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1 Optimization

The results presented in Section 3.2 of the manuscript optimize our design for 4 of the 8 design parameters: γ, αS , αC ,

and n2k (stage 2 sample size per basket for the heterogeneous design track). Selection of the 4 fixed design param-

eters: N1, N2, rS , rC is discussed in Section 2.4 of the main document. Optimization is accomplished through a

dynamic grid search. The purpose of the grid search is to first identify candidate designs that are calibrated with

the reference design with respect to family wise error rate (α) and power (1 − β) and then to make an “optimal”

selection from these candidates on the basis of a utility function. Since the marginal power depends on the number

of active baskets (denoted A), we perform the calibration for a suitably selected alternative scenario. In our primary

comparison, where there are K = 5 baskets, we chose to calibrate the optimal design to achieve 1 − β power when

A = 2 baskets are truly active. Since we calibrate to achieve 1 − β power for the setting of A = 2 active baskets,

when there is only one active basket (A = 1) the marginal power is less than 1− β. To restrict the loss of power in

this configuration we use the concept of minimum acceptable (marginal) power: (1 − β)min and restrict candidate

designs to those for which the marginal power is ≥ (1 − β)min, for the case when the drug only works in a single

basket (A = 1). We then select the best combination of (n2k, γ, αS , αC) with a desirable trade-off between mini-

mizing expected trial size over all scenarios while maximizing power when the drug truly works in all (or most) baskets.

The optimization is accomplished as follows. For each n2k and all possible combinations of (γ, αS , αC), we evaluate

the family wise error rate using simulations when A = 0. Then, limiting attention to combinations of (γ, αS , αC)

with a FWER within an εα margin of α, we evaluate the marginal power using simulations when A = 1. Similarly,

using the truncated combinations of (γ, αS , αC) with marginal power within an εβ margin of (1−β)min, we evaluate

the marginal power using simulations when A = 2. This process is designed to calibrate the design to the reference

design with respect to FWER and power when A = 2, and additionally restrict options to those designs with power

of (1− β)min when A = 1. To accomplish this for each n2k, we determine the (γ, αS , αC) combinations that satisfy

the selection function S, where

S = |FWER(A = 0)− α|+ |P1(A = 1)− (1− β)min|+ |P1(A = 2)− (1− β)|
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We then declare the optimal design to be the one with the (n2k, γ, αS , αC) combination that maximizes our utility

function U , where

U =

5∑
j=3

P1(A = j) ∗ 100%−
5∑
j=0

EN(A = j).

Since power increases as the number of active baskets increases, we want to define a utility function that selects a

design maximizing the average power over the scenarios when the drug works in all or most baskets. However, since

the expected trial size also increases as the number of active baskets increases, we want our utility function to select

a design that considers a trade-off between maximizing power and minimizing the expected sample size across all

scenarios (average). Therefore, we consider the difference of the two averages as our utility function and declare the

combination that maximizes this difference as optimal, since it maximizes power using the smallest average trial size.

The search space of the heterogeneity parameter γ is defined on [0.1,0.9], explored in increments of 0.01. The

significance level αS/K
? for the separate analyses given the heterogeneous design path is defined on [0.01,0.1] and

explored in increments of 0.01. The significance level for the combined analyses (αC) given the homogeneous design

path is defined on [0.005,0.05] and explored in increments on 0.005. We explored a grid of all possible combinations

(γ, αS , αC), using parallel processing to dramatically reduce computational time. We ran a simulation study assum-

ing the null scenario (A = 0) for each n2k ∈ [15, 22] and identify the (n2k, γ, αS , αC) combinations satisfying

|FWER - α| ≤ εα. Using the truncated grid space of (n2k, γ, αS , αC) combinations, we ran a simulation study

assuming A = 1 of the K baskets are truly active and identify the new (n2k, γ, αS , αC) combinations satisfying

|P1 − (1 − β)min| ≤ εβ . In our simulations with K = 5, we found using a difference of 10% between the desired

power and minimum acceptable power provided the best trade-off in maximizing power at reduced sample sizes when

A > 2. Therefore, we restrict all candidate designs to those with around (1 − β)min power when A = 1. Using the

new truncated grid space of (n2k, γ, αS , αC) combinations, we then ran a simulation study assuming A = 2 of the K

baskets are truly active and identify the (n2k, γ, αS , αC) combinations satisfying |P1 − (1− β)| ≤ εβ . We then select

the admissible designs using S and finally the optimal design using U , as previously described.

2 Sensitivity Analysis

To evaluate the impact of the 4 fixed parameters on our optimal design specifications and operating characteristics,

we change each fixed parameter one at a time. These were originally set to be n1 = 7, N2 = 20, rS = 1, and rC = 5.

