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Supplementary Material:
Evolutionary dynamics of CRISPR gene drives

Charleston Noble, Jason Olejarz,

Kevin M. Esvelt, George M. Church, and Martin A. Nowak

In this Supplementary Material, we mathematically study the evolutionary dynamics of a
CRISPR gene drive construct with n guide RNAs. In ection 1, we discuss relevant prior work
on homing endonuclease gene drives. In section S2, we propose a simple model of population
genetics of RNA-guided gene drives with multiple guide RNAs, and we analyze the selection
pressure acting on an engineered drive construct. In section S3, we derive a condition for an
engineered drive allele to invade a natural population. In section S4, we derive a condition
for a population in which the drive has fixed to resist invasion by either wild-type or drive-
resistant alleles. In section S5, we derive equations for interior equilibria permitted by our
system. In section S6, we present numerical examples of the system’s dynamics. In section

Deredec et al. (2008) (Ref. (21) in the main text) mathematically investigates the evolution-
ary dynamics of homing endonuclease gene drives. The authors begin with a two-allele model
precluding resistance, consisting of a wild-type allele and a gene drive allele (pp. 2014–2016
of Deredec et al. (2008)). The model implicitly considers a single guide RNA because it
was motivated by earlier single-target homing endonuclease genes. In their notation, p is
the frequency of the wild-type allele, and q is the frequency of the drive allele. The authors
assume Hardy-Weinberg proportions at all times, and they write a recurrence for q

q′ = (1− s)q2 + (1− sh)pq(1 + e)
1− sq2 − 2shpq

Here, s is the fitness cost associated with a drive homozygote, sh is the fitness cost associated
with a drive/wild-type heterozygote, and e is the probability that the HEG copies itself onto
the homologous chromosome (“homes”).

The authors identify that there are three possible fixed points:
q∗ = 0
q∗ = 1

q∗ = e− (1 + e)hs
s(1− 2h)
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The authors obtain the following invasion condition for the drive allele

s <
e

h(1 + e)

Intuitively, the fitness cost, sh, of a drive/wild-type heterozygote must be less than a mono-
tonically increasing function of the homing rate, e, for the homing endonuclease gene to
spread when rare. Low fitness costs of the drive and high homing rates facilitate the inva-
sion of the drive. More specifically, the authors show that, if the drive/wild-type heterozygote
has fitness close to the wild-type (i.e., h close to zero), then the drive invades and fixes (if
s is small relative to e), coexists with the wild-type allele (if s is comparable in magnitude
to e), or does not invade and is unstable (if s is large relative to e). The authors also show
that, if the drive/wild-type heterozygote has fitness close to the drive homozygote (i.e., h
close to one), then the drive invades and fixes (if s is small relative to e), is bistable with the
wild-type allele (if s is comparable in magnitude to e), or does not invade and is unstable
(if s is large relative to e). These are important insights into the evolutionary dynamics of
homing endonuclease gene drives.

Deredec et al. then extend their model to consider also a single resistant allele (pp.
2018–2019 of Deredec et al. (2008)). In their notation, p is the frequency of the wild-type
allele, qH is the frequency of the drive allele, and qM is the frequency of the misrepaired
(resistant) allele. The authors assume Hardy-Weinberg proportions at all times, and they
write recurrences for qH and qM

q′H = q2
H(1− sH) + pqH(1 + e(1− γ))(1− hHsH) + qMqH(1− sI)

W

q′M = q2
M(1− sM) + pqM(1− hMsM) + pqH(1− hHsH)eγ + qMqH(1− sI)

W

Here, W is the mean fitness of the population, and γ is the probability of misrepair.
The authors then consider a variety of special cases and make observations about each.

A general theme is that low misrepair rates, high fitness of the drive, and low fitness of
resistance alleles all act to improve drive spread. These are crucial points for understanding
the evolutionary dynamics of homing endonuclease genes.

For a classic homing endonuclease gene drive, the latter two properties—high fitness
of the drive and low fitness of resistance alleles—are naturally difficult to reconcile with
each other, as we describe in the main text. Since cost-free resistance to a drive construct
arises, alternative drive designs are necessary for effective genome editing. The recently
developed CRISPR/Cas9 genome editing technology facilitates targeting arbitrary locations
in a genome, greatly expanding the creative potential for manipulating wild populations.
While CRISPR/Cas9 constructs offer enhanced opportunities for constructing functional
gene drives, they also inevitably exhibit more complex dynamics that must be firmly under-
stood.



gene drive with n gRNAs

Consider a wild population of diploid organisms. Our aim is to manipulate the population
by modifying a particular locus which may be important, for example, for the organism’s
survival, reproduction, disease transmission, etc. Using CRISPR/Cas9 genome editing tech-
niques, one can engineer a CRISPR gene drive with n guide RNAs to target this locus. See
the main text and corresponding Fig. 1 for specific discussion of our proposed design.

To describe the evolutionary dynamics of such a construct, we consider a drive allele, D,
a wild-type allele, 0, and n resistance alleles, i (with 1 ≤ i ≤ n). (In the main text, we use
the notation “W” for a wild-type allele instead of “0”. The notation “0” is more natural
for doing calculations.) There are (n+ 2)(n+ 3)/2 possible genotypes in the population: ij
(with 0 ≤ i ≤ n and 0 ≤ j ≤ n), iD (with 0 ≤ i ≤ n), and DD. The drive mechanism works
as follows:

Consider a type 0D individual; one allele is wild-type, and the other allele is the drive.
There are n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive
can cut any number of targets between 0 and n. If the drive cuts no targets, then the
individual remains with genotype 0D. If the drive cuts k targets (with 1 ≤ k ≤ n), then one
of several things can happen: One possibility is that homologous recombination copies the
drive allele onto the damaged chromosome, so that the individual’s genotype becomes DD.
This is how the drive construct effects its spread through a population. Another possibility
is that non-homologous end joining repairs the damaged chromosome without restoring the
lost targets, so that the individual’s genotype becomes iD (with 1 ≤ i ≤ n). This is how
resistance to the drive construct emerges. Yet another possibility is that non-homologous
end joining perfectly repairs the damaged chromosome, so that the individual’s genotype
remains 0D.

