Draft genome sequence of *Cicer reticulatum* L., the wild progenitor of chickpea provides a resource for agronomic trait improvement

**SUPPORTING FIGURES** 



| k-mer | k-mer Depth | Total Base used | Avg. Read Len<br>(base) | Estimated<br>Size(bp) | Genome |
|-------|-------------|-----------------|-------------------------|-----------------------|--------|
| 17    | 29          | 27,588,914,368  | 101                     | 802,003,324           |        |

**N = M\* L/(L-K+1); Genome size = T/N** M=29; L=101; K=17; T=27,588,914,368

**Figure S1:** Estimation of chickpea genome size based on k-mer distribution obtained from Jellyfish.



**Figure S2.** Fragment distribution of *C. reticulatum* genome assembly. Number of fragments covering different percentile of the assembly plotted against different length percentile.



**Figure S3.** Venn diagram showing clustering of gene families (a) and genes (b) shared among Chickpea cultivars ICC4958 (Desi) and CDC Frontier (Kabuli) and wild chickpea *C. reticulatum*.



Physical distance (bases)



Physical distance (bases)



### C. arietinum ICC4958



**Figure S5**. Comparison of *C. reticulatum* and *C. arietinum* ICC4958 chickpea genome assemblies. A dot-plot matrix comparing the chickpea (ICC 4958) and the *C. reticulatum* draft assemblies of eight pseudomolecules corresponding to each linkage groups. Pairwise comparison of all the pseudomolecules two draft genome assemblies were performed using synteny blocks and anchor filtering algorithms of tool SyMap v4.0.



**Figure S6.** Pairwise collinearity analysis of orthologous genes present in the linkage groups of *desi* (Ca1-8) and *C. reticulatum* (Cr1-8) draft assemblies. Analysis was performed using default parameters of tool MCScanX.



**Figure S7**: Unrooted phylogenetic relationship between the Rgene homologues of *C. reticulatum* and *C. arietinum*.



**Figure S8.** Pairwise collinearity analysis of resistance gene homologues present in the linkage groups of *M. truncatula* (Mt1-8) and *C. reticulatum* (Cr1-8) assemblies. Analysis was performed using default parameters of tool MCScanX and viewed using Circose.



Seed weight Flowering time Pod number Root trait/drought tolerance vernalization Ascochyta-resistance
 Fusarium-resistance

**Figure S9** :Genome-wide distribution of sequence diversity (SNP/Indels) between the wild and the domesticated chickpea genotypes. Sequence reads of C. reticulatum were mapped on the pseudomolecules of *desi* (ICC4958) and *kabuli* (CDC Frontier) chickpeas. Circular maps show distribution of densities (in 0.5 Mb) of genes (grey), genomic SNPs (red), SNPs present in genes only (blue), genomic indels (green) and indels present in genes only. SNP and indel scales were kept as 5000 and 2500, respectively. Physical locations of quantitative trait loci (QTL) for different traits, available from literature, are shown as colored bars outside the circles.

## VRN1



**Figure S10.** Amplification of the polymorphic sequence present at the 5'UAS of the VRN1 Orthologues in different accessions of the domesticated (*desi* and *kabuli* types) and wild (*C. reticulatum*) chickpeas. Accessions numbers are mentioned above.

## VRN2



**Figure S11.** Amplification of the polymorphic sequence present at the 5'UAS of the VRN2 orthologues in different accessions of the domesticated (*desi* and *kabuli* types) and wild (*C. reticulatum*) chickpeas. Accession numbers are mentioned above.

Draft genome sequence of *Cicer reticulatum* L., the wild progenitor of chickpea provides a resource for agronomic trait improvement

# **SUPPORTING TABLES**

**Table S1. Sequencing data generated for** *Cicer reticulatum* **PI489777.**Sequence generated using Illumina HISeq 1000 sequencing platform (WGS, Whole genome shotgun. MP, Mate-pair)

| Library<br>type | Av. Frg.<br>Length<br>(bp) | Total bases     | Filtered      | Filtered      |
|-----------------|----------------------------|-----------------|---------------|---------------|
|                 |                            |                 | Reads         | Bases<br>(Gb) |
| WGS             | 180                        | 27,649,198,036  | 273,754,436   | 27.375        |
| WGS             | 500                        | 25,293,107,406  | 250,426,806   | 25.043        |
| MP              | 3000                       | 40,400,605,394  | 400,005,994   | 40.000        |
| MP              | 10000                      | 27,678,782,552  | 274,047,352   | 27.404        |
| Total           |                            | 121,021,693,388 | 1,198.234,588 | 119.823       |
| *               |                            |                 |               |               |

Table S2. Comparison of genome assembly using three assembly tools

|                           | ALLPATHS-LG | SOAPdenovo2 | MaSuRCA     |
|---------------------------|-------------|-------------|-------------|
| No. of scaffolds          | 7383        | 39,625      | 14,315      |
| Min. Scaffold Length (bp) | 1000        | 1000        | 1000        |
| Max. Scaffold Length (bp) | 3,939,974   | 343,591     | 2,610,062   |
| Scaffold N50 Length (bp)  | 216,834     | 29,639      | 129,084     |
| Total span (bp)           | 416,562,993 | 448,927,573 | 420,395,857 |
| Valid bases (bp)          | 379,613,856 | 205,220,080 | 379,802,787 |

# Table S3. ALLPATH-LG assembly output

|                          | ALLPATH-LG assembly output |
|--------------------------|----------------------------|
| No. Scaffolds            | 7383                       |
| Total span               | 416,562,993                |
| Min. Scaffold length     | 1000 bp                    |
| Max. Scaffold length     | 3,939,974 bp               |
| Av. Scaffold length      | 56421.91 bp                |
| Med. Scaffold length     | 9973 bp                    |
| Scaffold N25 length      | 530302 bp                  |
| Scaffold N50 length      | 216834 bp                  |
| Scaffold N50 index       | 427                        |
| No. of contigs           | 35,261                     |
| Total contig bases       | 378,554,873 bp             |
| Max. contig length       | 309,892 bp                 |
| Contig N50 length        | 23,121 bp                  |
| Estimated genome size    | 817,640,084 bp             |
| Estimated repeat content | 63%                        |
| (at K=25 scale)          |                            |
| Coverage                 | 49X                        |

| % of WGS reads assembled | 91.2 |
|--------------------------|------|
| % of MP reads assembled  | 19.2 |

# Table S4. Anchoring of scaffolds to linkage groups

| Linkage groups | Markers mapped | No. of matched scaffolds | Assembled<br>lengths of<br>pseudomolecule |
|----------------|----------------|--------------------------|-------------------------------------------|
| Cr_LG_1        | 597            | 174                      | 42,039,305                                |
| Cr_LG_2        | 483            | 222                      | 33,561,908                                |
| Cr_LG_3        | 520            | 218                      | 39,846,785                                |
| Cr_LG_4        | 749            | 249                      | 51,733,763                                |
| Cr_LG_5        | 623            | 225                      | 43,510,909                                |
| Cr_LG_6        | 694            | 302                      | 58,232,078                                |
| Cr_LG_7        | 472            | 187                      | 36,831,687                                |
| Cr_LG_8        | 232            | 74                       | 21,322,067                                |
| Total          | 4370           | 1651                     | 327,078,502                               |

# Table S5. Statistics of C. reticulatum assembly

| No. Scaffolds        | 5723           |
|----------------------|----------------|
| Total span           | 416,658,930 bp |
| Min. Scaffold length | 1000 bp        |
| Max. Scaffold length | 58,232,078 bp  |
| Av. Scaffold length  | 72600.57 bp    |
| Med. Scaffold length | 4237 bp        |
| N25 length           | 51,733,763 bp  |
| N50 length           | 39,846,785 bp  |
| N50 index            | 5              |
| Total contig bases   | 378,424,350 bp |
| Max. Contig length   | 309,892        |
| N50 contig           | 23.12 kb       |
| %GC                  | 27.55          |
| %N                   | 8.87           |