For our sensitivity analysis, we consider the following changes, one at a time: (1) a reduced stage 1 sample size,

from n1 = 7/basket to n1 = 5/basket, (2) an increased stage 2 sample size for the homogeneous design track, from

N2 = 20 to N2 = 30 patients overall, (3) an increased stage 1 sample size, from n1 = 7/basket to n1 = 9/basket, and

(4) increased stage 1 sample size with altered stopping rules, n1 = 9 with rS = 2 (increased from rS = 1), rC = 10

(increased from rS = 5). Recall, this is for the setting of K = 5 baskets with null response rate θ0 = 0.15 and
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alternative response rate θa = 0.45.

For (1) when we reduce the stage 1 sample size from 7/basket to 5/basket, the optimal design parameters change to

n2k = 20, γ = 0.57, αS = 0.07, αC = 0.05 (originally, n2k = 16, γ = 0.46, αS = 0.07, αC = 0.05). The corresponding

operating characteristics are provided in the second stratum of SM Table 1. Here, we find very similar results with a

slight decrease in the expected sample size and, under the alternative scenarios (A ≥ 1), a slight increase in the ex-

pected trial duration and marginal rejection rates compared to the original results with n1 = 7/basket (first stratum

of SM Table 1). With the smaller sample sizes, the baskets are more likely to appear homogeneous at the interim

analysis. Thus, the optimized value of γ is larger for the assessment of heterogeneity. The optimal significance levels

αS and αC are the same as before.

When we reduce the second stage (homogeneous track) sample size to N2 = 30, the optimal design parameters

change to n2k = 14, γ = 0.45, αS = 0.07, αC = 0.05 (originally, n2k = 16, γ = 0.46, αS = 0.07, αC = 0.05). From the

corresponding operating characteristics (SM Table 1 third stratum) we see very similar results as in the first stratum

of SM Table 1 with a small increase in the expected trial duration. The optimal significance levels αS and αC are

the same as before.

When we increase the stage 2 sample size from 7/basket to 9/basket, the optimal design parameters change to

n2k = 12, γ = 0.46, αS = 0.07, αC = 0.05 (originally, n2k = 16, γ = 0.46, αS = 0.07, αC = 0.05). The corresponding

operating characteristics (SM Table 1 fourth stratum) are very similar to those in the first stratum of SM Table 1.

However, we do see a modest increase in the expected sample size and trial duration. With the larger stage 1, the

optimal design sets a smaller value of n2k. The optimal significance levels αS and αC are the same as before.

Finally, when we increase the stage 2 sample size to 9/basket and alter the interim stopping rules, the optimal

design parameters change to n2k = 13, γ = 0.41, αS = 0.07, αC = 0.025 (originally, n2k = 16, γ = 0.46, αS =

0.07, αC = 0.05). Here, we increase the number of responders required in our futility rules for both tracks. The

expected sample sizes are consistently smaller than those reported for the previous configuration and for the first

stratum of SM Table 1. The optimal design decreases γ and αC from their original values, to achieve the desired

operating characteristics.

From these sensitivity analyses, we see that our results are robust to changes in our fixed parameters. The re-

sults are robust because for each altered fixed parameter we are able to find the new optimal design values for

n2k, γ, αS , αC satisfying our FWER and power constraints but with modest changes to the other operating charac-

teristics. These results suggest that there exist a variety of design options each of which provides similar gains in
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efficiency relative to the reference design.

SM Table 1: Power and Expected Sample Size: Sensitivity Analysis

Altered Fixed Optimal Scenario FWER Marginal Power? EN ET
Parameter(s) Parameters Parameters (A) P1 P2 P3 P4 P5

Original n1k = 7 n2k = 15 0 Active 5 2 2 2 2 2 58 7.0
Design (N1 = 35) γ = 0.52 1 Active 70 7 7 7 7 74 9.5

N2 = 20 αS = 0.07 2 Active 80 80 11 11 11 83 10.4
rS = 1 αC = 0.05 3 Active 84 85 85 17 17 86 10.5
rC = 5 4 Active 86 85 86 86 23 88 10.2

5 Active 88 90 88 88 88 78 8.3
n1k = 5 N2 = 20 n2k = 20 0 Active 5 1 2 2 2 2 49 6.7
(N1 = 25) rS = 1 γ = 0.57 1 Active 71 7 6 6 6 67 9.8

rC = 5 αS = 0.07 2 Active 79 80 14 13 14 78 10.8
αC = 0.05 3 Active 86 83 84 18 18 86 11.1

4 Active 88 88 87 86 30 84 10.3
5 Active 89 88 89 88 87 79 8.9

n1k = 9 N2 = 20 n2k = 12 0 Active 5 2 2 2 2 2 67 8.5
(N1 = 45) rS = 1 γ = 0.46 1 Active 69 7 7 6 6 80 10.6

rC = 5 αS = 0.07 2 Active 80 81 11 11 11 88 11.4
αC = 0.05 3 Active 84 84 84 16 16 90 11.4

