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Supplementary Text S1: Scenario details 

Scenario type by version breakdown. Red and green cells denote scenarios taken from previous studies 

(Cushman, 2008; Young, Camprodon, Hauser, Pascual-Leone, & Saxe, 2010), resp.  

No. scenario v1 v2 v3 v4

1 Popcorn neu att int acc

2 Malaria Pond/African pond att int acc neu

3 Spinach int acc neu att

4 Peanut allergy acc neu att int

5 Rabies/Rabid dog neu att int acc

6 Meatloaf att int acc neu

7 Seatbelt/Amusement park int acc neu att

8 Teenagers/Skiing acc neu att int

9 Ham sandwich neu att int acc

10 Safety Cord/Rock climbing att int acc neu

11 Sesame seeds int acc neu att

12 Coffee/Chemical Plant acc neu att int

13 Bridge neu att int acc

14 Pool att int acc neu

15 Mushrooms int acc neu att

16 Latex acc neu att int

17 Motorboat neu att int acc

18 Asthma att int acc neu

19 Veterinarian/Dog poison int acc neu att

20 Zoo acc neu att int

21 Sushi neu att int acc

22 Cayo/Monkeys att int acc neu

23 Wet floor int acc neu att

24 Lab acc neu att int

25 Vitamin neu att int acc

26 Airport att int acc neu

27 Chairlift int acc neu att

28 Bike acc neu att int

29 Safety Town/Fire drill neu att int acc

30 Parachute att int acc neu

31 Sculpture int acc neu att

32 Dentist acc neu att int

33 Iron neu att int acc

34 Tree House att int acc neu

35 Jellyfish/Ocean int acc neu att

36 Laptop acc neu att int  

Note: The exact wording of the details can be found in the original papers or can be requested from the 

corresponding author. Italian translations are also available on request. 



Supplementary Text S2: Component corresponding to the ToM network in gICA analysis 

Why gICA was preferred over GLM for analyzing ToM task data? 

For 7 out of 49 participants, MATLAB randomization for this task failed and the stimuli for each 

condition were thus shown in consecutive manner. This effectively turned our event-related design into a 

blocked-design. Additionally, since the average length of individual stimulus was 35 s, the length of each 

block was roughly 160s (including ITI). This made our design highly inefficient to find any task-related 

signal in the General Linear Model (GLM) focusing on ToM > control videos contrast. This is because of 

the dominant low-frequency noise, which overshadows signal in such long blocked-designs (optimal 

length: 16-50 s; Henson, 2007). Thus, to boost statistical power by utilizing the entirety of sample, gICA 

(n = 49) was preferred over the standard GLM-based (n = 42) analysis.   

Brief summary of rationale behind gICA 

The ICA was preferred for localizing functional network over other approaches (e.g., seed-based 

correlation analysis) because it provides many advantages over other univariate approaches to functional 

connectivity in terms of accounting for artefactual influence of confounding signals, such as respiratory, 

cardiovascular, non-grey matter, etc. (Cole, Smith, & Beckmann, 2010). The group-ICA method, as 

implemented in GIFT, involves following steps: initially data from all subjects are spatially normalized 

and dimensionally reduced by conducting PCA at individual subject level. All reduced datasets are then 

temporally concatenated to form one dataset on which group-ICA is applied. When applied, group-ICA 

decomposes a two-dimensional data matrix (with columns representing time course of voxels and rows 

representing different subjects) into two matrices, one corresponding to the time courses of components 

for the group and the other corresponding to spatial maps for components with component loading for 

each voxel. Individual-level components are then created via GICA back-reconstruction method based on 

PCA compression and projection. 

Identifying the ToM component  



We closely followed the analysis protocol detailed in a previous study (Hyatt, Calhoun, Pearlson, & 

Assaf, 2015) and we provide here extensive details about the preprocessing pipeline as data preprocessing 

can affect gICA results (Vergara, Mayer, Damaraju, Hutchison, & Calhoun, 2016). Subject-specific 

principal component analysis (PCA) was run to retain 30 principal components (PCs). At the second stage 

of group data reduction, expectation maximization algorithm was used to retain a final set of 20 PCs (a 

low model order ICA, i.e.). The Infomax algorithm was then run, repeating it 15 times in ICASSO, to 

generate a stable set of final 20 components. Finally, subject-specific spatial maps (SMs) and time 

courses (TCs) were estimated using the GICA back-reconstruction method based on PCA compression 

and projection. Before looking for the component that represented the ToM network, we first identified a 

subset of components that were considered BOLD-related brain networks rather than physiological 

artifacts. To this effect, component viewer facility in GIFT was utilized to compute the frequency 

spectrum of each component TC and the dynamic range (DR) and fractional amplitude of low-frequency 

fluctuation (fALFF). Based on frequency-domain analysis (Allen et al., 2011), it has been shown that 

artefactual components often exhibit both low DR and low fALFF and such components were removed 

from further analysis after visual inspection (Griffanti et al., 2016). Based on this analysis, 6 components 

were removed. Out of the 14 biologically meaningful and non-artefactual remaining components, the 

component corresponding to the ToM network was identified by using spatial correlation feature within 

GIFT, which identified the component (shown in figure below) with the highest spatial correspondence 

(correlation: r = 0.4152; multiple regression: β = 0.1567) to the ToM meta-analytic functional map (Mar, 

2011). Redoing the same step with a different meta-analytic functional map for ToM studies (Bzdok et 

al., 2012) also revealed identical component (correlation: r = 0.3135; multiple regression: β = 0.0983).  