The drive allele can effect its spread as long as there is at least one remaining target.
In an individual with genotype iD, either the drive cuts at no targets, with the individual’s
genotype remaining iD, or the drive cuts at some number, k, of the n− i remaining targets
(so that 1 ≤ k ≤ n − i). After cutting, the individual can become homozygous in the
drive allele (DD), the individual can lose additional targets by acquiring genotype jD (with
i+ 1 ≤ j ≤ n), or the individual can remain with genotype iD.

Using these rules, we can formally express the rates at which each of the n + 2 types of
gametes are produced in terms of the frequencies of individuals in the population. We denote
by FD(t) the rate (at time t) at which drive gametes (D) are produced by individuals in
the population. We denote by Fi(t) the rate (at time t) at which wild-type gametes (i = 0)
or gametes with varying levels of resistance (1 ≤ i ≤ n) are produced by individuals in the
population. We have

FD(t) = fDDxDD(t) +
n∑
k=0

pkD,DfkDxkD(t)

Fi(t) =
i∑

k=0
pkD,ifkDxkD(t) +

n∑
k=0

1 + δki
2 fkixki(t)

(1)

δki is the Kronecker delta. We use the following notation: xki(t) denotes the frequency of
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individuals (at time t) with only wild-type or resistance alleles, xkD(t) denotes the frequency
of individuals (at time t) with one wild-type or resistance allele and one drive allele, and
xDD(t) denotes the frequency of individuals (at time t) that are homozygous in the drive
allele. (We define xki(t) for k 6= i and xkD(t) such that the ordering of the indices does not
matter, i.e., xki(t) = xik(t) is the frequency of individuals with one copy of the k allele and
one copy of the i allele, and xkD(t) = xDk(t) is the frequency of individuals with one copy
of the k allele and one copy of the drive allele.) fki denotes the fitness of individuals with
only wild-type or resistance alleles, fkD denotes the fitness of individuals with one wild-type
or resistance allele and one drive allele, and fDD denotes the fitness of individuals that are
homozygous in the drive allele. pkD,D denotes the probability that an individual of genotype
kD produces a D gamete. pkD,i denotes the probability that an individual of genotype kD
produces an i gamete. From conservation of probability, we have the following identity

pkD,D +
n∑
i=k

pkD,i = 1

Notice that a type nD individual is fully resistant to being manipulated by the drive con-
struct; such a fully resistant individual shows standard Mendelian segregation in its produc-
tion of gametes. Thus, we have

pnD,n = 1
2

We understand Equations (1) as follows: Type DD individuals only produce type D
gametes, hence the term fDDxDD(t) in the equation for FD(t). Type kD individuals produce
type D gametes with probability pkD,D, hence the terms pkD,DfkDxkD(t) in the equation for
FD(t). Type kD individuals produce type i gametes with probability pkD,i, hence the terms
pkD,ifkDxkD(t) in the equation for Fi(t). Type ki individuals produce type i gametes with
probability 1 if k = i or with probability 1/2 if k 6= i, hence the terms [(1 + δki)/2]fkixki(t)
in the equation for Fi(t).

The selection dynamics are modeled by the following system of equations

ẋij(t) = (2− δij)Fi(t)Fj(t)− ψ2(t)xij(t)
ẋiD(t) = 2Fi(t)FD(t)− ψ2(t)xiD(t)
ẋDD(t) = F 2

D(t)− ψ2(t)xDD(t)
(2)

Here, an overdot denotes the time derivative, d/dt. In formulating the population dynamics,
we assume random mating; i.e., two random gametes meet to form a new individual. Notice
that the products (2 − δij)Fi(t)Fj(t), 2Fi(t)FD(t), and F 2

D(t) in Equations (2) represent
the pairings of the different types of gametes to make new offspring. The quantity ψ2(t)
represents a density-dependent death rate for the individuals in the population.

At any given time, t, we require that the total number of individuals sums to one

xDD(t) +
n∑
i=0

xiD(t) +
n∑
i=0

i∑
j=0

xij(t) = 1 (3)

To enforce this density constraint, we set

ψ(t) = FD(t) +
n∑
i=0

Fi(t) (4)



Throughout this SM, we choose to work in the framework of continuous time (Equations
(2)), since we feel that this approach simplifies the mathematical analysis. In much of the
remainder of this SM, we omit explicitly writing the time dependence on dynamical quantities
for notational convenience.

Consider a wild-type population in which all individuals have genotype 00. We perturb the
wild-type population by introducing a small amount of the drive allele, D. What happens?
Does the drive allele catalyze its own spread in the population, or is it eliminated?

For a perturbation to a wild-type population, we write the frequencies of the genotypes
as

x00 = 1 −εδ(1)
00 − ε2δ

(2)
00 −O(ε3)

x0D = +εδ(1)
0D + ε2δ

(2)
0D +O(ε3)

x0i = +εδ(1)
0i + ε2δ

(2)
0i +O(ε3)

xij = + ε2δ
(2)
ij +O(ε3)

xiD = + ε2δ
(2)
iD +O(ε3)

xDD = + ε2δ
(2)
DD +O(ε3)

(5)

In Equations (5), it is implied that 1 ≤ i ≤ n and 1 ≤ j ≤ n. The expansions (5) are
understood as follows. The frequency of the wild-type allele is approximately one, since we
only introduce a small amount of the drive allele. The frequency of the drive allele is of order
ε� 1. The small number of 0D individuals in the population also produce resistance alleles,
and the frequency of these resistance alleles shortly after the perturbation is also small (i.e.,
of order ε� 1). Notice that:

• New type 00 individuals are produced by pairing two wild-type gametes (each at a
frequency O(1)), so new type 00 individuals are generated at a rate O(1).