# Table S6. Statistics of C. reticulatum reads mapped back on assembly

| Library  | Total reads  | Mapped      | % Mapped | Uniquely Mapped |
|----------|--------------|-------------|----------|-----------------|
| 180 bp   | 273,754,436  | 208,433,504 | 76.14    | 161,779,033     |
| 500 bp   | 250,426,806  | 182,806,783 | 73.00    | 133,632,360     |
| 3000 bp  | 400,005,994  | 185,146,932 | 46.29    | 132,288,117     |
| 10000 bp | 274,047,352  | 140,649,098 | 51.32    | 98,316,040      |
| Total    | 1,198,234,58 | 717,036,317 | 59.84    | 526,015,550     |

|                         | C. reticulatum on | C. reticulatum on CDC |
|-------------------------|-------------------|-----------------------|
|                         | ICC4958           | Frontier              |
| LG_1                    | 3,95,15,182       | 4,78,83,359           |
| LG_2                    | 3,28,63,583       | 3,62,43,916           |
| LG_3                    | 4,18,37,506       | 3,95,74,814           |
| LG_4                    | 5,45,07,455       | 4,87,29,341           |
| LG_5                    | 4,53,83,838       | 4,76,93,095           |
| LG_6                    | 5,43,37,838       | 5,88,90,561           |
| LG_7                    | 4,48,58,743       | 4,84,81,973           |
| LG_8                    | 1,74,87,649       | 1,63,41,866           |
| LGs                     | 330,791,794       | 343,838,925           |
| Unanchored<br>Scaffolds | 109,392,978       | 78,011,200            |
| Total                   | 440,184,772       | 421,850,125           |

Table S7. Statistics of reference-based C. reticulatum assembly

 Table S8: Polymorphic simple sequence repeats (SSR) between the wild and two domesticated chickpea draft assemblies and their flanking sequences (submitted as an excel file)

| Table S9. Statis | tics of protein-o | coding gene anno | otation in C. r | eticulatum assembly |
|------------------|-------------------|------------------|-----------------|---------------------|
|                  |                   |                  |                 | •/                  |

| Number of annotated gene            | 25,680   |
|-------------------------------------|----------|
| Total gene length (kb)              | 85,786   |
| Average gene length (bp)            | 3340.89  |
| Average coding sequence length (bp) | 1192.195 |
| Number of mRNAs                     | 26,404   |
| Average mRNA length (bp)            | 3364.35  |
| Total exon length (kb)              | 34,181   |
| Average number of exons per mRNA    | 5.31     |
| Average number of exons per gene    | 5.76     |
| Average exon length (bp)            | 240      |
| Average intron length (bp)          | 384      |

| Database                       | Number | Percentage |
|--------------------------------|--------|------------|
| NCBI ntdb   Trembl   Uniref100 | 24769  | 96.45%     |
| Swissprot                      | 17715  | 68.98%     |
| TAIR                           | 20734  | 83.74%     |
| KEGG                           | 6888   | 26.82%     |
| Total Annotated <sup>1</sup>   | 25075  | 97.64%     |

Table S10. Functional annotation of C. reticulatum protein-coding genes

Table S11. Sequence similarity of *C. reticulatum* genes to those of *C. arietinum* ICC4958 (*Desi*) and CDC Frontier (*Kabuli*)

# Query coverage=100%, Identity=100%

|         | ICC4958 | <b>CDC Frontier</b> |
|---------|---------|---------------------|
| CDS     | 4033    | 3087                |
| Protein | 6969    | 5003                |

## Query coverage=90%, Identity=95%

|         | ICC4958 | <b>CDC Frontier</b> |
|---------|---------|---------------------|
| CDS     | 20097   | 17597               |
| Protein | 18035   | 15227               |

# Query coverage=80%, Identity=95%

|         | ICC4958 | CDC Frontier |
|---------|---------|--------------|
| CDS     | 21475   | 19170        |
| Protein | 18876   | 16296        |

|           | Chromos    | some    |             |              |
|-----------|------------|---------|-------------|--------------|
|           | Physical   | Genetic | Kb/cM per   | Total No, of |
|           | Length     | Length  | chromosome  | Genes        |
| Chr1      | 42039305   | 150.98  | 278.44      | 3087         |
| Chr2      | 33561908   | 154.53  | 217.19      | 2053         |
| Chr3      | 39846785   | 91.04   | 437.68      | 2685         |
| Chr4      | 51733763   | 134.14  | 385.67      | 3518         |
| Chr5      | 43510909   | 114.46  | 380.14      | 2944         |
| Chr6      | 58232078   | 125.64  | 463.48      | 3837         |
| Chr7      | 36831687   | 179.82  | 204.83      | 2493         |
| Chr8      | 21322067   | 96.21   | 221.62      | 1875         |
| Total     | 327078502  |         |             | 22492        |
| Average   |            |         | 323.6317343 |              |
| Percentag |            |         |             |              |
| e         |            |         |             |              |
|           | Pericentre | omere   |             |              |
|           | regio      | n       |             | Γ            |
|           | Physical   | Genetic | Kb/cM per   | Total No, of |
|           | Length     | Length  | chromosome  | Genes        |
| Chr1      | 1900000    | 38.09   | 498.82      | 1066         |
| Chr2      | 24400000   | 41.2525 | 591.48      | 1338         |
| Chr3      | 18800000   | 5.084   | 3697.88     | 953          |
| Chr4      | 15500000   | 45.097  | 343.70      | 712          |
| Chr5      | 1600000    | 2.209   | 7243.10     | 738          |
| Chr6      | 24400000   | 23.885  | 1021.56     | 1290         |
| Chr7      | 14800000   | 8.95    | 1653.63     | 754          |
| Chr8      | 4400000    | 13.651  | 322.32      | 243          |
| Total     |            |         |             | 7094         |
| Average   | 1          | 1       | 1921 560902 |              |
| Therage   |            |         | 1)21.500)02 |              |
| Percentag |            |         | 1921.300902 | 31,54010315  |

Table S12. C. reticulatum statistics of euchromatic and pericentromeric region determination.

|       | Euchromati | n        |                        |        |
|-------|------------|----------|------------------------|--------|
|       | Genetic    | Physical | Kb/cM euchromatic arms | No, of |
|       | Length(cM) | Length   |                        | genes  |
| Chr1  | 112.89     | 23.04    | 204.09                 | 2021   |
| Chr2  | 113.2775   | 9.16     | 80.88                  | 715    |
| Chr3  | 85.956     | 21.05    | 244.86                 | 1732   |
| Chr4  | 89.043     | 36.23    | 406.92                 | 2806   |
| Chr5  | 112.251    | 27.51    | 245.08                 | 2206   |
| Chr6  | 101.755    | 33.83    | 332.49                 | 2547   |
| Chr7  | 170.87     | 22.03    | 128.94                 | 1739   |
| Chr8  | 82.559     | 16.92    | 204.97                 | 1632   |
| Total |            | 163.81   |                        | 15398  |

| Average    |  | 231.0279243 |             |
|------------|--|-------------|-------------|
| Percentage |  |             | 68.45989685 |

Table S13. Colinear genes (A) and blocks (B) between *C. reticulatum* and *Medicago truncatula* pseudomolecules.

A.

|     | Lines  | Unique<br>Lines | Mt1   | Mt2   | Mt3   | Mt4   | Mt5   | Mt6 | Mt7   | Mt8   |
|-----|--------|-----------------|-------|-------|-------|-------|-------|-----|-------|-------|
| Cr1 | 2,615  | 2,004           | 137   | 1445  | 346   | 346   | 85    | 0   | 161   | 95    |
| Cr2 | 1,267  | 1,058           | 12    | 35    | 72    | 121   | 612   | 277 | 82    | 56    |
| Cr3 | 1,986  | 1,527           | 280   | 18    | 68    | 41    | 28    | 43  | 1287  | 221   |
| Cr4 | 2,730  | 2,183           | 2037  | 28    | 148   | 30    | 139   | 14  | 315   | 19    |
| Cr5 | 2,283  | 1,781           | 111   | 192   | 1475  | 183   | 156   | 11  | 33    | 122   |
| Cr6 | 2,613  | 2,140           | 33    | 199   | 267   | 1190  | 134   | 90  | 62    | 638   |
| Cr7 | 1,868  | 1,506           | 6     | 97    | 61    | 698   | 224   | 0   | 52    | 730   |
| Cr8 | 1,792  | 1,358           | 198   | 137   | 40    | 434   | 643   | 172 | 0     | 168   |
|     | 17,154 | 13,557          | 2,814 | 2,151 | 2,477 | 3,043 | 2,021 | 607 | 1,992 | 2,049 |

B.

|     | Mt1 | Mt2 | Mt3 | Mt4 | Mt5 | Mt6 | Mt7 | Mt8 |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cr1 | 10  | 41  | 3   | 29  | 8   | 0   | 9   | 9   | 109 |
| Cr2 | 1   | 3   | 9   | 7   | 43  | 20  | 7   | 5   | 95  |
| Cr3 | 17  | 1   | 7   | 5   | 3   | 4   | 44  | 15  | 96  |
| Cr4 | 82  | 3   | 14  | 2   | 6   | 2   | 21  | 2   | 132 |
| Cr5 | 10  | 4   | 52  | 8   | 17  | 1   | 4   | 5   | 101 |
| Cr6 | 5   | 21  | 16  | 61  | 12  | 5   | 8   | 22  | 150 |
| Cr7 | 1   | 10  | 5   | 14  | 17  | 0   | 7   | 46  | 100 |
| Cr8 | 12  | 8   | 5   | 9   | 10  | 11  | 0   | 11  | 66  |
|     | 138 | 91  | 111 | 135 | 116 | 43  | 100 | 115 | 849 |

Table S14. List of resistance gene homologues predicted in *C. reticulatum* genome assemblies (submitted as an excel file).

