Supplementary information

Load- and polysaccharide-dependent activation of the Na⁺type MotPS stator in the *Bacillus subtilis* flagellar motor

Naoya Terahara, Yukina Noguchi, Shuichi Nakamura, Nobunori Kami-ike, Masahiro Ito, Keiichi Namba and Tohru Minamino

	Bead size (µm)	2.0	1.5	1.0	0.8	0.6	0.5
NaCl	Speed (Hz)	10 ± 2	13 ± 2	47 ± 6	107 ± 15	155 ± 20	175 ± 33
	Torque (pN nm)	2,131 ± 278	2,081 ± 174	2,021 ± 205	1,879 ± 194	881 ± 182	535 ± 99
KCI	Speed (Hz)	8 ± 3	14 ± 3	56 ± 7	104 ± 12	166 ± 32	180 ± 36
	Torque (pN nm)	2,172 ± 337	2,244 ± 293	2,020 ± 315	1,801 ± 249	781 ± 112	485 ± 94

 Table S1. Rotational speed and torque of the MotAB motor.

	Bead size (µm)	1.5	1.0	0.8	0.6	0.5
P _{motAB}	Speed (Hz)	1.4 ± 0.1	6 ± 1	11 ± 2	25 ± 5	33 ± 8
	Torque (pN nm)	220 ± 38	206 ± 35	191 ± 27	187 ± 39	118 ± 23
Pgrac	Speed (Hz)	5 ± 1	19 ± 4	31 ± 4	37 ± 3	40 ± 4
	Torque (pN nm)	900 ± 236	790 ± 127	502 ± 54	313 ± 25	190 ± 16

 Table S2. Rotational speed and torque of the MotPS motor.

Table S3. Rotational speed and torque of the MotPS motor measured using a 1.0-µm bead in media containing 0%, 2%, 4%, 6%, 8% and 10% Ficoll 400 (w/v).

Bead size (µm)	1.0	1.0	1.0	1.0	1.0	1.0
Ficoll (%)	0	2	4	6	8	10
Speed (Hz)	6 ± 1	7 ± 2	7 ± 2	6 ± 1	6 ± 1	5 ± 1
Torque (pN nm)	209 ± 35	331 ± 62	472 ± 124	645 ± 156	838 ± 185	1,150 ± 238

	· (••• •)•				
Bead size (µm)	1.5	1.0	0.8	0.6	0.5
Ficoll (%)	10	10	10	10	10
Speed (Hz)	4 ± 2	6 ± 1	11 ± 3	24 ± 4	31 ± 6
Torque (pN nm)	1,717 ± 279	1,261 ± 238	995 ± 248	704 ± 118	563 ± 102

Table S4. Rotational speed and torque of the MotPS motor in media containing 10% Ficoll 400 (w/v).

	Bead size (µm)	1.5	1.0	0.8	0.6	0.5
PS-L	Speed (Hz)	1.0 ± 0.6	6 ± 1	12 ± 2	26 ± 5	34 ± 7
	Torque (pN nm)	209 ± 71	217 ± 99	215 ± 70	203 ± 40	130 ± 20
PS-p2	Speed (Hz)	5 ± 1	19 ± 5	28 ± 4	35 ± 6	42 ± 6
	Torque (pN nm)	793 ± 221	652 ± 191	478 ± 64	289 ± 50	159 ± 19
PS-p3	Speed (Hz)	7 ± 2	25 ± 2	35 ± 6	41 ± 6	45 ± 6
	Torque (pN nm)	1,106 ± 127	860 ± 212	603 ± 87	359 ± 48	189 ± 22

Table S5. Rotational speed and torque of the PS-L, PS-p2, and PS-p3 motors.

	Bead size (µm)	2.0	1.5	1.0	0.8	0.6	0.5
NaCl	Speed (Hz)	10 ± 1	20 ± 2	40 ± 8	92 ± 19	149 ± 27	169 ± 31
	Torque (pN nm)	2,097 ± 396	2,271 ± 302	1,981 ± 281	1,895 ± 228	841 ± 142	585 ± 104
KCI	Speed (Hz)	8 ± 1	16 ± 4	32 ± 8	71 ± 14	123 ± 22	151 ± 36
	Torque (pN nm)	1,586 ± 373	1,599 ± 306	1,442 ± 285	1,414 ± 226	725 ± 134	500 ± 119

 Table S6. Rotational speed and torque of the AB-p3 motor.