• New type 0D individuals are produced by pairing a wild-type gamete (at a frequency
O(1)) and a drive gamete (at a frequency O(ε)), so new type 0D individuals are
generated at a rate O(ε).

• New type 0i individuals (for 1 ≤ i ≤ n) are produced by pairing a wild-type gamete
(at a frequency O(1)) and a resistant gamete (at a frequency O(ε)), so new type 0i
individuals are generated at a rate O(ε).

• New type ij individuals (for 1 ≤ i ≤ n and 1 ≤ j ≤ n) are produced by pairing two
resistant gametes (each at a frequency O(ε)), so new type ij individuals are generated
at a rate O(ε2).

• New type iD individuals (for 1 ≤ i ≤ n) are produced by pairing a resistant gamete (at
a frequency O(ε)) and a drive gamete (at a frequency O(ε)), so new type iD individuals
are generated at a rate O(ε2).

section S3. Invasion of the drive construct



• New type DD individuals are produced by pairing two drive gametes (each at a fre-
quency O(ε)), so new type DD individuals are generated at a rate O(ε2).

Also, notice that a nonzero amount of the drive allele and the resistance alleles are produced
at order ε2 by type ij, iD, and DD individuals, so there also exist terms of order ε2 in the
expansions for x0D and x0i. Hence, we arrive at the expansions (5).

Note that (5) and (3) impose a constraint on the O(ε) terms in the genotype frequencies

δ
(1)
00 = δ

(1)
0D +

n∑
i=1

δ
(1)
0i (6)

Also, note that (5) and (3) impose a constraint on the O(ε2) terms in the genotype frequen-
cies

δ
(2)
00 = δ

(2)
0D + δ

(2)
DD +

n∑
i=1

δ
(2)
0i +

n∑
i=1

δ
(2)
iD +

n∑
i=1

i∑
j=1

δ
(2)
ij

Substituting (4), (1), (5), and (6) into the equation for ẋ0D in (2), we obtain

δ̇
(1)
0D = f00 (2p0D,Df0D − f00) δ(1)

0D

The drive allele invades a wild-type population if δ̇(1)
0D > 0, i.e., if

2p0D,Df0D > f00 (7)

Consider a population in which the drive construct has fixed, so that all individuals have
genotype DD. We perturb the DD population by introducing a small amount of the wild-
type allele, 0. What happens? Is the DD population stable to perturbations, or does the
wild-type allele or one of the resistance alleles invade the population?

For a perturbation to a population in which the drive construct has fixed, we write the
frequencies of the genotypes as

xDD = 1 −εδ(1)
DD − ε2δ

(2)
DD −O(ε3)

xiD = +εδ(1)
iD + ε2δ

(2)
iD +O(ε3)

xij = + ε2δ
(2)
ij +O(ε3)

(8)

In Equations (8), it is implied that 0 ≤ i ≤ n and 0 ≤ j ≤ n. The expansions (8) are
understood as follows. The frequency of the drive allele is approximately one, since we only
introduce a small amount of the wild-type allele. The frequency of the wild-type allele is of
order ε� 1. The small number of 0D individuals in the population also produce resistance
alleles, and the frequency of these resistance alleles shortly after the perturbation is also
small (i.e., of order ε� 1). Notice that:

• New type DD individuals are produced by pairing two drive gametes (each at a fre-
quency O(1)), so new type DD individuals are generated at a rate O(1).

section S4. Stability of the drive construct



• New type iD individuals (for 0 ≤ i ≤ n) are produced by pairing a non-drive gamete
(at a frequency O(ε)) and a drive gamete (at a frequency O(1)), so new type iD
individuals are generated at a rate O(ε).

• New type ij individuals (for 0 ≤ i ≤ n and 0 ≤ j ≤ n) are produced by pairing two
non-drive gametes (each at a frequency O(ε)), so new type ij individuals are generated
at a rate O(ε2).

Also, notice that a nonzero amount of the non-drive alleles are produced at order ε2 by type
ij individuals, so there also exist terms of order ε2 in the expansions for xiD. Hence, we
arrive at the expansions (8).

Note that (8) and (3) impose a constraint on the O(ε) terms in the genotype frequencies

δ
(1)
DD =

n∑
i=0

δ
(1)
iD (9)

Also, note that (8) and (3) impose a constraint on the O(ε2) terms in the genotype frequen-
cies

δ
(2)
DD =

n∑
i=0

δ
(2)
iD +

n∑
i=0

i∑
j=0

δ
(2)
ij (10)

Substituting (4), (1), (8), and (9) into the equations for ẋiD in (2), we obtain

δ̇
(1)
iD = Biδ

(1)
iD +

i−1∑
k=0

Ak,iδ
(1)
kD (11)

Here, we use the shorthand notation

Ak,i = 2pkD,ifkDfDD
Bi = Ai,i − f 2

DD

To solve (11), we take its Laplace transform. Using the notation ∆(1)
iD (s) = L{δ(1)

iD (t)}(s) =∫∞
0 e−stδ

(1)
iD (t)dt, we have

∆(1)
iD (s) = 1

s−Bi

δ
(1)
iD (0) + 1

s−Bi

i−1∑
k=0

Ak,i∆(1)
kD(s) (12)

Here, we use δ(1)
iD (0) to denote δ(1)

iD (t) evaluated at time t = 0. Equation (12) specifies ∆(1)
iD (s)



in terms of each ∆(1)
kD(s) for which 0 ≤ k < i. Simplifying, we have

∆(1)
iD (s) = δ

(1)
iD (0)
s−Bi

+
i−1∑
k=0

δ
(1)
kD(0)
s−Bk

[
Ak,i
s−Bi

+
i−1∑

u=k+1

Ak,uAu,i
(s−Bu)(s−Bi)