Table S15. Colinear RGHs between *M. truncatula* and *C. reticulatum* genome assemblies (submitted as an excel file).

# Table S16. Sequence diversity between C. reticulatum and C. arietinum ICC4958 and CDC Frontier

|             |                  | Raw              | Raw      | HQ<br>(Q≥30) | Raw           | HQ(Q≥3<br>0)  |
|-------------|------------------|------------------|----------|--------------|---------------|---------------|
| LGs         | LG Size          | SNPs +<br>InDels | InDels   | InDels       | SNPs          | SNPs          |
| Ca_LG_<br>1 | 3,99,01,01<br>7  | 8,52,420         | 58,833   | 42,414       | 7,93,587      | 2,13,381      |
| Ca_LG_<br>2 | 3,32,33,45<br>7  | 7,57,453         | 45,903   | 31,581       | 7,11,550      | 1,70,028      |
| Ca_LG_<br>3 | 4,22,67,54       | 9,22,325         | 59,883   | 42,568       | 8,62,442      | 2,11,478      |
| Ca_LG_<br>4 | 5,49,92,81<br>5  | 11,48,304        | 80,246   | 59,509       | 10,68,05<br>8 | 2,98,242      |
| Ca_LG_<br>5 | 4,58,19,70<br>1  | 9,61,555         | 63,892   | 45,826       | 8,97,663      | 2,24,449      |
| Ca_LG_<br>6 | 5,48,41,38<br>9  | 11,44,356        | 74,406   | 54,184       | 10,69,95<br>0 | 2,64,837      |
| Ca_LG_<br>7 | 4,52,79,47<br>8  | 8,67,825         | 53,492   | 37,705       | 8,14,333      | 1,74,065      |
| Ca_LG_<br>8 | 1,76,64,08       | 3,36,952         | 24,745   | 16,068       | 3,12,207      | 78,637        |
|             | 33,39,99,4<br>88 | 69,91,190        | 4,61,400 | 3,29,855     | 65,29,79<br>0 | 16,35,11<br>7 |

A. C. reticulatum reads mapped on C. arietinum ICC4958 pseudomolecules

**B.** Number of *C*. arietinum ICC4958 genes carrying SNPs and InDels with respect to *C*. *reticulatum* 

| No. of SNPs | No. of genes | No. of InDels | No. of genes |
|-------------|--------------|---------------|--------------|
| $\geq$ 300  | 4            | $\geq$ 50     | 2            |
| $\geq$ 200  | 11           | $\geq$ 40     | 6            |
| ≥150        | 36           | $\geq$ 30     | 16           |
| $\geq 100$  | 160          | $\geq 20$     | 90           |
| $\geq$ 50   | 1142         | $\geq 10$     | 927          |
| ≥ 5         | 13179        | ≥ 5           | 4131         |
| $\geq 1$    | 18048        | $\geq 1$      | 13580        |
| 0           | 5567         | 0             | 10035        |

C. C. reticulatum reads mapped on C. arietinum CDC Frontier pseudomolecules HO(O> HOC)

|       |             | Raw              | Raw    | HQ (Q≥<br>30) | Raw      | HQ(≥<br>30) |
|-------|-------------|------------------|--------|---------------|----------|-------------|
| LGs   | LG Size     | SNPs +<br>InDels | InDels | InDels        | SNPs     | SNPs        |
| Ca_LG | 4,83,59,943 | 7,98,210         | 80,591 | 47,977        | 7,17,619 | 2,24,468    |

| 1          |                  |           |          |          |               |               |
|------------|------------------|-----------|----------|----------|---------------|---------------|
| Ca_LG<br>2 | 3,66,34,854      | 6,58,928  | 63,123   | 34,728   | 5,95,805      | 1,77,782      |
| Ca_LG<br>3 | 3,99,89,001      | 7,06,626  | 73,257   | 42,858   | 6,33,369      | 1,98,082      |
| Ca_LG<br>4 | 4,91,91,682      | 8,61,229  | 95,247   | 61,404   | 7,65,982      | 2,88,742      |
| Ca_LG<br>5 | 4,81,69,137      | 7,93,622  | 81,967   | 48,510   | 7,11,655      | 2,22,091      |
| Ca_LG<br>6 | 5,94,63,898      | 9,57,176  | 98,797   | 60,719   | 8,58,379      | 2,78,679      |
| Ca_LG<br>7 | 4,89,61,560      | 7,27,540  | 68,510   | 38,478   | 6,59,030      | 1,76,207      |
| Ca_LG<br>8 | 1,64,77,302      | 2,42,401  | 28,913   | 13,810   | 2,13,488      | 73,198        |
|            | 34,72,47,37<br>7 | 57,45,732 | 5,90,405 | 3,48,484 | 51,55,32<br>7 | 16,39,24<br>9 |

**D.** Number of *C. arietinum* CDC Frontier genes carrying SNPs and InDels with respect to *C. reticulatum* 

| No. of SNPs | No. of genes | No. of InDels | No. of genes |
|-------------|--------------|---------------|--------------|
| ≥ 300       | 8            | $\geq$ 50     | 13           |
| $\geq$ 200  | 30           | $\geq$ 40     | 26           |
| ≥150        | 63           | $\geq$ 30     | 54           |
| ≥ 100       | 176          | $\geq 20$     | 161          |
| $\geq$ 50   | 959          | $\geq 10$     | 1004         |
| $\geq 5$    | 13419        | $\geq$ 5      | 3710         |
| $\geq 1$    | 19022        | $\geq 1$      | 12610        |
| 0           | 3961         | 0             | 10373        |

Table S17. Average nucleotide diversities of the wild, and domesticated chickpeas along the linkage groups.

| Linkage Groups |       | θπ         |
|----------------|-------|------------|
|                | Wild  | Cultivated |
| Cr_LG_1        | 0.347 | 0.313      |
| Cr_LG_2        | 0.319 | 0.298      |
| Cr_LG_3        | 0.324 | 0.265      |
| Cr_LG_4        | 0.389 | 0.320      |
| Cr_LG_5        | 0.313 | 0.268      |
| Cr_LG_6        | 0.315 | 0.304      |
| Cr_LG_7        | 0.348 | 0.302      |
| Cr_LG_8        | 0.293 | 0.293      |

Table S18. Flanking sequences of identified SNPs for wild and cultivated mapped on reticulatum for generating markers for large-scale genotyping (submitted as an excel file).

Table S19. Accessions used for diversity and population genetic structure analysis (submitted as an excel file).

Draft genome sequence of *Cicer reticulatum* L., the wild progenitor of chickpea provides a resource for agronomic trait improvement

### SUPPORTING TEXT

**Text S1.** CDS and Protein sequences of 4 RGH obtained by mapping the identified RGF in the advanced draft genome of chickpea ICC4958, onto the *C. reticulatum* genome.

