMMs were left untreated or stimulated with LPS for the indicated periods. (C) Immunoblotting was performed to detect Nrf2 protein. (D) RT-PCR was performed to detect Nqo1 transcript. Data are representative of three independent experiments, and Nqo1 transcript levels are expressed as mean \pm SD. * P, < 0.05 versus controls.

JEM S19

Figure S2. **MS analysis of STAT3** *O***-GlcNAcylation in mouse BMMs.** Total STAT3 was immunoprecipitated from 60×10^6 mouse BMMs left untreated or treated with 200 ng/ml LPS for 6 h. LC-MS/MS analysis was performed as described in Fig. 4.

Figure S3. **PP1 is not responsible for the defective STAT3 phosphorylation in** $Cul3^{\Delta mye}$ **macrophages.** $Cul3^{\beta/\beta}$ and $Cul3^{\Delta mye}$ BMMs were left untreated or stimulated with LPS for 3 or 6 h with or without the pretreatment with 2 nM PP1 inhibitor calyculin A. STAT3 phosphorylation (Y705) was assayed by immunoblotting.

Figure S4. Schematic of CUL3-Nrf2 signaling-modulated OGT expression and STAT3 *O*-GlcNAcylation on STAT3 phosphorylation and IL-10 production in macrophages. In WT macrophages, CUL3 serves as a critical E3 ubiquitin ligase for Nrf2 protein ubiquitination and degradation. CUL3 deficiency results in elevated Nrf2 protein, which subsequently causes enhanced Ogt transcription. Therefore, OGT-mediated *O*-GlcNAcylation of STAT3 on T717 is enhanced in CUL3-deficient macrophages, which intrinsically inhibits STAT3 phosphorylation and IL-10 production and exacerbates disease severity in chemically induced colitis and CAC.

Table S1. Sequences of RT-PCR primers

Mouse genes	Forward (5'-3')	Reverse (5'-3')
1110	CCCTTTGCTATGGTGTCCTT	TGGTTTCTCTTCCCAAGACC
ll12a	GAGGACTTGAAGATGTACCAG	TCCTATCTGTGTGAGGAGGGC
Cxcl1	CTGGGATTCACCTCAAGAAC	GAAGCCAGCGTTCACCAGAC
Cxcl2	AGTTTGCCTTGACCCTGAAGC	AGGCTCCTCCTTTCCAGG
Ogt .	TTCGGGAATCACCCTACTTCA	TACCATCATCCGGGCTCAA
Ngo1	AGGATGGGAGGTACTCGAATC	AGGCGTCCTTCCTTATATGCTA
Actb	AGGGCTATGCTCTCCCTCAC	CTCTCAGCTGTGGTGAA

Table S2. Primers used for site-directed mutagenesis

Mutation sites	Forward (5'-3')	Reverse (5'-3')
T714A	GTTTATCTGTGTGGCACCAACGACCTG	CAGGTCGTTGGTGCCACACAGATAAAC
T716A	CTGTGTGACACCAGCGACCTGCAGCAATAC	GTATTGCTGCAGGTCGCTGGTGTCACACAG
T717A	CTGTGTGACACCAACGGCCTGCAGCAATAC	GTATTGCTGCAGGCCGTTGGTGTCACACAG
T721A	GCAGCAATGCCATTGACCTGC	GGTCAATGGCATTGCTGCAGG
T714/717A	CATCTGTGGCACCAACGGCCTGCAGC	GCTGCAGGCCGTTGGTGCCACACAGATG
T714/716/717A	CATCTGTGGCACCAGCGGCCTGCAGC	GCTGCAGGCCGCTGGTGCCACACAGATG

JEM S21

JEM

Tables S3 and S4 are included as separate Excel files. Table S3 shows the list of genes with increased and decreased expression levels in LPS-treated $Cul3^{\Delta mye}$ macrophages compared with similarly treated WT macrophages. Table S4 shows the list of metabolites in LPS-treated $Cul3^{\Delta mye}$ macrophages versus similarly treated WT macrophages.