+
i−2∑

u=k+1

i−1∑
v=u+1

Ak,uAu,vAv,i
(s−Bu)(s−Bv)(s−Bi)

+
i−3∑

u=k+1

i−2∑
v=u+1

i−1∑
w=v+1

Ak,uAu,vAv,wAw,i
(s−Bu)(s−Bv)(s−Bw)(s−Bi)

+ · · · ]
(13)

We are interested in the time dependence of δ(1)
iD (t). From Equation (13), notice that

when the Laplace transform is inverted, the time dependence of each term in the resulting
equation for δ(1)

iD (t) has the form tα exp(Bjt), where α ≥ 0.
To demonstrate this, consider a set of real numbers {βj} and a set of positive integers

{νj}, and define Fk(s) for k ≥ 0

Fk(s) =
k∏
j=0

1
(s− βj)νj

If the inverse Laplace transform of Fk(s), denoted by L−1{Fk(s)}(t), is equal to a sum of
factors of the form L−1{1/(s− βj)ξ}(t), where ξ is a positive integer, then each term in the
solution for δ(1)

iD (t) has the form tα exp(Bjt), where α ≥ 0.
To prove that L−1{Fk(s)}(t) is equal to a sum of factors of the form L−1{1/(s−βj)ξ}(t),

we use induction. Define

Gk+1(t) = L−1 {Fk+1(s)} (t) = L−1
{
Fk(s)

1
(s− βk+1)νk+1

}
(t) (14)

The inverse Laplace transform in (14) is calculated as follows

Gk+1(t) =
∫ t

0
dτ

[
L−1 {Fk(s)} (τ)

] [
L−1

{
1

(s− βk+1)νk+1

}
(t− τ)

]
(15)

First, for the base case, consider Equation (14) for k = 0. We have

G1(t) = L−1
{

1
(s− β0)ν0

1
(s− β1)ν1

}
(t) (16)

From (15), this becomes

G1(t) =
∫ t

0
dτ

[
L−1

{
1

(s− β0)ν0

}
(τ)
] [
L−1

{
1

(s− β1)ν1

}
(t− τ)

]



Substituting the expressions for L−1{1/(s − β0)ν0}(τ) and L−1{1/(s − β1)ν1}(t − τ), the
equation for G1(t) becomes

G1(t) =
∫ t

0
dτ

[
τ ν0−1eβ0τ

(ν0 − 1)!

] [
(t− τ)ν1−1eβ1(t−τ)

(ν1 − 1)!

]

Performing the integration over τ , we have

G1(t) = (−1)ν0

(ν0 − 1)!(ν1 − 1)!(β0 − β1)ν0

ν1−1∑
j=0

(
ν1 − 1
j

)
(j + ν0 − 1)!
(β0 − β1)j

×
[
(ν1 − j − 1)!L−1

{
1

(s− β1)ν1−j

}
(t)

−
j+ν0−1∑
k=0

(−1)k (ν1 − j + k − 1)!
k! (β0 − β1)kL−1

{
1

(s− β0)ν1−j+k

}
(t)


Manipulating the indices and simplifying, we obtain

G1(t) = (−1)ν0

(ν0 − 1)!(ν1 − 1)!(β0 − β1)ν0+ν1

×

 ν1∑
j=1
L−1

{
1

(s− β1)j

}
(t)
(
ν1 − 1
ν1 − j

)
(ν0 + ν1 − j − 1)!(j − 1)!(β0 − β1)j

−
ν1∑
j=1
L−1

{
1

(s− β0)j

}
(t)

j−1∑
k=0

(−1)k
(

ν1 − 1
ν1 − j + k

)
(ν0 + ν1 − j + k − 1)!(j − 1)!

k! (β0 − β1)j

−
ν0+ν1−1∑
j=ν1+1

L−1
{

1
(s− β0)j

}
(t)

ν1−1∑
k=0

(−1)ν1−j−k
(
ν1 − 1
k

)
(ν0 + k − 1)!(j − 1)!

(j + k − ν1)! (β0 − β1)j

(17)

We see that G1(t) is equal to a sum of factors of the form L−1{1/(s− βj)ξ}(t).
Next, consider Equation (14) for k > 0. From (15), we have

Gk+2(t) =
∫ t

0
dτ

[
L−1 {Fk+1(s)} (τ)

] [
L−1

{
1

(s− βk+2)νk+2

}
(t− τ)

]

This is equal to

Gk+2(t) =
∫ t

0
dτ [Gk+1(τ)]

[
L−1

{
1

(s− βk+2)νk+2

}
(t− τ)

]
(18)

For the inductive step, suppose that Gk+1(t) reduces to a sum of factors of the form L−1{1/(s−
βj)ξ}(t)

Gk+1(t) =
∑
j

∑
i

L−1
{

1
(s− βj)ξi

}
(t) (19)

Substituting (19) into (18), we have

Gk+2(t) =
∑
j

∑
i

∫ t

0
dτ

[
L−1

{
1

(s− βj)ξi

}
(τ)
] [
L−1

{
1

(s− βk+2)νk+2

}
(t− τ)

]



This is equal to

Gk+2(t) =
∑
j

∑
i

L−1
{

1
(s− βj)ξi

1
(s− βk+2)νk+2

}
(t)

Then from Equations (16) and (17), we see that Gk+2(t) also necessarily reduces to a sum of
factors of the form L−1{1/(s− βj)ξ}(t), thus completing the proof.

Since δ(1)
iD is equal to a sum of factors of the form tα exp(Bjt), where α ≥ 0, we see that

if all Bj < 0, then all δ(1)
iD approach zero in the long-time limit, and, from (9), we have that

δ
(1)
DD approaches zero in the long-time limit. Therefore, if Bj < 0 for all values of 0 ≤ j ≤ n,
then the drive construct is evolutionarily stable.