### $> Cr_{26581.1} | Cr_{LG_{2:2743436-2751375} | plus |$

ATGGAATACCTTTATGGATTTGCGTCTTCTATTTCAAGAGATTTGGTGTGCGGCGTGATAGGT CAGTTAAGTTATCCCTGCTGCTTCAACAATTTTGTTCAAGACCTTGCAAAAGAAGAAGAAGGTAAT TTGGCTGCAACAAGAGCTAGTGTCCAAGACCGTGTTACACGAGCCAAGAAGCAAACTAGAAA CACTGCTGAGGTTGTTGATAAGTGGTTGAAGGATGCTAACATTGTCATGGACAATGTTGATCA GTTACTACAAATGGCAAAAACAGAAAAGAACTCTTGTCTCGGGAACTGTCCAAATTGGATTT GGCGATACCGTGTAGGCAGGAAGTTAGCAAAGAAAAAAGGGACCTTACATTGTGCATTAAA GAAGGTAGACAATATACAGATTGAACACCCTGCTGCACTTTCAAGCAATTTTTCTTCTGAT AAATGTTGGGAGTTTGATAGTAGAAAAACCTGCATATGAGGAACTTATGTGTGCTTTGGAAGA AAGAAGTAGGCAAGAGAGCTGGCCATCTTTTGATCAAGTGCTTTTTGTTCCTATATCTAGTA CTGTAGAAGTGGAAAGGATCCAAGAAAAATTGCAGGCTCTCTTGAATTTGAATTCCAAGAA AAAGACGAGATGGACAGATCACAACGCTTATGCATGAGGTTATCACAAGAAGAAGGGTTCT TGTGATTCTGGATGATGTGGGCAAATGCTAGATTTTGATGCCATAGGGATTCCTTCTAGTGA GCATCATAAAGGTTGCAAAGTTCTCATTACCAGTAGATCAGAAGCAGTTTGTACTTTGATGGA TTGCCAGAAAAAAATTCACCTGTCAACATTAACCAACGATGAAACGTGGGATCTTTTCCAAA AGCAAGCACTCATATCTGAAGGCACTTGGATTACTGTAAAGAATTTGGCTAAAGAAATTTCA AATGAATGTAAAGGCTTGCCTGTCGCCATTGTAGCAGTGGCTAGCAGCTTAAAAGGCAAGGC GGAGGTAGAATGGAAGGTTGCATTGGATAGATTGAGAAGTTCGAAACCTGTTAATATTGAAA AAGGTTTGCAAAACCCGTACAAGTGCTTGCAGTTAAGCTATGATAATTTGGACACCGAAGAG GCCAAGTCACTTTTCTTGTTGTGTGTCTGTGTTTCCTGAAGATTGTGAAATTCCTGTTGAGCTTT TAACTAGGTCTGCAATAGGGCTAGGCATTGTTGGAGAAGTTCGCTCATATGAAGGGGCAAGG GATGAAGTGAGTGCGGCTAAAAATAAGCTCATAAGTTCTTGTTGCTGGATGTTGATGAA **GGAAAATGTGTCAAAATGCATGACTTAGTTCGCAATGTAGCCCATTGGATTGCGGAGAAGGC** GATTAAGTGTACCTCAGAAAAGGATATGACTTTGGAACATACTTCATTAAGATATCTATGGTG TGAGAAATTTCCAAATAGTTTGGATTGTTCCAATCTTGACTTTCTACACATTCACACATATACA CAAGTATCAGATGAAATTTTCAAAGGAATGAGAATGCTCAGAGTTTTGTTTCTTTACAACAAG GGTCGGGAGAGAGGCCATTGTTGATTACATCATTAAAATTATTGATGAATCTTCGTTGCATA GTCCTGAGTAAATGGGATTTAGTTGACATCTTATTTGTGGGAGACATGAAGAAACTTGAAAGT CTTACATTGTGTGATTGTTCATTCCTTGAATTACCTGATGTGATTACACAACTGACAAACTTGA GATTGTTGGATTTGTCAGAATGTGACATGAAAATGAATCCGTTTGAAGTAATTGGGAAACAC ACACAGCTAGAAGAACTGTACTTTGCTGATCGTAGATCGAAATGGGAACTTGAATTCTTAAA AAAGTTTAGTGTCCCACAAGTGTTACAGAGGTATCAAATACAGTTAGGAAGTATGTTTGCCG GTTTCCAACAAGAGTTTCTCAATCATCGCAGAACTTTGTTTCTCAGTTATTTGGATACATCTAA

GTGCTAAAAATATTATCCCTGACATATTTCAAATAGAAGGAGGAAGTATGAATCATTTAACTG AGCTTTTGATACGCGATTCTAAGGGGGATAGAGTGTTTGGTTGACACTTGTCTGATAAACGTAG GAACTCTCTTCTGCAAGTTGCATTGGCTAAGAATTGAGCACATGGAGCGTTTGGGAGCTTTAT ATTGTCCAAAGCTAACATGTCTCTTCACACTTGCAGTTGCTCAAAATCTGGCACAATTGGAGA NNNNNNNGGAGATAAGTGCATATGATCACAGACTTCTGTTTCCAAAATTAAAAAAGCTTCA TGTTAGAGAGTGTGGTATGCTGGAATACATAATCCCAATCACTTTAGCTCAAGGCCTTGTACA ATTGGAGAGTATAGAAATCGTATGTAATCATAAGTTGAACTACATATTTGGCCAAAGTACAC ACAAAGATGGTCAGAATCAAAATGAACTCAAGATCGAGCTTTTGGCCCTGCAAGAGCTTACT CTTGTTCTCTTGCCAAATATCAATAGCATTTGTCTAGAAGATTGTTATCTAATGTGGCCATCCT TGTGTCAATTCAATTTGCAAAATTGTGGAGAGTTTTTCATGGTGTCTATCAATACTTGCATGGC TTTACACAACAATCAGATAATCAACGAAGCTTCACGTCAAATTGTGCAAAATATAAAAGAAG TTCGAGTCAATAACTGTGAGTTAGAAGGCATCTTTCAGCTAGCAGGACTATCCATTGATGGAG AAAAAAATCCACTGACATCATGTTTGGAAAATGTTGTATTTGGAGAATCTACCTCAGCTCAGAA GGTTAAAATTTATCTTCTCATCCTGTATGGCAGGAGGGTTACCTCAGTTGAAAGCGCTAAAGA TAGAAAAGTGCAATCAGCTAGATCAAATCGTTGAGGATATTGGCACTGAAATTCCCTTAGGA TCATTTGGTTTTCCCAGCCTTATAAGGTTAACACTAATATCATGTCCGATGCTGGGTTCATTGT TTACAGCATCTACTGCTAAAACCTTGACTTCACTGGAAGAATTGACAATACATGATTGCCATG GTTTAAAGCAATTACTGACTTATGGAAGAGCTCAGAAAAATACAAGGGGAGAAATAGATCAG GATGATCAGGACTTTCAGAGTTGTACGACAATGTTCCAAAGTTTGAAAAAGATTAGTATTTTG AGATGTCATTTGCTGAAGTATATATTACCCGTTTCATTTGCGAGAGGACTGGTGAAATTGGAA GCTATAGAAATCACAGAGACTCCCGAGCTGAGATATGTATTTGGTCAAAACAGTCATGCTTCC CATCAATATCTAAACAAGTTCCAAATTGAGCTTCCTGTTTTGGAAAAAGTTGCACTCTATGAT ATACCAAATATGATTGCCATTTATCCAGAAAACTATCATGCAACATGCTCATCTTGGCAACTT CTTGTCATGAACGATGTTGGTCTATCAATGAATAATTTGATGGTTGATTTTGGAGCCACAGAC TCAGATCTTAGTTCTAAAACAGATGAATGGGAAACAAGTATGAGTATTGAGAAGAAGTAGT CAATGGACAACAAGTGGTGTCCTGGTTAGAAGACCTTAAATTGGTCAATTTGGCAGAGCTAA TGTACATATGGATGGGTGCTAAACATTTTGCAAGCCTTCAGCATCTTCAGAAAATACACATCT GCAATTGTCCAAAACTGAAGTCTATCTTCTCCATCTCTGTCTTGAGAGTCCTACCCCTGTTGAA GATTCTTGTGGTAGAACAGTGTGAGGAATTAGAGCAAATCATTGAAGATGATGAAGAAAATG AAAATGTCCCGAATTCTAAAGTGTGCTTCTCACAGCTAAAGTTTCTTCTTGTCACACACTGCA ACAAATTGAAGCATTTGTTTTATATCCCCACATCCCATGAGTTTCCAGAACTGGAGTATCTGT CTCTCAATCAAAATTCTAGTCTAGTTCAAGTGTTTAAAGTTGGTCCTGGTGTGAGAGAAGGTA GAATGGAAGCTTTGCTTCCAAAACTCAAACATATAATGCTAATGCAACTGCCAAACCTCAAT AATATGTGTCAAGGGGTTGAGTTTCACACTCTGACCAATCTTTTGGTGCACAATTGCCCAAAA

