A AVP/Aldh1L1-GFP^{NLS}/DAPI

Figure S1. Aldh1L1-GFP^{NLS} does not label SCN neurons. Related to Figure 1. (A) Astrocyte nuclei in the SCN were labeled (green) by Cre-mediated recombination of Aldh1L1-Cre/+;LSL-GFP^{NLS}/+ mice and then coronal brain sections were immunostained for AVP (red). The locations of the magnified images are indicated by yellow squares in the low-power images. Arrowheads illustrate that none of the Aldh1L1-positive cells labeled for AVP. Scale bar = $75 \mu m$.

Figure S2. Loss of Bmal1 from all SCN cells phenocopies the global Bmal1 knockout. Related to Figure 3. (A) Representative actograms of LSL-Cas9/+; PER2::luc/+ animals which were injected with AAV carrying pCBh-Cre and either sgRNA against LacZ or Bmal1 (exon 1 or exon3) to the SCN. (B) BMAL1 staining (red) in the SCN of the animals shown in (A). (C) Representative PER2::luc traces from SCN slices which were infected with AAV carrying pCBh-Cre and either sgRNA against LacZ or Bmal1 (exon 1 [E1] or exon3[E3]). Note the arrhythmic PER2 expression in the two SCN where BMAL1-deletion was targeted to all cells and the circadian rhythm in the control.

Table S1: Summary statistics on AAV2/10-Bmal1ext-DIO-luc experiments. Related to Figure 2.

Genotype	Virus Added	Period	Amplitude ****	Goodness of Fit ***	Mean Bioluminescence (Counts/10min)*
Aldh1L1-Cre/+ (n = 6 mice)	AAV2/10-Bmal1ext-DIO-luc	23.6 ± 0.2 h	0.014 ± 0.002*	0.97 ± 0.007***	1,645,662 ± 578,301*
VIP-IRES-Cre (n = 4 mice)	AAV2/10-Bmal1ext-DIO-luc	23.1 ± 0.7 h	0.014 ± 0.003*	0.93 ± 0.03**	211,203 ± 13,778
WT (n = 2 mice)	AAV2/10-Bmal1ext-DIO-luc + AAV2/8-pCBh-Cre (1:1)	22.6 ± 0.1 h	0.033± 0.004****	0.98 ± 0.003**	178,785 ± 6,359
WT (n = 7 mice)	AAV2/10-Bmal1ext-DIO-luc	N.A.	0.006 ± 0.002	0.60 ± 0.07	92,647 ± 11,855

Statistics: One-way ANOVA with Bonferroni's multiple comparison test compared to no Cre control (underlined). *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.

Table S2. Detailed descriptions of the genetic manipulations in each figure. Related to all figures.

Glossary

Cre: Cre recombinase

Cas9: CRISPR-associated protein 9

DIO: double-floxed inverted orientation. Activated by Cre.

GFP: Green fluorescence protein

LSL: loxP-STOP-loxP. Activated by Cre

Luc: firefly luciferase

NLS: nuclear-localization signal

Rosa26: A mouse genomic locus commonly used for constitutive, ubiquitous expression.

sgBmal1_E1: sgRNA targeting exon 1 of *Bmal1* sgBmal1_E3: sgRNA targeting exon 3 of *Bmal1*

All injections targeted the bilateral SCN.

Treatment	Full genotype	Description of genotype	Virus Injected	Description of Virus	
Fig. 1 and S1	Fig. 1 and S1				
Aldh1L1-	Aldh1L1-Cre/+;	Rosa26 knockin of LSL-GFP ^{NLS}	None.	None.	
GFP ^{NLS}	LSL-GFP ^{NLS} /+	driven by ubiquitous promoter.			
		Expression of nuclear-localized			
		GFP was activated by Cre			
		recombinase in Aldh1L1 (+) cells.			
Figure 2 and	Figure 2 and Table S2				
Aldh1L1-	Aldh1L1-Cre/+	Cre recombinase was expressed	AAV2/10-Bmal1ext-	Bmal1 ^{luc} was activated only	
Bmal1 ^{luc}		in Aldh1L1 (+) cells.	DIO-luc	in Aldh1L1 (+) cells.	
VIP-	VIP-IRES-Cre	Cre recombinase was expressed	AAV2/10-Bmal1ext-	Bmal1 ^{luc} was activated only	
Bmal1 ^{luc}		in vasoactive intestinal	DIO-luc	in VIP (+) neurons.	
		polypeptide (+) neurons.			
Positive	WT (No Cre)	WT mice.	AAV2/10-Bmal1ext-	Bmal1 ^{luc} was activated	
Control			DIO-luc +	ubiquitously.	