If, instead, Bj > 0 for at least one value of j, then δ(1)
iD has a term whose magnitude grows

exponentially in time. The leading-order (in ε) terms in the expansions for xiD in (8) are
necessarily positive. Therefore, if the condition Bj > 0 is satisfied for at least one value of
j, then δ(1)

iD is positive and grows exponentially in time; i.e., the DD population is unstable
to perturbations.

The resulting condition is that the DD population is stable to perturbations with a
wild-type allele if

2 max (pkD,kfkD) < fDD (20)

4.1 Completely recessive fitness cost for a resistance mutation

Here, we consider a special case in which the fitness cost associated with having resistance
to the drive is completely recessive. If the fitness of each heterozygote with a resistance
allele, fkD, exactly equals fDD for all k, then is the DD population stable to perturbations?
We expect that pkD,k < 1/2 for all 0 ≤ k < n. Therefore, if fkD = fDD for all k, then the
inequality (20) is satisfied for all k < n and becomes an equality for k = n.

All resistance alleles with at least one target (0 ≤ k < n) are removed from the population
by selective forces. We must focus on the fully resistant allele, n. To probe the stability of
the DD population, we substitute (4), (1), (8), (9), and (10) into (2), and we keep terms
that are O(ε2). We have

−δ̇(2)
DD = fDD (fDD − 2fnn) δ(2)

nn + 1
4f

2
DD

[
δ

(1)
DD

]2
(21)

We also have
δ̇(2)
nn = −f 2

DDδ
(2)
nn + 1

4f
2
DD

[
δ

(1)
DD

]2
(22)

We can integrate (22). We get

δ(2)
nn = 1

4
[
δ

(1)
DD

]2 [
1− exp

(
−f 2

DDt
)]

(23)

We are interested in the regime 1� t� ε−1. We must consider the sign of δ̇(2)
DD at large

times t � 1 but before the terms in (8) become similar in magnitude. Our condition for
stability of the DD population is therefore

lim
εt→0
t→∞

δ̇
(2)
DD < 0



Shortly after the perturbation, the exponential in the solution for δ(2)
nn will approach zero.

Substituting (23) into (21) and simplifying, we see that the DD population is stable to
perturbations if

fnn < fDD (24)

A drive construct increases in frequency when rare if Equation (7) is satisfied. A drive
construct that has already fixed is stable to perturbations if Equation (20) is satisfied (or if
Equation (24) is satisfied for the case of a completely recessive fitness cost for resistance).
But if a small amount of the drive construct is introduced into a wild-type population, then
does the drive spread completely to fixation?

To answer this question, it is helpful to know if the model for the drive dynamics, Equa-
tions (2), admits an interior equilibrium. Notice that, if all time derivatives are zero, then
Equations (2) simplify to

xij = (2− δij)FiFj
ψ2

xiD = 2FiFD
ψ2

xDD = F 2
D

ψ2

Next, we define xi to equal the frequency of allele i in the population. Thus, x0 is the
frequency of the wild-type allele, and xi for 1 ≤ i ≤ n is the frequency of a resistance allele
with i damaged targets. Also, xD is the frequency of the drive allele. These allele frequencies
can be calculated from the frequencies of individuals of the various genotypes

xi = 1
2xiD +

n∑
j=0

1 + δij
2 xij

xD = xDD + 1
2

n∑
i=0

xiD

Similarly to Equation (3), the sum of all allele frequencies equals one at all times

xD +
n∑
i=0

xi = 1
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We directly compute the following results

x2
i =

1
2xiD +

n∑
j=0

1 + δij
2 xij

2

= F 2
i

ψ4

FD +
n∑
j=0

Fj

2

= F 2
i

ψ2 = xii

x2
D =

xDD + 1
2

n∑
j=0

xjD

2

= F 2
D

ψ4

FD +
n∑
j=0

Fj

2

= F 2
D

ψ2 = xDD

2xixD = 2FiFD
ψ2 = xiD

(2− δij)xixj = (2− δij)FiFj
ψ2 = xij

(25)

In summary, we obtain
xij = (2− δij)xixj
xiD = 2xixD
xDD = x2

D

(26)

From (25), we have that
ψxi = Fi

ψxD = FD
(27)

By substituting Equation (4) for ψ and Equations (1) for Fi and FD into (27), and substi-
tuting (26), we obtainfDDx2

D + 2
n∑
k=0

fkDxkxD +
n∑
j=0

j∑
k=0

(2− δjk) fjkxjxk

xi = 2
i∑

k=0
pkD,ifkDxkxD +

n∑
k=0

fkixkxi

(28)
We also obtainfDDx2

D + 2
n∑
k=0

fkDxkxD +
n∑
j=0

j∑
k=0

(2− δjk) fjkxjxk

xD = fDDx
2
D + 2

n∑
k=0

pkD,DfkDxkxD

(29)
Equations (28) and (29) must be simultaneously satisfied for 0 ≤ xD ≤ 1 and 0 ≤ xi ≤ 1

for each i at each interior fixed point. If Equations (28) and (29) cannot be simultaneously
solved for a given set of parameter values, then no interior fixed point exists.

Numerical simulations of Equations (2) are helpful for understanding the evolutionary dy-
namics of a drive construct. For simplicity, we consider a single guide (n = 1), and we choose
the following parameter values

f00 = f10 = 1
f0D = f1D = fDD = 1− c

f11 = 1− s
p0D,0 = 0

(30)
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We make the following assumptions: The fitness cost of the drive, c, is dominant. The fitness
cost of the resistant allele, s, is recessive. Also, the drive construct in a 0D heterozygote
always cuts at the target, and either the drive allele is copied by homologous recombination
or resistance emerges. Thus, we have p0D,0 = 0.

