Supplementary Information

Multi-spectral imaging with infrared sensitive organic light emitting diode

Do Young Kim, Tzung-Han Lai, Jae Woong Lee, Jesse Manders, and Franky So*

Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611

(USA).

*Correspondence to: <u>fso@mse.ufl,edu</u>

Supplementary Figures

a

Figure S1. (a) Luminance-current density-voltage (L-I-V) characteristics and (b) current efficiencies plot of the transparent OLED with the Mg:Ag/Alq₃ transparent top cathode.

Figure S2. Schematic energy band diagrams of the IR sensitive OLED in the IR illumination.

a

Figure S3. (**a**) the transparency spectra of the ITO anode as a control bottom electrode, the IPVM/ITO anode as a IR transparent, visible reflective bottom electrode, and the Mg:Ag/Alq₃ cathode as a visible transparent top electrode, and (**b**) L-I-V characteristics and (**c**) current efficiencies plot of the top emitting OLED with the IPVM/ITO bottom electrode and the Mg:Ag/Alq₃ top electrodes.

Figure S4. Comparison of spectral p-p conversion efficiencies of reflective, transparent, and IPVM IR-OLEDs with the SnPc: C_{60} IR sensitizer and the absorption spectrum of the SnPc: C_{60} IR sensitizing film.

a

Figure S5. (a) L-V characteristics and (b) spectral p-p conversion efficiencies of the flexible IR-OLEDs (insert - the image of a flexible device).

Figure S6. Schematic diagram of the monocular direct view IR imager with the transparent IR-OLEDs.

Figure S7. Absorption spectra of PbS nanocrystals.