			AAV8-pCBh-Cre	
Negative Control	WT (No Cre)	WT mice.	AAV2/10-Bmal1ext- DIO-luc	Negative control to determine background bioluminescence.
Fig. 3				
Controls	LSL-Cas9-GFP/+; PER2::luc/+	Rosa26 knockin of LSL-Cas9-GFP driven by a ubiquitous promoter. Since Cre was absent, neither Cas9 nor GFP were expressed. PER2::luc was expressed in all cells.	AAV2/8-U6- sgBmal1-pCBh- mCherry ^{NLS} (E1 or E3)	Ubiquitous expression of mCherry-NLS to report virus spread. In the presence of Cas9, a cut at the desired locus within the <i>Bmal1</i> gene was made.
Aldh1L1- Bmal1-/-	Aldh1L1/+; LSL- Cas9-GFP/+; PER2::luc/+	Rosa26 knockin of LSL-Cas9-GFP driven by ubiquitous promoter. Cas9 and GFP were expressed in Aldh1L1(+) cells only. Global expression of PER2::luc.	AAV2/8-U6- sgBmal1-pCBh- mCherry ^{NLS} (E1 or E3)	Non-homologous end joining (NHEJ) of DNA led to a frame shift and premature stop codon in the Bmal1 gene in most Cas9-expressing cells.
Fig. S2				
sgLacZ	LSL-Cas9-GFP/+; PER2::luc/+	Rosa26 knockin of LSL-Cas9-GFP driven by ubiquitous promoter. Cas9 and GFP were expressed only in the presence of Cre recombinase. Global expression of PER2::luc.	AAV2/8-pCBh-Cre + AAV2/8-U6-sgLacZ- pCBh-mCherry ^{NLS}	Ubiquitous expression of mCherry-NLS and Cre. Since lacZ is absence in the mammalian genome, sgLacZ is a control vector designed to test the specificity of sgRNA sequence.
sgBmal1 (E1 and E3)	LSL-Cas9-GFP/+; PER2::luc/+		AAV2/8-pCBh-Cre + AAV2/8-U6- sgBmal1-pCBh- mCherry ^{NLS}	Ubiquitous expression of mCherry-NLS and Cre. In the presence of Cas9, a cut at a desired locus within

Data not sho	um (valated to fig. 2)		(E1 or E3)	the Bmal1 gene was made and non-homologous end joining (NHEJ) of DNA leads to frame shift and premature stop codon in most Cas9-expressing cells.
AAV8-	wn (related to fig. 3)	Bmal1 conditional knockout in	AAV8-GFAP-GFP	CED averageion was driven
GFAP-GFP	Bmal1 ^{f/f} ; PER2::luc/PER2::luc	GFAP(+) cells. Global expression of PER2::luc.	AAV8-GFAP-GFP	GFP expression was driven by GFAP promoter.
AAV8-	Bmal1 ^{f/f} ;	Bmal1 conditional knockout.	AAV8-GFAP-Cre-	Cre and GFP expression
GFAP-Cre	PER2::luc/PER2::luc	Global expression of PER2::luc.	GFP	were driven by GFAP
				promoter.
Fig. 4a-d		,		
CK1ε ^{tau/+}	CK1ɛ ^{tau/+} ; PER2::luc/+	Heterozygous <i>tau</i> mutation in casein kinase 1 epsilon gene led to short period (~22h) phenotype. Global expression of PER2::luc.	None.	None.
Aldh1L1- CK1ε ^{tau/+}	Aldh1L1-Cre/+; CK1ɛ ^{tau/+} ; PER2::luc/+	Heterozygous <i>tau</i> mutation in casein kinase 1 epsilon gene led to short period (~22h) phenotype. The mutation was deleted in Aldh1L1(+) cells throughout the mouse, resulting in reversal of phenotype in those cells only. Global expression of PER2::luc.	None.	None.
Fig. 4e-j				
AAV8-	CK1ε ^{tau/+} ;	Heterozygous <i>tau</i> mutation in	AAV8-GFAP-GFP	GFP expression was driven

GFAP-GFP	PER2::luc/+	casein kinase 1 epsilon gene led to short period (~22h) phenotype. Global expression of PER2::luc.		by GFAP promoter.
AAV8- GFAP-Cre	CK1ɛ ^{tau/+} ; PER2::luc/+	Heterozygous <i>tau</i> mutation in casein kinase 1 epsilon gene led to short period (~22h) phenotype. The mutation was deleted in infected SCN GFAP(+) cells throughout the mouse, resulting in reversal of phenotype in those cells only. Global expression of PER2::luc.	AAV8-GFAP-Cre- GFP	Cre and GFP expression were driven by GFAP promoter.

Jackson Lab Stock Number or citation:

Aldh1L1-Cre/+	Jax: 023748
CK1 _E tau/tau	PMID: 18400165
LSL-Cas9-eGFP	Jax: 024858
LSL-GFP ^{NLS}	Jax: 008516
PER2::luc	Jax: 006852
VIP-IRES-Cre	Jax: 010908
Bmal1 ^{f/f}	Jax: 007668

Supplemental Experimental Procedures

Immunohistochemistry.