In Fig. S1 (a and b), numerical simulations demonstrate evolutionary invasion of the drive
construct. For these simulations, the initial condition is xAA = 1 − 10−4 and xDD = 10−4.
The relevant condition for determining evolutionary invasion is Equation (7).

• In Fig. S1 (a), we set p0D,D = 0.75 and s = 0.4. From Equation (7), the critical value
of c for invasion is 1/3. If c = 0.34 (green curve), then the drive construct does not
invade. If c = 0.33 (blue curve), then the drive construct invades.

• In Fig. S1 (b), we set p0D,D = 0.65 and s = 0.3. From Equation (7), the critical
value of c for invasion is approximately 0.23. If c = 0.235 (green curve), then the drive
construct does not invade. If c = 0.225 (blue curve), then the drive construct invades.

In Fig. S1 (c and d), numerical simulations demonstrate evolutionary stability of the drive
construct. For these simulations, the initial condition is xDD = 1 − 10−2 and xAA = 10−2.
From (30), notice that the condition (20) becomes an equality. Therefore, the relevant
condition for determining evolutionary stability is Equation (24).

• In Fig. S1 (c), we set p0D,D = 0.75 and c = 0.32. From Equation (24), the critical
value of s for stability is 0.32. If s = 0.315 (green curve), then the drive construct is
unstable. If s = 0.325 (blue curve), then the drive construct is stable.

• In Fig. S1 (d), we set p0D,D = 0.65 and c = 0.2. From Equation (24), the critical value
of s for stability is 0.2. If s = 0.195 (green curve), then the drive construct is unstable.
If s = 0.205 (blue curve), then the drive construct is stable.

In Fig. S1 (e and f), numerical simulations demonstrate the behavior of the drive con-
struct at intermediate frequencies. For these simulations, the initial condition is xAA =
1 − 10−4 and xDD = 10−4. If Equations (28) and (29) cannot simultaneously be solved
numerically, then there is no interior equilibrium.

• In Fig. S1 (e), we set p0D,D = 0.75 and c = 0.32. From numerical analysis of Equations
(28) and (29), values of s that are slightly below approximately 0.815 permit an interior
equilibrium, while values of s that are slightly above approximately 0.815 do not. If
s = 0.81 (green curve), then the drive construct reaches an equilibrium frequency that
is strictly between 0 and 1. If s = 0.82 (blue curve), then the drive construct spreads
to fixation.

• In Fig. S1 (f), we set p0D,D = 0.65 and c = 0.2. From numerical analysis of Equations
(28) and (29), values of s that are slightly below approximately 0.285 permit an interior
equilibrium, while values of s that are slightly above approximately 0.285 do not. If
s = 0.28 (green curve), then the drive construct reaches an equilibrium frequency that
is strictly between 0 and 1. If s = 0.29 (blue curve), then the drive construct spreads
to fixation.
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fig. S1. Numerical simulations of the evolutionary dynamics.



In this section, we present an extension of the model which accounts for the phenomenon of
“neutral resistance”. This can occur if non-homologous end joining results in repair at a cut
site which disrupts the recognition sequence of a guide RNA while nonetheless leaving the
function of the target gene intact. This can occur, for example, via an in-frame insertion
or deletion or a synonymous mutation. The resulting allele is similar (with respect to the
drive mechanism) to the resistant alleles discussed in previous sections: the repaired target
is immune to cutting by its corresponding guide RNA. However, the mutation conferring
this resistance is not deleterious.

We represent this scenario by an extension of our original model ( ection 2). We consider
a drive allele, D, n “costly” resistant alleles, Ri (with 1 ≤ i ≤ n), n “neutral” resistant alleles,
Si (with 1 ≤ i ≤ n), and the wild-type allele, S0. The drive mechanism works as follows (see
Fig. 2 in the main text for an illustration):

Consider a type S0D individual; one allele is wild-type, and the other allele is the drive.
There are n guide RNAs and therefore n targets for the drive to cut. At meiosis, the drive can
cut any number of targets between 0 and n. If the drive cuts no targets, then the individual
remains with genotype S0D. If the drive cuts k targets (with 1 ≤ k ≤ n), then one of several
things can happen: One possibility is that homologous recombination copies the drive allele
onto the damaged chromosome, so that the individual’s genotype becomes DD. Another
possibility is that non-homologous end joining repairs the damaged chromosome without
restoring the lost targets, and the resulting resistant allele is either costly, in which case
the individual’s genotype becomes RiD (with 1 ≤ i ≤ n), or cost-free, in which case the
individual’s genotype becomes SiD (with 1 ≤ i ≤ n). Yet another possibility is that non-
homologous end joining perfectly repairs the damaged chromosome, so that the individual’s
genotype remains S0D.

The drive allele can effect its spread as long as there is at least one remaining target.
In an individual with genotype RiD or SiD, either the drive cuts at no targets, with the
individual’s genotype remaining RiD or SiD, or the drive cuts at some number, k, of the
n − i remaining targets (so that 1 ≤ k ≤ n − i). After cutting, the individual can become
homozygous in the drive allele (DD), the individual can lose additional targets by acquiring
genotype RjD or SjD (with i + 1 ≤ j ≤ n), or the individual can remain with genotype
RiD or SiD. We assume that costly resistant alleles Ri cannot convert to cost-free resistant
alleles Sj, but cost-free resistant alleles Si can convert to costly resistant alleles Rj.

