## Rare Earth Doped Silica Nanoparticles *via* Thermolysis of a Single Source Metallasilsesquioxane Precursor

Gemma-Louise Davies<sup>a\*</sup>, John O'Brien<sup>b</sup>, and Yurii K. Gun'ko<sup>\*b,c</sup>

<sup>a</sup> Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.

<sup>b</sup> School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Ireland.

<sup>c</sup> St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101, St. Petersburg, Russia.

\* g-l.davies@warwick.ac.uk and igounko@tcd.ie

## **Supplementary Information**

## **Figures and Tables**



**Figure S1.** <sup>29</sup>Si NMR of  $(c-C_6H_{11})_7$ Si<sub>7</sub>(OH)<sub>3</sub> showing peaks at -60.36, -68.25 and -69.79 ppm in a ratio of 3:1:3, representing the 3 environments of Si in the incompletely condensed trisilanol.



Figure S2. FTIR of  $(c-C_6H_{11})_7Si_7(OH)_3$ .



**Figure S3.** <sup>29</sup>Si NMR of  $[(THF)_3Li(\mu-CI)Eu[N(SiMe_3)_2]_3]$  showing a single peak at 54.78 ppm, as dictated by the symmetry of the compound.



Figure S4. FTIR of compound 1 before and after thermolysis, as labelled.



Figure S5. EDS spectrum showing elements present in thermolytically-prepared nanoparticles.



**Figure S6.** X-ray diffraction pattern of nanoparticles produced after thermolytic treatment of compound **1**.

| Table S1. Energy dispersive x-ray spectroscopy(EDS) data showing elemental composition |
|----------------------------------------------------------------------------------------|
| of nanoparticles prepared by the thermolytic decomposition of compound 1.              |

| Element         | %Atom |
|-----------------|-------|
| C a             | 29.21 |
| 0               | 43.65 |
| Si              | 22.01 |
| Cu <sup>b</sup> | 1.86  |
| Eu              | 2.75  |

<sup>a</sup> C signal comes predominantly from the carbon support film; <sup>b</sup> The presence of Cu is due to the copper grid used to support sample.