ATCTCACTAACTTCAGCGACTACTGTTGAGGACATGCTAAAAATCTATCATCATGACAAGGAA TTTGGTTTCTATCTCTGTCCACACATTACACGACATAAGTTGTACAACAACAAATGGCCAAGAG TTCATTACATCAAAGAACAAAAAAAAAAGGGATACAAGATTTACAATCACAGGAGCAGAAACT GTCATCCATTCCTTTACCAAACTTGACAGAGAACTGGTTGAAATGCCATTTCCTAGTCATTTTG CCACAAGGAAGTTGTGGAGGAGTTGGTTAAAGGACAATCCACGGATGAACCATGTTTGAT GAGCCAACAAAATCCACTTGAAGAATCTAGAGTTACGATGATTACTGAAGAGGGAACTTCAT CAAAGAATGTGGAGATGGTAGCTTCGCCAATTCATTCCGATTCTGATAGCTCAAAGTCAGACC CATTAGTTACATCTCAACGTAGACCACATCCACATTGTGAAATAAGCTTCAGCCAAACTGAGA CTTACACTAATGAAGAAAAAAAAAAAAAAACAAAGACCATCCTATAAATACAGTAGACTTGGGGGGCCAGTGAT CTCATCAGTTTATTTCAACCCGTCGAAGAAGATGATGAAGGCCAAATAACCACACCTTGTGTT TCTGAAGTGACTGAACAACATCATTCAACCAAAGATAACTTAGTTGCGAAGGCACTTTCTGAC CCTTCTAACAGCTCTTAACTTCTTGTCCCACCTTTCTTTAAAAGATGCAGCTGTATCAGATGGA CTCCAAGCTATAATAGACACTATGCACAGAGAATTCCCAAGCATCCTATGCTCCTTCAAACAA GGATTTACCCTAGACAAATTTGTTGTGATGAAGCTCATCATGATGAGGCAGCCATTACTCTT GCTTCCAAAATTTCCAAAGCAGATAGTTTTTTGGATGAAGCTCAACAGAGGGAAGCAACTTT GAAGGAACATATCATTCAATTGAAGAAAGAAATAAAAAATCTTGAGGCTGAACTATCTTATC TTGATGAGAAAAAGGACAAATGCATTCAAGAAACTATAGGGTACAGAATGGAGTTGGAGAA TGTGAGGAAAGACAAGTATCAAATTGTGGAAGATCAGATGAAAGCTCGGCAAGAAATATTTG AAGTCGATTATAAATGGTCTGCTTTAAGTAGTCAGTTTCGGTACAACTACATTGTTGAAAGAA ATCCTTCTTGA

## ${>}Cr_25681.1|Cr_LG_2:2743436\text{-}2751375|plus|$

MEYLYGFASSISRDLVCGVIGQLSYPCCFNNFVQDLAKEEGNLAATRASVQDRVTRAKKQTRNT AEVVDKWLKDANIVMDNVDQLLQMAKTEKNSCLGNCPNWIWRYRVGRKLAKKKRDLTLCIKE GRQYIQIEHPAALSSNFSSDKCWEFDSRKPAYEELMCALEDDEVIMIGLYGMGGCGKTMLAKEV GKRAGHLFDQVLFVPISSTVEVERIQEKIAGSLEFEFQEKDEMDRSQRLCMRLSQEERVLVILDDV WQMLDFDAIGIPSSEHHKGCKVLITSRSEAVCTLMDCQKKIHLSTLTNDETWDLFQKQALISEGT WITVKNLAKEISNECKGLPVAIVAVASSLKGKAEVEWKVALDRLRSSKPVNIEKGLQNPYKCLQL SYDNLDTEEAKSLFLLCSVFPEDCEIPVELLTRSAIGLGIVGEVRSYEGARDEVSAAKNKLISSCLLL DVDEGKCVKMHDLVRNVAHWIAEKAIKCTSEKDMTLEHTSLRYLWCEKFPNSLDCSNLDFLHIH TYTQVSDEIFKGMRMLRVLFLYNKGRERRPLLITSLKLLMNLRCIVLSKWDLVDILFVGDMKKLE SLTLCDCSFLELPDVITQLTNLRLLDLSECDMKMNPFEVIGKHTQLEELYFADRRSKWELEFLKKF SVPQVLQRYQIQLGSMFAGFQQEFLNHRRTLFLSYLDTSNAAIKDLAKKADVLCVACIEGGAKNII PDIFQIEGGSMNHLTELLIRDSKGIECLVDTCLINVGTLFCKLHWLRIEHMERLGALYNGRRMPLG GHFENLEDLYISNCPKLTCLFTLAVAQNLAQLEKLEVLSCPALKHILXXXXXXXXXXEISAYDHR LLFPKLKKLHVRECGMLEYIIPITLAQGLVQLESIEIVCNHKLNYIFGQSTHKDGQNQNELKIELLA LQELTLVLLPNINSICLEDCYLMWPSLCQFNLQNCGEFFMVSINTCMALHNNQIINEASRQIVQNIK EVRVNNCELEGIFQLAGLSIDGEKNPLTSCLEMLYLENLPQLRRLKFIFSSCMAGGLPQLKALKIEK CNQLDQIVEDIGTEIPLGSFGFPSLIRLTLISCPMLGSLFTASTAKTLTSLEELTIHDCHGLKQLLTYG RAQKNTRGEIDQDDQDFQSCTTMFQSLKKISILRCHLLKYILPVSFARGLVKLEAIEITETPELRYVF GQNSHASHQYLNKFQIELPVLEKVALYDIPNMIAIYPENYHATCSSWQLLVMNDVGLSMNNLMV DFGATDSDLSSKTDEWETSMSIEKKLVSVIIENGSKIEGVFQMNGFPINGQQVVSWLEDLKLVNLA ELMYIWMGAKHFASLQHLQKIHICNCPKLKSIFSISVLRVLPLLKILVVEQCEELEQIIEDDEENENV PNSKVCFSQLKFLLVTHCNKLKHLFYIPTSHEFPELEYLSLNQNSSLVQVFKVGPGVREGRMEALL PKLKHIMLMQLPNLNNMCQGVEFHTLTNLLVHNCPKISLTSATTVEDMLKIYHHDKEFGFYLCPH LHDISCTTTNGQEFITSKNKNKGIQDLQSQEQKLSSIPLPNLTENWLKCHFLVILPHKEVVEELVKG QSTDEPCLMSQQNPLEESRVTMITEEGTSSKNVEMVASPIHSDSDSSKSDPLVTSQRRPHPHCEISF SQTETYTNEENKDHPINTVDLGASDLISLFQPVEEDDEGQITTPCVSEVTEQHHSTKDNLVAKALS DLEECLKMPLKDIASSEANSLRLLTALNFLSHLSLKDAAVSDGLQAIIDTMHREFPSILCSFKQGFT LDKFVVIEAHHDEAAITLASKISKADSFLDEAQQREATLKEHIIQLKKEIKNLEAELSYLDEKKDKC IQETIGYRMELENVRKDKYQIVEDQMKARQEIFEVDYKWSALSSQFRYNYIVERNPS

### $> Cr_{25682.1} | Cr_{LG_{7}:17612745-17618450} | minus |$

ATGAGTGTGCAATCTAGCTTCACCTACGATGTGTGTATCTGAGCTTCAGAGGTGAAGATACACGA TTCGGTTTTACTTCAAATCTCTTCGCTGCTCTTAAACAAAGAAGTATCCATACATTTACTGACG ATGCGCTGCTTCTTAAAGAAGAGAATATATCTCAATCACTTTTTAGGGCAATCGAAGAGTCTA GGATCTTCATCATTATATTCTCCCCCCAACTATGCCTCTTCTAAGTGGTGTTTGGAAGAACTAAC CACGATCCTAGAGTACTATGAAGAGGGGAAGAAGAAAAATTGGGGGAAAAGTTTTACCAATTT TCTATGACGTTGATCCTTCTGATGTGCGAAACGGGAGAGGAAGTTATGGAGAAGCACTGGAT AAACATGAAGAGATGTTCAAGGATGACCTTGAGAAGGTCGACAAATGGAGGAGGAGGAGAGATG GAAACGAATATAAATTTATCGAGAGTATTGTAAAGGAAGTCTTTCGCATGATTTCTCGCGTTT CTTCTTTACATGTTGCTGGTTACCCTGTTGGATTGGAGTCTCGAGTGGATAAAGTAAACTCAC TTCTGAATCTTGGGTCTGATGATTTAGTTCAAATGGTAGGGATATGGGGGAATTGGTGGAATAG GGAAGACCACAATTGCTCGAGCCGTATGTAATTCAATCAGTCACTTGTTTGAAGGTTTATGTT TTCTCAATGATGTGAGACAGAATTCAATGAAGTATGGCTTGGTACATCTCCAAGAGACTGTTC TTTCTGAGATATGTGGAGATGTAAATAAAATAAAGAGTGTCAACCAAGGAATTCCAATAATA AAGCAGAAAACTCCACCGGAAAAAGGTTCTTTTAGTTCTTGACGACGTTGACAATTTGAAGCA ACTCCAGGTTATTGCAGGAGCATCTGATTGGTTTGGTCCTGGAAGCAGAATCATCGTTACAAC TCGGGACAAGCATTTTCTAGTAAGTCATGCGATTGAAAGAATATATGAAGCAGACGCATTAA GTGAAAAAGAATCTCTTGATTTGCTTAGTTGGAATGCTTTTAAAACCGACAAAGTTGATCCAT GTTTTGTAGACATTTTAAAACGTGCATTGACTTTTGCTTCTGGGCTTCCATTGGCTTTGCAAGT