Strain	Relevant characteristics	Source or reference
Escherichia coli		
DH5aMCR	F [−] mcrA∆1 (mrr-hsd RMS-mcrBC) Φ80dlacZ ∆(lacZYAargF)	Stratagene
	U169 deoR recA1 endA1 supE44 λthi-1 gyr-496 relA1	-
Salmonella		
SJW46	fliC(∆205-293)	1
Bacillus subtilis		
BR151MA	<i>lys3 trpC2</i> (wild type)	2
∆hag	lys3 trpC2 ∆hag::spec	This study
WT-sticky	lys3 trpC2 ∆hag::spec amyE::P _{hag} -hagsticky	This study
ΔAB	lys3 trpC2 ∆motAB::ery	3
ΔPS	lys3 trpC2 ∆motPS::neo	3
ΔΑΒΔΡS	lys3 trpC2 ∆motAB::ery ∆motPS::neo	3
AB	∆motAB ∆motPS amyE::P _{motAB} -motAB	3
PS	∆motAB ∆motPS amyE::P _{motAB} -motPS	3
AB-His ₆	∆motAB ∆motPS amyE::P _{motAB} -motAB-his ₆	This study
PS-His ₆	∆motAB ∆motPS amyE::P _{motAB} -motPS-his ₆	This study
P _{grac} -AB	∆motAB ∆motPS amyE::P _{grac} -motAB	This study
P _{grac} -PS	∆motAB ∆motPS amyE::P _{grac} -motPS	This study
∆AB∆PS∆Hag	∆motAB ∆motPS ∆hag::spec	This study
AB-sticky	∆motAB ∆motPS ∆hag::spec amyE::P _{motAB} -motAB, P _{hag} -	This study
	hagsticky	
PS-sticky	∆motAB ∆motPS ∆hag::spec amyE::P _{motAB} -motPS, P _{hag} -	This study
	hagsticky	
P _{grac} -AB-sticky	∆motAB ∆motPS ∆hag::spec amyE::P _{grac} -motAB, P _{hag} -	This study
	hagsticky	
P _{grac} -PS-sticky	∆motAB ∆motPS ∆hag::spec amyE::P _{grac} -motPS, P _{hag} -	This study
	hagsticky	
AB-p3-sticky	$\Delta motAB \Delta motPS \Delta hag::spec amyE::P_{motAB}-motAB-p3, P_{hag}-$	This study
	hagsticky	
PS-L-sticky	$\Delta motAB \Delta motPS \Delta hag::spec amyE::P_{motAB}-motPS-L, P_{hag}-$	This study
	hagsticky	
PS-p1-sticky	$\Delta motAB \Delta motPS \Delta hag::spec amyE::P_{motAB}-motPS-p1, P_{hag}-$	This study
	hagsticky	
PS-p2-sticky	$\Delta motAB \Delta motPS \Delta hag::spec amyE::P_{motAB}-motPS-p2, P_{hag}-$	This study
	hagsticky	
PS-p3-sticky	$\Delta motAB \Delta motPS \Delta hag::spec amyE::P_{motAB}-motPS-p3, P_{hag}-$	This study
	hagsticky	

Table S7. Bacterial strains used in this study.

References

- 1. Yoshioka, K., Aizawa, S.-I. & Yamaguchi, S. Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. *J. Bacteriol.* **177**, 1090-1093 (1995). 2. Grundy, F.J., Turinsky, A.J. & Henkin, T.M. Catabolite regulation of *Bacillus subtilis*
- acetate and acetoin utilization genes by CcpA. J. Bacteriol. 176, 4527-4533 (1994).
- 3. Ito, M., Terahara, N., Fujinami, S. & Krulwich, T.A. Properties of motility in Bacillus subtilis powered by the H⁺-coupled MotAB flagellar stator, Na⁺-coupled MotPS or hybrid stators MotAS or MotPB. J. Mol. Biol. 352, 396-408 (2005).

Plasmid	Relevant characteristics	Source or reference
pDG1730	amyE integration vector with Spec' gene	1
, pDR67	$amyE$ integration vector with Cm' gene and P_{spac}	2
	promoter upstream of multiple cloning site	
pHT01	<i>B. subtilis</i> expression vector by P _{grac} promoter	MoBiTec
pDR-AB	pDR67 + P _{motAB} -motAB from BR151MA	3
pDR-PS	pDR67 + P _{motAB} -motPS from BR151MA	3
pDR-AB-His ₆	pDR67 + P _{motAB} -motAB-his ₆	This study
pDR-PS-His ₆	pDR67 + P _{motAB} -motPS-his ₆	This study
pHT-AB	pHT01 + P _{grac} -motAB	This study
pHT-PS	pHT01 + P _{grac} -motPS	This study
pDR-P _{grac} -AB	pDR67 + P _{grac} -motAB	This study
pDR-P _{grac} -PS	pDR67 + P _{grac} -motPS	This study
pDR-hagsticky	pDR67 + P _{hag} -hagsticky from BR151MA and SJW46	This study
pDR-ABsticky	pDR-hagsticky + P _{motAB} -motAB	This study
pDR-PSsticky	pDR-hagsticky + P _{motAB} -motPS	This study
pDR- Pgrac-ABsticky	pDR-hagsticky + P _{grac} -motAB	This study
pDR- P _{grac} -PSsticky	pDR-hagsticky + P _{grac} -motPS	This study
pDR-ABp3sticky	pDR-hagsticky + P _{motAB} -motAB-p3	This study
pDR-PSLsticky	pDR-hagsticky + P _{motAB} -motPS-L	This study
pDR-PSp1sticky	pDR-hagsticky + P _{motAB} -motPS-p1	This study
pDR-PSp2sticky	pDR-hagsticky + P _{motAB} -motPS-p2	This study
pDR-PSp3sticky	pDR-hagsticky + P _{motAB} -motPS-p3	This study

Table S8. Plasmids used in this study.