Using these rules, we can formally express the rates at which each of the 2n+ 2 types of
gametes are produced in terms of the frequencies of individuals in the population. We denote
by FD(t) the rate (at time t) at which drive gametes (D) are produced by individuals in the
population. We denote by FSi

(t) the rate (at time t) at which wild-type gametes (i = 0) or
gametes with varying levels of cost-free resistance (1 ≤ i ≤ n) are produced by individuals in
the population. And we denote by FRi

(t) the rate (at time t) at which gametes with varying
levels of costly resistance (1 ≤ i ≤ n) are produced by individuals in the population. We

section S7. Neutral resistance
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have

FD(t) = fDDxDD(t) +
n∑
k=1

pRkD,DfRkDxRkD(t) +
n∑
k=0

pSkD,DfSkDxSkD(t)

FSi
(t) =

n∑
k=0

1 + δki
2 fSkSi

xSkSi
(t) + 1

2

n∑
k=1

fRkSi
xRkSi

(t) +
i∑

k=0
pSkD,Si

fSkDxSkD(t)

FRi
(t) =

n∑
k=1

1 + δki
2 fRkRi

xRkRi
(t) + 1

2

n∑
k=0

fRiSk
xRiSk

(t)

+
i∑

k=1
pRkD,Ri

fRkDxRkD(t) +
i−1∑
k=0

pSkD,Ri
fSkDxSkD(t)

δki is the Kronecker delta. xIJ(t) denotes the frequency of individuals (at time t) with
genotype IJ , where I, J = D,S0, S1, . . . , Sn, R1, . . . , Rn. Similarly, fIJ is the fitness of IJ
individuals, and pIJ,K denotes the probability of an individual with genotype IJ producing
a K gamete. From conservation of probability, we have the following identities

pRkD,D +
n∑
i=k

pRkD,Ri
= 1

pSkD,D +
n∑
i=k

pSkD,Si
+

n∑
i=k+1

pSkD,Ri
= 1

Notice that type RnD and type SnD individuals are fully resistant to being manipulated
by the drive construct; such a fully resistant individual shows standard Mendelian segregation
in its production of gametes. Thus, we have

pRnD,Rn = pSnD,Sn = 1
2

The selection dynamics are modeled by the following system of equations
ẋDD(t) = F 2

D(t)− ψ2(t)xDD(t)
ẋRiD(t) = 2FRi

(t)FD(t)− ψ2(t)xRiD(t)
ẋSiD(t) = 2FSi

(t)FD(t)− ψ2(t)xSiD(t)
ẋRiSj

(t) = 2FRi
(t)FSj

(t)− ψ2(t)xRiSj
(t)

ẋRiRj
(t) = (2− δij)FRi

(t)FRj
(t)− ψ2(t)xRiRj

(t)
ẋSiSj

(t) = (2− δij)FSi
(t)FSj

(t)− ψ2(t)xSiSj
(t)

The quantity ψ2(t) represents a density-dependent death rate for the individuals in the
population.

At any given time, t, we require that the total number of individuals sums to one

xDD(t) +
n∑
i=1

xRiD(t) +
n∑
i=0

xSiD(t) +
n∑
i=1

n∑
j=0

xRiSj
(t) +

n∑
i=1

i∑
j=1

xRiRj
(t) +

n∑
i=0

i∑
j=0

xSiSj
(t) = 1

To enforce this density constraint, we set

ψ(t) = FD(t) +
n∑
i=1

FRi
(t) +

n∑
i=0

FSi
(t)



7.1 Invasion of the drive construct

The steps for determining if the drive construct invades when there is neutral resistance are
the same as in section S3. The drive allele invades a wild-type population if

2pS0D,DfS0D > fS0S0

7.2 Stability of the drive construct

The steps for determining if the drive construct is stable when there is neutral resistance are
the same as in section S4. The DD population is stable to perturbations with a wild-type
allele if

2 max
A∈S∪R

(pAD,AfAD) < fDD

7.3 Explicit cellular models of CRISPR gene drive

We now specify values of the inheritance probabilities, pAB,C , and fitness values, fAB, which
explicitly describe possible scenarios by which a CRISPR gene drive acts within individuals.
First, we specify a parameter set that corresponds with the behavior of CRISPR gene drives
as described in prior literature. Then, we specify a parameter set that corresponds with
our newly proposed CRISPR gene drive construct. These specified parameter sets for the
previous and newly proposed drive constructs are used for the simulations of the previous
and newly proposed drive constructs, respectively, in the main text.

7.3.1 Previous drives

For CRISPR gene drives as described in prior literature, n = 1. Reasonable choices for the
fitness values and inheritance probabilities are as follows:

The wild-type has the maximum fitness of fS0S0 = 1, and the cost-free resistant allele, S1,
is identical to the wild-type allele, S0, with respect to fitness. Disruption of the target gene
produces a recessive fitness cost, s, and the gene drive construct produces a dominant fitness
cost, c. However, since the previously demonstrated drive constructs copied themselves by
inserting at (and thus disrupting) the target sequence, the drive allele contains a disrupted
copy of the target gene. Thus, DD and RD individuals incur both the cost of the drive
construct, c, and the cost of resistance, s. These two costs can be assumed to be independent
so that the corresponding fitness effects are multiplicative, i.e., (1− c)(1− s). Therefore, we
have the following fitness values: fDD = fRD = (1− c)(1− s), fSD = 1− c, fRR = 1− s, and
fRS = fSS = 1.