AGTAGGCTCCTACTTGTTTGGCAGAAGTATAAATCAGTGGATAAGTGCATTGGATCATTATGA AAGAGTTCCCGATAAACATATCCAAACAGTACTCAAGATAAGCTACGATTCCTTAGAGGAAG AAGAGAAGAGTGTTTTTCTTGATATTGCTTGTTTCTTCAATGGACATAAGTTAGAAGACGTCA AATCTCTCATAAAGATCGATGATGGTCTTGTGACATTACATAACTTGATTCAAGACATGGGTA GAGAAATTGTCCGACAGGAATCACCATATGAGCCTGGCAAACGCAGTAGGTTATGGCTTCCT AAAGATGTAGTTTGCGTTTTAGAAAAAAACTCGGGTTCTAGTACAATTGAAAGCTTATTTTTG GATTTCCCCAAAGATGAAGTGAATTCACATGGACCCAAAGGCCCCACACATCTTCCCAATAG TTTAAAAGTGTTGAAATGGCGAGGGTATCCTTCAGCGTCATTACCAAATGATTTTCATCCGAA GAAGCTTGCCATACTCGAGTTACCTGCAAGTTGCGTAGTGACGTTTAGAAGCCTGAAATATAT GAATTTAAACTACTGTGAACTGATAACTCATATACCTGATGTATCTGGCCTCCCAAATTTAGA AACATTGTCATTTAGAGATTGTGTGTGAAATTTATCTGAAATTCATGTGTCAGTTGGATTTCTGGAT AAACTTAAAATCTTGGATGCTGGTCATTGCAAGAAACTTATGGCTTTTCCACCCATCAGATTG ATCTCTCTTGAACAATTCTATATTTCACATTGCTCAACTCTAGAAAGTTTCCCAGAAATATTGG GGAAGATGGAAAATTTAACAGAGCTTCGAATCATCGGAAGTCCTATACAAGAATTGCCATTT TCAATTCAAAACCTAAATCGGCTTCGAAAATTAGAACTACAAATCTGTGGAACGGTTCAGTTG CCAAGTAGCATTGCCATGTTTTCACAACTTGGTTTGATGTGTGTTTCGAGATGCGAAGGGTTA TGGTTAACAAAACAGGACATAGGTGAAGAATGGGATACCAAGTCTTCAAAGACAGAACGTCT GTAAAGGATTTGGACCTGTCGGGGGAATCATTTCACTATTCTTCACGCGTGCATTAAGGAATGT CACTTTCTGAGGAACCTTAAGCTGAATGATTGCGTGCTTATACGAGAAATTACAGTGATGCCA TGTAAATTAGAAACACTTTCTGCAAAACGATGCAAATCCTTGAAATACATGGATCTTACAGG AGAATGTCACTCTTTGAGAGAACTTACTCTGGATGATTGTATTTATCTTCGAGAAATTAAAGG **GGTTCTGTCAAACTTGGATCATTTCTCTGCAAAAAACTGCACATTATTGACTTCCCAATGTGC** AAGCATGTTAGTGAATCAGGAAATGATCGAAGCTGGAAACAAGATGTTTTCTTTGCCAGGAT CAAATATTCCGGATTGGTTTGCGCACCGTACAAGTGGAGAGTCAATATCTTTCTGGTTTCGTA ACAAATTCCCTGCAATTTCTCTGTGTCTTGTTATTGGACAGGAAGATGAGCTACCTATCTCAG TCAAGTTTAGTCCAAAAGTGCTCATCAATGGCAATGAACTGTCCGGTGGCAATCAGAAAGTC GATAATGGAGATACAGAATTGTCAGACTATGAGTGGAACCATGTGGTGGTTTCATATGAGGA TCTTATTACTGACAACGGGGTTCCAATCAGAGTGGTTGCCAAATATAGCGGAATCCATGTATT TAAACAAACGAGTGGACTGGAGGATATCCAATTCACCAATCCCCGGAAAACATTTATAAATG CGAATTTGGGTCCCAATTCAATGGCAGAGCCACCTCAAAGAGAAACTTCAGAGAGTCTTTCA AATAATGAAGTTTATGCTACTTTAAAAGAAAATGACCCTCCTGTCATTCACGGATGTAGTGTC GACGAGGATGCCGATCTGGATGCAGTATCCTGTGAGGAAGAGTCTTCTTCCAACACTGAAGG TTCTGATTCAGATGATCCCTTCGACTTGATTAATAGAAAACTCTGTGTTAGTTGGAAGAAAAT CATATCCTCAGGATCAAGTTCTGGAGATGCAAATCTAAGATCCATTAGCGAGGCTATTAATGC CTTGGAGTTGTTAATGGTGAAGGACTTATCAGAAGTCTCTTCTGATCCCGCAGCGCATTCCAA

ACTTCATCAGCTCTTGGATCTATTGGGTGCAAGTAGCCACCCCAAGGTGACTGTAGAGATGAA GGAGGCTATTGTGGAGTTCAAGAGAAAGGCCTTTTTATTATTCCAACAATTCCAATCCACTGT TGAGTCTGTCAAAACACTGAAGGATTTTGAGAAGCATCTGACCAGAATTAAGCAAGAGACTG TGGAAGGCAAGAGTCGAAGAAAGGACCTAAAAAACTCAATAAAAAGGGTTTCTTTGGGCATC AAAGCCGAAAATAGTAGTAAAAAGGAGCTAGAGTCAGAAATTGCAGTTTTAAGAAAACAAC TAGCTACCAAAGAAAGGGACCTTGAACAATTTGTGGTGAATCTCAAGAATCAGGAGGAAACA CTCTCGACCTATTCAACAAGTTATGCTTCTCTCAACGAGCAAGCTCAATCACTATTAAAAACAA GCTGATGATCTACTTGCTGTAAGCAGTGGGATAAAGGATGAGGGTGAAGCAGCTGAAGTAGA GCCAGAGTAGGCTCAGGTGGACTTGGTCTATTGATCTTACTGGCCAGCTTAATCAGATGAAAA AAAACATTCTTGGCTTCTAA