4 Active 85 85 87 87 24 89 11.0
5 Active 89 90 90 89 90 78 9.0

n1k = 9 N2 = 20 n2k = 13 0 Active 5 2 1 2 2 1 56 7.6
(N1 = 45) γ = 0.41 1 Active 71 5 4 5 4 68 10.3
rS = 2 αS = 0.07 2 Active 78 81 11 11 10 77 11.3
rC = 10 αC = 0.025 3 Active 85 83 82 15 14 83 11.4

4 Active 89 88 89 87 28 85 11.0
5 Active 90 91 91 91 91 76 8.8

N2 = 30 n1k = 7 n2k = 14 0 Active 5 2 2 2 2 2 55 7.5
(N1 = 35) γ = 0.45 1 Active 70 9 9 8 9 70 9.5
rS = 1 αS = 0.07 2 Active 80 79 16 16 16 78 10.2
rC = 5 αC = 0.05 3 Active 86 85 83 21 21 82 10.5

4 Active 87 85 84 85 32 81 10.1
5 Active 89 90 90 92 89 73 8.9

Panel 1 assumes the original design presented in the manuscript. In panels 2-5, the first column displays the altered
parameter(s) in order to investigate the sensitivity of the original specification defined in panel 1. The second column
displays the other fixed parameters. The third column displays the 4 optimal parameters, as described in SM Section
1. The remaining columns display similar results as those presented in the manuscript, where ?marginal power
displays the marginal error rates for inactive baskets.

3 Implementation: Trial Example

In this section we describe the process of designing a basket trial using our method. We deliberately chose different

design parameters for this example than the ones we used in the manuscript. Suppose a clinical investigator wants

to design a basket trial with K = 7 baskets under evaluation, assuming a θ0 = 10% response rate is ineffective and a

θa = 30% response rate is effective. We would like to control the family wise error rate at 10%, while achieving 80%
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marginal power to detect active baskets when the drug truly works in 2 of the 7 baskets and at least 70% marginal

power to detect the active basket when the drug truly works in only 1 basket. This is the complete specification of

the problem that is required from the user.

We begin the design process by first assuming rS = 1 for the minimum number of responses needed in a single

basket to continue to stage 2 for the heterogeneous design path. This is a natural choice since most investigators

view any response in stage 1 as positive and want to evaluate further in stage 2. Similarly, we assume rC = K = 7

for the minimum number of responses needed across all baskets to continue to stage 2 for the homogeneous design

path. Lastly, we assume N2 = 4 ∗K = 28 for the homogeneous design path, since 4 additional patients per basket is

the smallest number we think is acceptable for evaluating basket-specific efficacy in a secondary analyses. Note that

we can vary these values to investigate the sensitivity of the operating characteristics to these choices.

We assume there are no specifications or restrictions on stage 1 sample size. To get an idea of a reasonable starting

point for n1k, we look at the reference (Simon optimal) design with α = 0.1/7 = 0.014 and β = 0.2, which requires

n1 = 14 patients/basket in the first stage and an additional n2 = 32 patients/basket if 3 or more responders are

observed in stage 1. These values are obtained using the ph2simon function in the R library clinfun [1]. In our

simulation studies presented in the manuscript we found the optimal n1k to be slightly smaller than that of the

reference design; based on this, we set n1k = 12.

After downloading the R code in the manuscript, we can run the script with the above specifications: K = 7,

θ0 = 0.1, θa = 0.3, ε = 0.1, 1 − β = 0.8, (1 − β)min = 0.7, n1k = 12, N2 = 28, rS = 1, and rC = 7. Below is a

condensed table of the software output results.

SM Table 2: Power and Expected Sample Size: n1k = 12

N2 Scenario FWER Marginal Power? EN ET
(A) P1 P2 P3 P4 P5 P6 P7

4*7 = 28 0 Active 9 2 2 2 2 2 2 2 156 13.6
1 Active 73 3 3 3 3 3 3 180 15.8
2 Active 80 79 4 4 4 4 4 194 16.6
3 Active 80 80 78 4 5 5 5 202 16.9
4 Active 82 79 80 80 7 7 7 209 17.0
5 Active 81 80 78 79 83 9 10 210 16.8
6 Active 81 82 79 80 81 80 15 209 16.2
7 Active 84 84 82 84 84 84 86 189 13.9

? Marginal error rates for inactive baskets

The optimal design subject to the provided input values and calibrated to control the FWER at 10% when the

drug has no effect in any of the baskets while achieving 80% power when the drug truly works in 2 of 7 baskets
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has n1k = 12, n2k = 22, γ = 0.7, αS = 0.1, αC = 0.03. This design produces power in the region of 84% when all

baskets are active and declines to 73% when only one basket is active. The expected sample size ranges from 156 to

210, depending on the number of active baskets. This compares with a range of 130 to 264 for the expected sample

size if the reference design (parallel Simon) was used. We would recommend exploring optimal design options with

different “fixed” values of N1, N2, rC , and rS before selecting the most suitable option.

References

[1] Seshan VE, Seshan MVE. R package “clinfun”. CRAN 2015; :1–23.

6


