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Fig. S1. Design and TLR ligand response of mouse and human macrophage reporter cell lines for siRNA
screening applications. (A) Design of the dual-promoter lentiviral vector for the expression of NF-kB and TNF-a
reporters in the mouse RAW264.7 cell line-derived RAW G9 clone. Gene cassette 1 contains the mouse 7nf
promoter driving expression of an mCherry-PEST fusion protein, and gene cassette 2 contains the mouse Rela
promoter driving expression of a GFP-relA fusion protein. (B and C) Tnf promoter-driven mCherry expression at 16
hours (B) and the cytosol-to-nuclear translocation of the GFP-RelA fusion at 40 min (C) in RAW G9 cells after
treatment with LPS (10 ng/ml), 100 nM P3C, or R848 (10 pg/ml). (D) Design of the dual-promoter lentiviral vector
for expression of the TNF-a reporter in the human THP1 cell line—derived THP1 BS5 clone. Gene cassette 1 contains
the human TNF promoter driving TLR ligand-inducible expression of firefly luciferase, and gene cassette 2 contains
the human UBC promoter driving constitutive expression of renilla luciferase. (E) The firefly:renilla luciferase
expression ratio in THP1 B5 cells at 4 hours after treatment with LPS (10 ng/ml). Data in (B), (C), and (E) are
means £ SD of three experiments. **P < 0.01, ***P < (0.001, ****P < (.0001 by two-tailed ¢ test.
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Fig. S2. Effects of siRNA-mediated gene perturbations across the human and mouse TLR
pathways. (A to C) TLR pathway gene perturbation effects on (A) the TNF promoter—driven
transcriptional response of human THP1 cells to LPS (10 ng/ml), 100 nM P3C, R848 (10 pg/ml),
1 nM P2C, PGN (10 pg/ml), or FLG (10 ng/ml) and (B) the NF-kB—driven and (C) the Tnf
promoter—driven responses of mouse RAW264.7 cells to LPS (10 ng/ml), 100 nM P3C, or R848
(10 pg/ml). Data are equivalent to those shown in Fig. 2, A and D, but are enlarged to include
TLR pathway modules and gene names. Data are presented as median z-scores from six siRNAs
per gene. Individual siRNA z-scores were averaged from three (A) or two (B and C) independent
experiments (see Materials and Methods for details).
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Fig. S3. Human and mouse macrophages show both shared and distinct gene dependencies
in TLR signaling. Hierarchical clustering analysis (Pearson uncentered, average linkage) of the
human and mouse macrophage TNF/Tnf promoter—driven responses to LPS, P3C, and R848.
Data are equivalent to those shown in Fig. 3A, but are enlarged to include TLR pathway modules
with gene names. Data are presented as median z-scores from six siRNAs per gene. Individual
siRNA z-scores were averaged from three (human TNF-o readout) or two (mouse TNF-a
readout) independent experiments (see Materials and Methods for details).
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Fig. S4. IRAK4 is required for the responses of human PBMCs to TLR ligands. (A to C)
Human PBMC:s isolated from control and IRAK4-deficient human patients were stimulated for
24 hours with LPS (10 ng/ml), 100 nM P3C, PGN (10 pg/ml), R848 (10 pg/ml), or FLG (10
ng/ml) before the secreted amounts of the indicated cytokines were measured by Bioplex assay.
Data are means = SD of two independent biological replicates from one set of patient blood
samples. **P < (.01, ***P <0.001, ****P <(0.0001 by two-tailed # test.
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Fig. S5. Generation of IRAK4 rescue cell lines from IRAK4 KO IMMs and THP1 cells. (A)
The relative abundances of the re-expressed mouse and human IRAK4 fluorescent protein
fusions in IRAK4-deficient mouse IMMs were measured by RT-PCR assays. The amounts of -
actin mRNA in each cell line are shown as RNA input controls. (B) Schematic showing the
exons targeted for CRISPR/Cas9-mediated genome editing of the human /RAK4 gene locus in
THP1 cells. The guide RNA (gRNA) target sequence is shown with the 3> NGG PAM sequence,
and the resulting genome edit within the gRNA for the IRAK4 KO cell clone is indicated. (C)
Western blotting analysis of WT THP1 cells and the THP1 IRAK4 KO cell line was performed
with antibody against IRAK4. (D and E) The relative abundances of the human IRAK4-mCherry
(D, Texas Red channel) and the mouse IRAK4-mCitrine (E, FITC channel) fusion proteins re-
expressed in the IRAK4-deficient human THP1 cell line were measured by flow cytometry. Data
in (A) and (C) to (E) are representative of two independent experiments.
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Fig. S6. Expression of kinase-deficient mouse and human IRAK4 in IRAK4 KO mouse
IMMs and THP1 cells. (A and B) Flow cytometric analysis of the amount of the mouse IRAK4-
mCitrine kinase-deficient mutant in retrovirally transduced IRAK4 KO IMMs (B, FITC channel)
relative to that in parental IRAK4 KO IMMs (A). (C and D) Flow cytometric analysis of the
amount of the human IRAK4-mCherry kinase-deficient mutant in retrovirally transduced IRAK4
KO THPI cells (D, Texas Red channel) relative to that in the parental IRAK4 KO THP1 cell line
(C). Data are representative of two independent measurements of cells at different passage