### >Cr\_25682.1|Cr\_LG\_7:17612745-17618450|minus|

MSVQSSFTYDVYLSFRGEDTRFGFTSNLFAALKQRSIHTFTDDALLLKEENISQSLFRAIEESRIFIIIF SPNYASSKWCLEELTTILEYYEEGKKKNWGKVLPIFYDVDPSDVRNGRGSYGEALDKHEEMFKD DLEKVDKWRRRDGNEYKFIESIVKEVFRMISRVSSLHVAGYPVGLESRVDKVNSLLNLGSDDLVO MVGIWGIGGIGKTTIARAVCNSISHLFEGLCFLNDVRQNSMKYGLVHLQETVLSEICGDVNKIKSV NQGIPIIKQKLHRKKVLLVLDDVDNLKQLQVIAGASDWFGPGSRIIVTTRDKHFLVSHAIERIYEAD ALSEKESLDLLSWNAFKTDKVDPCFVDILKRALTFASGLPLALQVVGSYLFGRSINQWISALDHYE RVPDKHIQTVLKISYDSLEEEEKSVFLDIACFFNGHKLEDVKDILLARYGVSAKYSIEELIEKSLIKI DDGLVTLHNLIQDMGREIVRQESPYEPGKRSRLWLPKDVVCVLEKNSGSSTIESLFLDFPKDEVNS HGPKGPTHLPNSLKVLKWRGYPSASLPNDFHPKKLAILELPASCVVTFRSLKYMNLNYCELITHIP DVSGLPNLETLSFRDCVNLSEIHVSVGFLDKLKILDAGHCKKLMAFPPIRLISLEOFYISHCSTLESF PEILGKMENLTELRIIGSPIQELPFSIQNLNRLRKLELQICGTVQLPSSIAMFSQLGLMCVSRCEGLW LTKQDIGEEWDTKSSKTERLILSYCNISDDFLPIGLTLFANVKDLDLSGNHFTILHACIKECHFLRNL KLNDCVLIREITVMPCKLETLSAKRCKSLKYMDLTGECHSLRELTLDDCIYLREIKGVLSNLDHFS AKNCTLLTSQCASMLVNQEMIEAGNKMFSLPGSNIPDWFAHRTSGESISFWFRNKFPAISLCLVIGQEDELPISVKFSPKVLINGNELSGGNQKVYKFRIATDHILLFDARMLSFEDNGDTELSDYEWNHVV VSYEDLITDNGVPIRVVAKYSGIHVFKQTSGLEDIQFTNPRKTFINANLGPNSMAEPPQRETSESLS NNEVYATLKENDPPVIHGCSVDEDADLDAVSCEEESSSNTEGSDSDDPFDLINRKLCVSWKKIISS GSSSGDANLRSISEAINALELLMVKDLSEVSSDPAAHSKLHQLLDLLGASSHPKVTVEMKEAIVEF KRKAFLLFQQFQSTVESVKTLKDFEKHLTRIKQETVEGKSRRKDLKNSIKRVSLGIKAENSSKKEL ESEIAVLRKQLATKERDLEQFVVNLKNQEETLSTYSTSYASLNEQAQSLLKQADDLLAVSSGIKDE GEAAEVEQSRLRWTWSIDLTGQLNQMKKNILGF

ATGGATCTATTGAGTGGAGGTGCTGTTGGAGGCTGTGATGGGAGAGATTGTAAAACATGATAT TCAAACAATCAAAAAGGGTCGAGACTTTGGTCCAACACTTGAAATGAACATAGAAACTTTGA ACACTTTAGCACCTTTAGTAGAAGAAATGAAAAGGTACAGTGATTTATTGGATCGACCCAGA GATGAAATAGAGAGGTTAGAGAAAACACATAAGAGAGGGTCAAGAGCTTGTAACAAAAAGCA AGAAACTTAATCGATGGAAGTTTCCTTCTTTCCCACGTTACCAATCAAAGCTTCAGAAGAAAG ATGAGGCTCTTCAGAGACATTTGTCTGTTAATGTTCAAGGTTTGATTGGTGCTCCTGAAGAGC TTGAATGTTTGGGAATGGTTGAGCCGTTAAATAAGTTGAAGATTGAATTGCTTAAGGATGGTG TTTCTGTACTTGTTTTGACTAGTTTGGGTGGTTCAGGTAAAAGCACACTTGCTAAGAAGATTT GTTGGGATCCACAAATCAAAGGAAAGTTTGATGGAAACATCTTCTATGTTACCGTCTCAAAA ACTCCCAATTTGAACAACATTGTAAAAACACTATTTGAACACTGTGGAAGTCAGGTGCCTGA AAGGGAAAAAATTTGTTGAGGAAGAATCTCAGTCTGAAGAAGATGAACACCTTTGTGAAATT GACGAGGAGGAAGATCGCAATCAAGTTTGGCCTGAGAAAGATGGGAATCATGGTAAAGTTC GGCTACATGAAGATGAACTGCTAGCTAAATTTCAGCAGGATGAAAATCAACGTCGTGCGAAA GATCAACTTGAGGAAGATGAGCAACTTGCAAGGACAATTCAAGAAAGTTTGAACATTGGTTC TCCTCCTCGACATGGCAATGATTCTTTATTTAAACCTTCTCCCATCAGCTTTCCACTTGGATTC AGTATATGTGCAGGATGTAATGCTGAGATTGGCCATGGAAGATTTTTAAGCTGCATGGGAGG TTTATGGCATCCACAATGCTTCTGCTGCCATGCTGATGATTGCCATCTGCCAATCACTGATTAT GAGTTTTCCATGTCTAGCAACGGTCCTTACCATAAAGCTTGCTACAGGGAGAAGCATCACCCA AAATGTGGTGTTTGCAAGAATTTTATCCCTGCCAATTCAGCTGGCCTCATTGAGTATAGAGTT CATCCTTTCTGGCTACAAAAATACTGCCCGACACATGAGCTCGATGGCACTCCTCGTTGTTAC AGCTGCAGAAGAATGGAGCCAAAGGATTCAAAATATATTTTGCTTGATGATGGTCGAAAGCT TTGTCTCGATTGTCTAGACTCCGCAATTATGGATAGTCATGAATGCCAACCTCTTTACCTTGAA ATACTAAAATTTTATGAAGGTTTAAATATGAAAATGGAGCAGCAAGTATCTATGCTTTTGGTC GAGAGACAAGCACTTAATAAGGCCATGGAAGGAGAAAAGAATGGTCATCACCATTTACCTGA AAGTAGAGGACTCTGCTTGTCTGAAAAGCAAACTGTCACCACAATTTTAAGAAGACCGTGGA TTGGGGCAGAAAGACGAGCCACAGACATGATAACCGAGCCTTATAGATTGACTCGTCGTTGT GAAGTGACAGCCATTCTTGTTTGTATGGCCTTCCTAGGTTGTTGACAGGATCAATCCTAGCT CATGAGATAATGCATGCATGGTTAAGGCTTAAAGGTTATCCCAACCTGAGTCCAGAAGTTGA AGAAGGAATCTGCCAAGTCTTGGCTCATCTGTGGTTAGAATCAGAAATCTTTTCTGGTTCTGC CAATAATATTGATGCACCATCTTCTTCTTCATCGAAGAAGGGTAAACGGTCTGATTTTGAGAT GAAACTCGGTGATTTTTTCAAACACCAAATTGAGACAGATACCTCATCAGCCTATGGAGATG GATTCAGATTAGGCAATCAGGAAGTACTTAAGTATGGACTTAAAAGTACCCTTGATCATATCC TTTGA

MDLLSGGAVGAVMGEIVKHDIQTIKKGRDFGPTLEMNIETLNTLAPLVEEMKRYSDLLDRPRDEI ERLEKHIREGQELVTKSKKLNRWKFPSFPRYQSKLQKKDEALQRHLSVNVQGLIGAPEELECLGM VEPLNKLKIELLKDGVSVLVLTSLGGSGKSTLAKKICWDPQIKGKFDGNIFYVTVSKTPNLNNIVK TLFEHCGSQVPEFQSDEDAIKQLRHLLRKEDLKGKKFVEEESQSEEDEHLCEIDEEEDRNQVWPEK DGNHGKVRLHEDELLAKFQQDENQRRAKDQLEEDEQLARTIQESLNIGSPPRHGNDSLFKPSPISF PLGFSICAGCNAEIGHGRFLSCMGGLWHPQCFCCHADDCHLPITDYEFSMSSNGPYHKACYREKH HPKCGVCKNFIPANSAGLIEYRVHPFWLQKYCPTHELDGTPRCYSCRRMEPKDSKYILLDDGRKL CLDCLDSAIMDSHECQPLYLEILKFYEGLNMKMEQQVSMLLVERQALNKAMEGEKNGHHHLPES RGLCLSEKQTVTTILRRPWIGAERRATDMITEPYRLTRRCEVTAILVLYGLPRLLTGSILAHEIMHA WLRLKGYPNLSPEVEEGICQVLAHLWLESEIFSGSANNIDAPSSSSSKKGKRSDFEMKLGDFFKHQ IETDTSSAYGDGFRLGNQEVLKYGLKSTLDHIL