References

- 1. Guérout-Fleury, A.M., Frandsen, N. & Stragier, P. Plasmids for ectopic integration
- Bacillus subtilis. Gene 180, 57-61 (1996).
 Ireton, K., Rudner, D.Z., Siranosian, K.J. & Grossman, A.D. Integration of multiple developmental signals in *Bacillus subtilis* through the Spo0A transcription factor. Genes & Dev. 7, 283-294 (1993).
- 3. Ito, M., Terahara, N., Fujinami, S. & Krulwich, T.A. Properties of motility in *Bacillus* subtilis powered by the H⁺-coupled MotAB flagellar stator, Na⁺-coupled MotPS or hybrid stators MotAS or MotPB. J. Mol. Biol. 352, 396-408 (2005).

Primer	Sequence (5' \rightarrow 3')
Hag-del-F1	ATACTCCGTCACAGCTTGATGTGC
Hag-del-F2	CCTCACAAAAAAAGTGAGGATTATGAGCAATTTGATTAACGGAA
Hag-del-F3	ATTCTTTGCCAGAACTAATTGATTTTAAAAAAGACCTTGGCGTT
Hag-del-R1	CGCCTTGTGTGTATCCCGTATAAT
Hag-del-R2	TTCCGTTAATCAAATTGCTCATAATCCTCACTTTTTTTGTGAGG
Hag-del-R3	AACGCCAAGGTCTTTTTTAAAATCAATTAGTTCTGGCAAAGAAT
Hag- <i>Bam</i> HI-F	CGGGATCCCGAAGCGATTCAAATAGGTGCTGA
Hag-sticky-F1	GGTAAGAAATTGCTCGATGGCACTAACACCCTGACCATCCAGGTTGGT
Hag-sticky-F2	GGTCACAACTTTAAAGCACAGCCTGATGCTCAATTTGAAAGTTGTTGAT
Hag-SphI-R	ACATGCATGCGGATGAGGAATGATTAGGAGATAG
Hag-sticky-R1	ACCAACCTGGATGGTCAGGGTGTTAGTGCCATCGAGCAATTTCTTACC
Hag-sticky-R2	ATCAACAACTTTCAATTGAGCATCAGGCTGTGCTTTAAAGTTGTGACC
AB-Xmal-F	TCCCCCGGGCTTCTCCTGAAGCGCTACTTT
AB- <i>Bam</i> HI-F	CGGGATCCATGGATAAAACTTCGTTAATCGGT
AB-Sphl-R	ACATGCATGCAAAACAGTTTCATAATAAGTAA
AB-His ₆ - <i>SphI</i> -R	ACATGCATGCCTAGTGGTGGTGGTGGTGGTGTTTTTCATTTGTTTCCGCTGCGC
AB- <i>Xma</i> l-R	TCCCCCGGGAAGCCTGATATGTCACAAGGC
PS-BamHI-F	CGGGATCCATGAAACGTTTTGATTATCTTACA
PS-SphI-R	ACATGCATGCCCAAACTGTCAGCAAAGCAT
PS-His ₆ - <i>Sph</i> I-R	ACATGCATGCTTAGTGGTGGTGGTGGTGGTGCGAAGAGGTCGTTTTTGATTTTT
PS- <i>Xma</i> l-R	TCCCCCGGGAGCGATCCGGCTGATTTATAT
P _{grac} - <i>Xma</i> I-F	TCCCCCGGGTTTAAATGCAACCGTTTTTTC
AB-p3-F	TGAAGGCCTTCTGATTACGATTCAGGAGGCTGTGCTGTTTGATA
AB-p3-R	TATCAAACAGCACAGCCTCCTGAATCGTAATCAGAAGGCCTTCA
PS-L-F1	GAAAGATCTTGTGAAAACCTTTTCTGAATGGGCTCAGCTTGCAC
PS-L-F2	AAACGGGCTCAGCATGGCTGTTGACGGCTGGGATGAAGAAACGA
PS-L-R1	GTGCAAGCTGAGCCCATTCAGAAAAGGTTTTCACAAGATCTTTC
PS-L-R2	TCGTTTCTTCATCCCAGCCGTCAACAGCCATGCTGAGCCCGTTT
PS-p1-F	CTTTTCGATGTCCCAAATCGATGCAGCTAAGTTTCAAATGCTCT
PS-p1-R	AGAGCATTTGAAACTTAGCTGCATCGATTTGGGACATCGAAAAG
PS-p2-F	ATCTGATACGAAGAAGCAAGAGGAACTTGAAAATGTGAAGAGCC
PS-p2-R	GGCTCTTCACATTTTCAAGTTCCTCTTGCTTCTTCGTATCAGAT
PS-p3-F	ACGCGGTGTCGTGCTCGTTCTTAAAGACAGCATCTTCTTCGATT
PS-p3-R	AATCGAAGAAGATGCTGTCTTTAAGAACGAGCACGACACCGCGT

 Table S9.
 Oligonucleotides used in this study.