We then compute the drive-heterozygote gamete production probabilities as follows:

• R1D individuals produce R1 gametes and D gametes equiprobably because the single
target site is resistant to cutting, so we have

pR1D,R1 = pR1D,D = 1
2



• S1D individuals produce S1 gametes and D gametes equiprobably because the single
target site is resistant to cutting, so we have

pS1D,S1 = pS1D,D = 1
2

• S0D individuals produce S0 gametes precisely when no cutting occurs. Since cutting
occurs with probability q, we have

pS0D,S0 = 1− q
2

• S0D individuals produce D gametes by inheriting the existing D allele, or by cutting
at the single target site with probability q and undergoing HR repair with probability
P . We have

pS0D,D = 1
2 + qP

2
• S0D individuals produce S1 gametes by cutting at the single target site with probability
q, undergoing NHEJ repair with probability 1−P , and repairing the cut perfectly with
probability γ. We have

pS0D,S1 = q(1− P )γ
2

• S0D individuals produceR1 gametes by cutting at the single target site with probability
q, undergoing NHEJ repair with probability 1 − P , and repairing the cut imperfectly
with probability 1− γ. We have

pS0D,R1 = q(1− P )(1− γ)
2

7.3.2 Newly proposed drives

For our newly proposed CRISPR gene drive construct, any n ≥ 1 is valid. Reasonable choices
for the fitness values and inheritance probabilities are as follows:

The wild-type has the maximum fitness of fS0S0 = 1, and cost-free resistant alleles, Si,
are identical to the wild-type allele, S0, with respect to fitness. The cost, c, conferred by the
drive is dominant, while the cost, s, conferred by costly resistant alleles—which are disrupted
copies of the target gene—is recessive. Furthermore, we assume that the drive allele contains
a functional copy of the target gene, so DD and RD individuals do not incur the recessive
fitness cost for target disruption. Thus, we have fDD = fRD = fSD = 1 − c, fRR = 1 − s,
and fRS = fSS = 1.

We then assign values to the drive-heterozygote gamete production probabilities accord-
ing to the biological description outlined in the main text and illustrated in Fig. 2B. We
first define a probability density, PK(k | n, i, q), which describes the probability that k target
sites undergo cutting, given that there are n total targets, of which i are currently resis-
tant to cutting, and where each of the n− i susceptible targets are cut independently with
probability q. This distribution is binomial, specifically:



PK(k | n, i, q) =
(
n− i
k

)
qk(1− q)n−i−k

This distribution is defined for 0 ≤ k ≤ n− i.
In the case that two or more cuts occur, we assume that all target sites between the two

outermost cuts are lost due to loss of the intervening DNA sequence. To account for this
effect, we further define a probability density, PL(l | k, n, i), which describes the probability
that l targets are lost given k cuts, n total target sites, and i currently resistant sites. This
distribution can be straightforwardly computed

PL(l | k, n, i) = (n− i− l + 1)
(
l − 2
k − 2

)/(
n− i
k

)

This distribution is defined for 2 ≤ k ≤ l ≤ n− i.
We then compute the drive-heterozygote gamete production probabilities as follows:

• RiD individuals produce D gametes by inheriting the existing D allele, or by cutting
at one or more sites on the Ri chromosome (each with probability q) and undergoing
HR repair (with probability P ). We have

pRiD,D = 1
2 + P

2 (1− (1− q)n−i)

• RiD individuals produce Ri gametes precisely when no cutting occurs. Each of the
n − i sites is susceptible to cutting, and cutting occurs independently at each with
probability q, so we have

pRiD,Ri
= 1

2(1− q)n−i

• RiD individuals produce Ri+1 gametes (with i < n) by cutting at exactly one target
site (where each is cut independently with probability q) and undergoing NHEJ repair
(with probability 1− P ). Since we assume that costly resistant alleles cannot convert
back to cost-free alleles, we do not consider the efficacy of repair by NHEJ. In this
case, we have

pRiD,Ri+1 = 1− P
2 (n− i)q(1− q)n−i−1

• RiD individuals produce Rk gametes (with i+ 2 ≤ k ≤ n) by losing k − i target sites
and undergoing NHEJ repair (with probability 1 − P ). Since we assume that costly
resistant alleles cannot convert back to cost-free alleles, we do not consider the efficacy
of repair by NHEJ. In this case, we have

pRiD,Rk
= 1− P

2

k−i∑
j=2

PL(k − i | j, n, i)PK(j | n, i, q)

The sum is over the number of simultaneous cuts, j, which could possibly give rise to
a loss of k − i targets.



• SiD individuals produce D gametes by inheriting the existing D allele, or by cutting
at one or more sites on the Si chromosome (each with probability q) and undergoing
HR repair (with probability P ). We have

pSiD,D = 1
2 + P

2 (1− (1− q)n−i)

• SiD individuals produce Si gametes precisely when no cutting occurs. Each of the
n − i sites is susceptible to cutting, and cutting occurs independently at each with
probability q, so we have

pSiD,Si
= 1

2(1− q)n−i

• SiD individuals produce Si+1 gametes (with i < n) by cutting at exactly one target site
(where each is cut independently with probability q), undergoing NHEJ repair (with
probability 1− P ), and repairing the cut perfectly (with probability γ). We have

pSiD,Si+1 = 1− P
2 (n− i)q(1− q)n−i−1γ

• SiD individuals do not produce Sk gametes when k ≥ i + 2. This is because cutting
at two or more target sites would lead to a large deletion in the intervening DNA
sequence, resulting in loss of target gene function. Thus

pSiD,Si+2 = · · · = pSiD,Sn = 0

• SiD individuals produce Ri+1 gametes (with i < n) by cutting at exactly one target
site (where each is cut independently with probability q), undergoing NHEJ repair
(with probability 1 − P ), and repairing the cut imperfectly (with probability 1 − γ).
We have

pSiD,Ri+1 = 1− P
2 (n− i)q(1− q)n−i−1(1− γ)

• SiD individuals produce Rk gametes (with i + 2 ≤ k ≤ n) by losing k − i target sites
and undergoing NHEJ repair (with probability 1− P ). This is because cutting at two
or more target sites would lead to a large deletion in the intervening DNA sequence,
resulting in loss of target gene function. Thus we have

pSiD,Rk
= 1− P

2

k−i∑
j=2

PL(k − i | j, n, i)PK(j | n, i, q)

The sum is over the number of simultaneous cuts, j, which could possibly give rise to
a loss of k − i targets.

For the numerical simulations of both the previous and newly proposed drive constructs
shown in the main text, we set q = P = 0.95 and γ = 1/3.
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