>Cr\_25684.1|scaffold1496:50823-53723|plus|

ATGGGGAAAGAAATTGTCAGACAAGAATCACCAGAAGAGCCTGGAAATCGCAGTCGGTTAT GGCTCCCTAAAGATATAGTTCAAGTTCTAGAAGAAAATACGGGAACAAGTAAAATTGAAATC ATATGTTCAAACTCCCGGATTAAAGTAGAATGGGATGGAGAGGGCTTTCAAGAAGATGAGAAA GCTTAGAACACTAATTATGAGTGGCAGATGCAGTGAAAGTCCCAAACATCTTCCGAATAGCC TAAGAATACTTCAAATTGAAAATTGGATATGTTCTTCATGGGGTTTACCGTCTGAGTTTTATCC AAAGGAACTTACCACATGCAATTTTCCCTCTTACTTATCATCATCGAGTTCAAAGACTTTTTC AAGAAGGCAAAAGTCGATGACTCTGTTGGGTTGTTGGGTAAACTTAAAACCTTAAATGCTTAT GGTTGCCTCAGGCTCAGGAAATTACCACCTCTCAAGTTGGTTTCCCTAGAAGAACTCAATCTT TCAGAGTGTTATCGTCTTGAGAGTTTTCCACCTGTGATAGATGAGTCGTTTGATAAACTTAAA ACCTTGAGTGTTAGATGTTGCTTCAAGATAAAGAGTATTCCACCTCTTAAGTTGACTTCGCTA CAAATACTCGATCTTTCACATTGTGATAGTCTCGAGAGTTTTCCAGTTGTGGCGAATGGCTTTC TTGGAAATCTTAAAACCCTGTTTGTTAAAGGTTGTCGCAATCTCAAGATTATTCCACCTCTCA AGTTGGATTCCTTAGAAGAACTTGACCTTTCAGGTTGTGTGTTAGTCTCAATAGTTTTCCATGTGT GGTGGATGGCTTGTTGGATAAACTTAAAATCTTGAGTATTAAACATTGCATCAAACTTACAAG TATTCCACCACTCAAGTTGACTTCGTTGAAACAGTTTGATCTTTCATATTGTCCAAGTCTAGAG AGTTTTCCAGAAATATTAGGAGAGAGAGAGAAACATACCACAAATTAACTTGTTTAACACTCCC ATAAAAGAATTGCCGTTTCGATTTCAAAATCTTACTCCGAGTCAAACATTAGATTCCTGTAAT TGTGGATTTGTTCACTTACCACTTAGTGTTGCTCATGAGATGGTAAAACTGGTTGAACTTACC ATCCATAGTGAAGAAAAAGTGAGTCCAATGAAATGTTCACTTGTAAAATATCTTTGTCTCAGG AACATGAAACTTTCAGATGAATCTTTGTCCATATGTCTCATACTGTTTGCTAATGTGAAAGAA TTACACTTAAATGAAAATCAATTCACAGTTCTTCCTAAATGTATCGAAAAATGCAAATTTTTA TGGAGGCTTGTCTTGGATAATTGTGAGGAACTTCAAGAGATCAAAGGTATTCCGCCAAGCTTA

 $>\!\!Cr_{25684.1}|scaffold1496:50823-53723|plus|$ 

MGKEIVRQESPEEPGNRSRLWLPKDIVQVLEENTGTSKIEIICSNSRIKVEWDGEAFKKMRKLRTLI MSGRCSESPKHLPNSLRILQIENWICSSWGLPSEFYPKELTTCNFPSYLSSFEFKDFFKKAKVDDSV GLLGKLKTLNAYGCLRLRKLPPLKLVSLEELNLSECYRLESFPPVIDESFDKLKTLSVRCCFKIKSIP PLKLTSLQILDLSHCDSLESFPVVANGFLGNLKTLFVKGCRNLKIIPPLKLDSLEELDLSGCVSLNSF PCVVDGLLDKLKILSIKHCIKLTSIPPLKLTSLKQFDLSYCPSLESFPEILGEMRNIPQINLFNTPIKEL PFRFQNLTPSQTLDSCNCGFVHLPLSVAHEMVKLVELTIHSEEKVSPMKCSLVKYLCLRNMKLSD ESLSICLILFANVKELHLNENQFTVLPKCIEKCKFLWRLVLDNCEELQEIKGIPPSLKTLSALNCKSL TSSSKSKLLNQELHEAGNTWFRLPRAKIPDWFDHQCLAGLSISFWFRNKFPAIALCVVSPLTWYD HRPPIKVIINGNTFFYKHGNMDKALLENKWNHAEVDFGFPFHYSGIHVLKEKSEMEVIRFTNPEND DNIELTL **Text S2.** Sequence alignment of Rgene orthologues in cultivated and wild chickpea. Pepetide and CDS sequences were aligned using ClustalW. Functional annotations are mentioned at the top of the box. Cr represents *C. reticulatum*, Ca represents C. arietinum ICC4958 (*desi*). GenBank accession numbers (XM) are used to denote genes of chickpea CDC Frontier (*kabuli*).

## Cr\_03218

| Cr_03218.1<br>XM_004490520.2<br>Ca_03824.1 | GAGATCCTTGCCGGAAGGTATCC<br>GAGATCCTTGCCGGAAGGTATCCGACACCTCACTTCACT |
|--------------------------------------------|--------------------------------------------------------------------|
| Cr_03218.1                                 | -GACACCTCACTTCACCTTCAGGTTTT                                        |
| XM_004490520.2                             | ATGTGAAGGATTGAGATCCTTGCCGGAAGGTATCCGACACCTCACTTCACTTGAGGTTTT       |
| Ca_03824.1                                 | ATGTGAAGGATTGAGATCCTTGCCGGAAGGTATCCGACACCTCACTTCACTTGAGGTTTT       |
| CrTC11513                                  | GAGATCCTTGCCGGAAGGTATCC                                            |
| Ca(ICCV2)TC15631                           | GAGATCCTTGCCGGAAGGTATCCGACACCTCACTTCACT                            |
| CrTC11513                                  | GACACCTCACTTCACGTTGAGGTTTT                                         |
| Ca(ICCV2)TC15631                           | ATGTGAAGGATTGAGATCCTTGCCGGAAGGTATCCGACACCTCACTTCACTTGAGGTTTT       |

### Cr\_10687

| Cr 10687.1       | CATGGATGTGTCTCAACATCATCATCATCATCATGGTGGATACATAGC          |
|------------------|-----------------------------------------------------------|
| Ca 09490.1       | CATGGATGTGTCTCAACATCATCATCATCATCATCATCATCATGGTGGATACATAGC |
| XM 012715315.1   | CATGGATGTGTCTCAACATCATCATCATCATCATCATCATCATGGTGGATACATAGC |
|                  | *********************                                     |
| CrTC26991        | CATGGATGTGTCTCAACATCATCATCATCATCATGGTGGATACATAGC          |
| TC01626          | CATGGATGTGTCTCAACATCATCATCATCATCATCATCATCATGGTGGATACATAGC |
| Ca(ICCV2)TC36519 | CATGGATGTGTCTCAACATCATCATCATCATCATCATCATGGTGGATACATAGC    |
|                  | ********************                                      |

**Text S3.** Sequence alignment of domestication-associated candidate gene orthologues in cultivated and wild chickpea. Pepetide and CDS sequences were aligned using ClustalW. Functional annotations are mentioned at the top of the box. Cr represents *C. reticulatum*, Ca represents C. arietinum ICC4958 (*desi*). GenBank accession numbers (XP) are used to denote genes/peptides of chickpea CDC Frontier (*kabuli*).

#### VRN1

| Cr_15908.1<br>XP_004507368.1<br>Ca_18725.1 | ΑΑΤΑGΑΑΤΤΑΑCTTTAGTAGATAAAATTTATAAAAAATCGACAAAAAATTAAATATTCC<br>ΑΑΤΑGAATTAACTTTTGTAGATAGAATTTATTAAAAATCGGACAACAAAATTAAATATTA<br>ΑΑΤΑGAATTAACTTTIGTAGATAGAATTTATTAAAAATCGGACAACAAAATTAAATATTA<br>•••••••••••••••••••• |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cr_15908.1<br>XP_004507368.1<br>Ca_18725.1 | ATACGTTATATTTTAGAGAAATCAA-<br>TATATATATATATATATATACGTTACATGAATTAATTTCAATATAAATAA                                                                                                                                    |
| Cr_15908.1<br>XP_004507368.1<br>Ca_18725.1 | ААĞAAAACAATAAATATATATATATATATATATACAATTTTTT                                                                                                                                                                         |

### VRN2

| Cr_21307.1<br>Ca_23323.1<br>XP_004511724.1 | ACGAAGATCTCTCTCTCTCTCTC                | 211 |
|--------------------------------------------|----------------------------------------|-----|
| Cr_21307.1<br>Ca_23323.1                   |                                        | 182 |
| AF_004511/24.1                             | ************************************** |     |