Animals were sacrificed between ZT 2-4 by transcardial perfusion of PBS followed by 4% paraformaldehyde and their brains harvested and cryoprotected. We made 30 µm coronal brain sections using a cryostat. Immunostaining was performed as previously described. [S1] Primary antibodies used were rabbit anti-BMAL1 (NB100-2288, Novus, 1:5000), rabbit anti-GFAP (Z0334, Dako, 1:100), chicken anti-GFP (ab13970, Abcam, 1:2000), mouse anti-AVP (PS41, gift from Dr. Harold Gainer, NINDS, 1:50), and mouse anti-FOX2 (ab57154, Abcam, 1:200). Secondary antibodies used were Alexa Fluor 488-conjugated Goat anti-Chicken IgG, Cy3-conjugated Donkey antirabbit IgG, Alexa Fluor 594-conjugated Donkey antirmouse IgG and Alexa Fluor 647-conjugated Donkey antirabbit IgG (all from Jackson Immuno Research, 1:500). Sections were mounted with ProLong® Gold Antifade Mountant with DAPI (Thermo Scientific). Images were acquired on a Nikon A1 confocal microscope as a single z-section (optical section thickness of 2.73µm). Images were taken sequentially averaging 4 images for each of the four-color channels. Observers blinded to the treatment groups counted cells within the SCN that expressed one or more of the targeted antigens using ImageJ software [S2].

Behavior recording.

Mice were maintained in the Danforth animal facility at Washington University. Adult mice were housed individually in cages equipped with running wheels and maintained in light-tight chambers illuminated with fluorescent bulbs (General Electric). Running wheel activity was recorded in 6-min bins (Clocklab, Actimetrics). Period was determined by χ^2 periodogram using Clocklab software.

Bioluminescence Recording.

Unless otherwise specified, 300-um coronal SCN slices were prepared from adult animals. Briefly, mice were sacrificed with CO₂ and decapitated. Brains were quickly collected in chilled Hank's balanced salt solution (HBSS), pH 7.2 (Sigma), supplemented with 0.01 M HEPES (Sigma), 100 U/mL penicillin, 0.1 mg/mL streptomycin, and 4 mM NaHCO₃ (Invitrogen), Brain sections were obtained with a vibratome (OTS-5000; Electron Microscopy Sciences). Each SCN was dissected and cultured individually on a Millicell-CM membrane (Millipore) in a 35mm Petri dish with 1 mL of DMEM (Sigma) supplemented with 10 mM HEPES (Sigma), 2.2 mg/mL NaHCO₃ (Invitrogen), and 0.1 mM beetle D-luciferin (Biosynth). Petri dishes were sealed with vacuum grease and placed under photomultiplier tubes (HC135-11MOD; Hamamatsu) at 36 °C in the dark. Bioluminescence was recorded in 6-min bins (PER2::luc) or 10-min bins (AAV2/10-Bmal1ext-DIO-luc). Acquired in vitro bioluminescence traces were detrended by division and fitted with a damped sine function (Chronostar 1.0 [3]), and traces with a coefficient of correlation >0.80 and period between 18-30h were defined as circadian. The periods of PER2::luc and Aldh1L1-Bmall^{luc} expression were determined using Chronostar software. For CCD recordings, Aldh1L1-Bmall^{luc} SCN was imaged under 20x objective with 0.5x coupler using an ultrasensitive CCD camera (Andor iKon) mounted on an inverted microscope. Temperature was maintained at 35°C with a box incubator (In vivo Scientific). Static, cellsized ROIs were drawn on the acquired movie in ImageJ and the acquired traces were processed through a custom Matlab script. Circadian traces from each movie were detrended by division and presented as a raster plot. We used Chronostar to determine period and rhythmicity from the raw traces. All ROIs that had a coefficient of correlation >0.80 and period between 18-30h were defined as circadian and the time of their second Bmall-Luc peak was evaluated by a Rayleigh test of uniformity using the R package "circular". [S3]

Statistical Analysis.

All results were expressed as mean \pm SEM. For comparisons of two groups of normally distributed data, Student's ttest was performed. One-way ANOVA with Sidak's multiple comparison test was used for data shown in Fig. 3e. GraphPad Prism 7 was used to perform statistical analysis and to generate figures.

Supplemental References

- S1. An, S., Irwin, R.P., Allen, C.N., Tsai, C., and Herzog, E.D. (2011). Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol *105*, 2289-2296.
- S2. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods *9*, 671-675.
- S3. Maier, B., Wendt, S., Vanselow, J.T., Wallach, T., Reischl, S., Oehmke, S., Schlosser, A., and Kramer, A. (2009). A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev *23*, 708-718.