Supporting Information For

HIV-1 Capsid Function is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD

Huilan Zhang^{1,2,#}, Guangjin Hou^{1,2,#}, Manman Lu^{1,2}, Jinwoo Ahn^{2,3}, In-Ja L. Byeon^{2,3}, Christopher J. Langmead⁴, Juan R. Perilla⁵, Ivan Hung⁶, Peter L. Gor'kov⁶, Zhehong Gan⁶, William W. Brey⁶, David A. Case⁷, Klaus Schulten⁵, Angela M. Gronenborn^{2,3*}, and Tatyana Polenova^{1,2*}

Classification: Biological Sciences-Biophysics and Computational Biology

Keywords: magic-angle spinning NMR, HIV-1 capsid, CA protein assemblies, HIV-AIDS, conformational dynamics, chemical shift anisotropy, quantum mechanics/molecular mechanics

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States;
Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States;
Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States;
Carnegie Mellon University, Gates Hillman Center, 5000 Forbes Avenue, Pittsburgh, PA, United States;
Department of Physics and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, United States;
Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8087, United States

^{*}These authors have contributed equally

^{*}Corresponding authors: Tatyana Polenova, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA, Tel.: (302) 831-1968; Email: tpolenov@udel.edu; Angela M. Gronenborn, Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15260, USA, Tel.: (412) 648-9959; Email: amg100@pitt.edu

Figure S1. Experimental (solid black lines) and simulated (dashed blue lines) 15 N CSA lineshapes for different residues in tubular assemblies of CA HXB2 extracted from the R8 $_1$ 3 -RNCSA 3D spectra, recorded at the magnetic field of 21.1 T and the MAS frequency of 14 kHz.

Figure S2. Distribution plots for the isotropic 13 C $^{\alpha}$ (left), 13 C $^{\circ}$ (middle), and 15 N H (right) chemical shifts in HIV-1 CA assemblies. Top: experimental MAS NMR; middle, calculated from MD/DFT; bottom, calculated by SHIFTX as the averaged values over the MD trajectory. The distributions for helical regions are shown in red, for loops- in black.

Figure S3. Principal components of ^{15}N CSA tensor, δ_{ii} , δ_{σ} , and δ_{iso} , calculated along the MD trajectory, for selected CA residues: G89 (a, c) and E98 (b, d). For the calculations, 100 frames were used from the first 10 ns of the 100-ns MD trajectory.

Figure S4. Simulated rigid and motionally reduced ^{15}N CSA line shapes for the sites with the following CSA NMR parameters: (a) δ_{σ} = 100 ppm and η = 1.0; (b) δ_{σ} = 100 ppm and η = 0.5. The Euler angles are indicated next to each line shape.

Figure S5. Individual components of 15 N CSA tensor δ_{ij} (molecular fixed frame representation), calculated along the MD trajectory, for selected CA residues: G89 (a-c) and E98 (d-f). For the calculations, 100 frames were used from the first 10 ns of the 100-ns MD trajectory.

Figure S6. Probability distributions of ¹⁵N isotropic chemical shifts of HIV-1 CA calculated by Shiftx based on 5000 frames extracted from 100 ns MD simulation.

Figure S6. (con'd) Probability distributions of 15 N isotropic chemical shifts of HIV-1 CA calculated by Shiftx based on 5000 frames extracted from 100 ns MD simulation.

Figure S7. Euler angles of the ^{15}N CSA tensors for G89 and E98 residues of CA, calculated by MD/DFT with different sampling schedules: 200 frames from 100-ns MD trajectory, red; 100 frames from 100-ns MD trajectory, blue; 100 frames from the first 10 ns of the 100-ns MD trajectory, black. The corresponding ^{15}N CSA parameters for G89 are: δ_σ = 28.92 ppm, η_σ = 0.11; δ_σ = 23.28 ppm, η_σ = 0.10; δ_σ = 23.75 ppm, η_σ = 0.12. The corresponding ^{15}N CSA parameters for E98 are: δ_σ = 93.83 ppm, η_σ = 0.52; δ_σ = 93.00 ppm, η_σ = 0.53; δ_σ = 92.94 ppm, η_σ = 0.54.

Figure S8. Euler angles of the ¹⁵N CSA tensors for G89 residue in the molecular frame along the MD trajectory, calculated using (a-c) B3LYP and OLYP functionals (black and red symbols, respectively), and (d-f) O3LYP and OLYP functionals (black and red symbols, respectively). The angles were calculated using δ_{σ} = 25.63, 23.75, and 24.66 ppm for B3LYP, OLYP, and O3LYP, respectively. Note that the differences are small for δ_{σ} computed with the three functionals. For the calculations, 100 frames were used from the first 10 ns of the 100-ns MD trajectory.