numbers.
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Fig. S7. Analysis of the IRAK1-dependency of human macrophages for TLR responses. (A)
THP1 cells transfected with control, IRAK1-specific, or IRAK2-specific siRNA were stimulated
with 10 nM P2C, 100 nM P3C, or PGN (10 pg/ml) for 24 hours before the amounts of secreted
TNF-a were measured. (B and C) THP1 B5 reporter cells transfected with control, IRAKI-
specific, or IRAK2-specific siRNA were analyzed by qRT-PCR (B) and Western blotting assays
(C) to determine the efficiency of target knockdown. Mean protein abundances in knockdown
cells relative to those in control cells calculated from combined experiments were as follows:
IRAKI1: 0.12 £ 0.02 (P < 0.0001); IRAK2: 0.20 £ 0.02 (P < 0.0001). Statistical analysis was by



two-tailed ¢ test. (D) hMDMs transfected with control, IRAK1-specific, or IRAK2-specific
siRNA (different siRNAs from those shown in Fig. 5D) were stimulated for 24 hours with LPS
(10 ng/ml), 100 nM P3C, PGN (10 pg/ml), R848 (10 pg/ml), or FLG (10 ng/ml) before the
amounts of secreted TNF-o were measured by ELISA. (E and F) hMDMs transfected with
control, IRAK1-specific, or IRAK2-specific siRNA were analyzed by qRT-PCR (E) and
Western blotting assays (F) to determine the efficiency of target knockdown. Mean protein
abundances in knockdown cells relative to those in control cells calculated from combined
experiments were as follows: IRAK1: 0.44 + 0.06 (P < 0.01); IRAK2: 0.26 + 0.05 (P < 0.001).
Statistical analysis was by two-tailed ¢ test. Data in bar graphs are means + SD of three
experiments. Western blots are representative of three independent experiments. **P < 0.01, ***
<0.001, ****P <0.0001 by two-tailed ¢ test.
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Fig S8. CRISPR/Cas9-mediated targeting of the human IR4AKI and IRAK?2 loci in THP1
cells. (A and B) Schematics indicate the exons targeted for genome editing at the (A) IRAK! and
(B) IRAK2 human gene loci. In each case, the guide RNA (gRNA) target sequence is shown with

the 3° NGG PAM sequence, and the resulting genome edit within the gRNA for each IRAK KO
cell clone is indicated.
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Fig. S9. Expression distributions of IRAK1, IRAK2, and IRAK4 mRNAs in human and mouse GEO
datasets. (A and B) Probability distributions of the expression z-scores for (A) human /RAKI, IRAK2, and
IRAK4 and (B) mouse [rakl, Irak2, and Irak4 calculated from all available normalized gene expression data
for platforms GPL6884 (Illumina HumanWG-6 v3.0 expression beadchip) and GPL6885 (Illumina MouseRef-
8 v2.0 expression beadchip). See Materials and Methods for details about the z-score calculation. Tables below
the graphs show minimum, maximum, median, standard deviation, and median absolute deviation of the
distributions for each IRAK gene probe. If multiple probes were available for the same gene, they are shown

separately.




Table S1. Details of the siRNAs used to target the 126 human and mouse TLR pathway
genes. File includes gene symbols and gene IDs with corresponding siRNA plate locations,
vendor ID, and sequence information. Separate spreadsheets are included for the human and
mouse siRNAs.

Table S2. siRNA z-scores from screens of the 126 human and mouse TLR pathway genes.
File includes gene symbols and gene IDs with both median and individual siRNA scores for each
TLR ligand and readout tested. Separate spreadsheets are included for the human and mouse
screens. Individual siRNA scores are means from replicate screening experiments (see Materials
and Methods for details).

Table S3. Ranking scores of human and mouse TLR pathway genes from the siRNA
screens. For each TLR ligand and readout tested, the 126 TLR pathway genes were sorted by
their median z-score and assigned ranks from 1 (lowest score) to 126 (highest score) for each
ligand-readout combination. For each readout (human TNF-a, mouse NF-kB, and mouse TNF-
o), the gene ranks were summed across all ligands tested to obtained the ‘“Species-rank-
‘readout’-SUM” value. Genes were sorted by these SUM values to obtain ranks from 1 to 126
representing the greatest-to-least perturbation of signal across the TLR ligands for each of the
human TNF-a, mouse NF-kB, and mouse TNF-a. readouts.

Table S4. Human vs. mouse z-score differences across matched TLR ligands and assay
readouts. File includes gene symbols and gene IDs with median siRNA scores for the LPS, P3C,
and R848 ligands tested with both the human and mouse TNF-a assay readouts. The average z-
score difference between human and mouse shows lower values (green) for genes with stronger
effects on the human TLR pathways and higher values (red) for genes with stronger effects on
the mouse TLR pathways.