 

Coordinates for the ToM component 

Significant clusters of activation from the component corresponding to the ToM network1 and anatomical 

labels derived using Anatomy toolbox (Eickhoff et al., 2005) are provided in the table below.

                                                           
1 In passing, we note that our findings contest the claim made by a previous study that mPFC is not 

necessary for mentalizing (Otti, Wohlschlaeger, & Noll-Hussong, 2015). This study utilized the same task 

as we did, but did not find any activation in mPFC. Importantly, the study had only 20 participants. In the 

current study, we observed a robust activation in the mPFC both in model-free (n = 49) and model-based 

(n = 42) analysis (as did Moessnang et al., 2016). Thus, we maintain that "absence of evidence was not 

evidence of absence", i.e., study by Otti and colleagues failed to reject the null hypothesis in mPFC due to 

low statistical power stemming from their small sample size.  



Region x y z

(R Superior Medial Gyrus) 2 54 28 < 0.0001 7678 < 0.0001 23.1337

(L Superior Medial Gyrus) 0 48 36 < 0.0001 19.4130

(L Superior Frontal Gyrus) -16 38 46 < 0.0001 18.5216

(L PCC) -4 -54 32 < 0.0001 2626 < 0.0001 15.7288

(L MCC) -4 -18 40 < 0.0001 10.9699

(L Calcarine Gyrus) -2 -62 14 < 0.0001 9.9628

(L Middle Temporal Gyrus) -48 -62 22 < 0.0001 1269 < 0.0001 14.2608

(L Angular Gyrus) -48 -66 30 < 0.0001 12.3867

(L Angular Gyrus) -44 -54 26 < 0.0001 12.1590

(L IFG (p. Triangularis)) -52 22 4 < 0.0001 1351 < 0.0001 12.6406

(L Middle Temporal Gyrus) -52 -6 -18 < 0.0001 12.1858

(L IFG (p. Orbitalis)) -42 28 -10 < 0.0001 11.6126

(R Angular Gyrus) 52 -60 24 < 0.0001 846 < 0.0001 12.5966

(R Angular Gyrus) 48 -48 28 < 0.0001 8.6377

(R Middle Temporal Gyrus) 52 -16 -14 < 0.0001 411 < 0.0001 12.0895

(R Middle Temporal Gyrus) 62 -16 -10 < 0.0001 9.2006

(R Middle Temporal Gyrus) 54 -6 -20 < 0.0001 8.9386

(RPrecentral Gyrus) 46 -14 54 < 0.0001 829 < 0.0001 11.4522

(R Postcentral Gyrus) 28 -28 56 < 0.0001 9.2680

(RPrecentral Gyrus) 52 -12 44 < 0.0001 9.2596

(R Postcentral Gyrus) 28 -38 58 < 0.0001 161 < 0.0001 10.2332

(L Postcentral Gyrus) -40 -20 42 < 0.0001 408 < 0.0001 9.7387

(L Postcentral Gyrus) -50 -14 44 < 0.0001 9.3724

(L Postcentral Gyrus) -50 -12 34 < 0.0001 7.9858

(L Middle Temporal Gyrus) -54 -36 -2 < 0.0001 119 < 0.0001 9.3668

(R IFG (p. Orbitalis)) 42 28 -14 < 0.0001 99 < 0.0001 9.2627

(L Caudate Nucleus) -12 12 14 < 0.0001 123 < 0.0001 8.5429

-26 -26 52 < 0.0001 156 < 0.0001 8.3613

(L Paracentral Lobule) -14 -32 64 0.0012 6.7847

(R Caudate Nucleus) 12 6 18 < 0.0001 92 < 0.0001 8.0743

(R Caudate Nucleus) 10 14 12 0.0001 7.4071

(L Hippocampus) -22 -14 -20 < 0.0001 65 0.0001 7.6082

(L Hippocampus) -28 -10 -24 0.0007 6.9398

(R Middle Occipital Gyrus) 38 -84 8 < 0.0001 46 0.0001 7.4523

(R Middle Occipital Gyrus) 30 -86 16 0.0045 6.4181

(R Superior Parietal Lobule ) 24 -50 62 < 0.0001 22 0.0001 7.4500

(L Middle Temporal Gyrus) -58 -46 4 < 0.0001 26 0.0013 6.7810

(R Lingual Gyrus) 14 -50 4 0.0001 17 0.0016 6.7164

(R Cerebelum (IV-V)) 8 -52 -2 0.0018 6.6784

(R Middle Frontal Gyrus) 42 20 46 < 0.0001 26 0.0042 6.4418

(R Medial Temporal Pole) 46 16 -32 0.0004 12 0.0046 6.4161

MNI Coordinates (in mm) Cluster-

level p -

value 

(FWE-

corr)

Cluster 

size k 

(voxels)

Peak 

voxel p -

value

Peak 

voxel t -

score



 Supplementary Text S3: Additional details about VBM analysis 

For the sake of brevity, we provide some additional details about the preprocessing of the anatomical data 

and GLM modeling choices made during the VBM analysis.  

• All images were inspected for the common scanner artifacts by the authors (with the help of 

following references: Graves & Mitchell, 2013; Stadler, Schima, Ba-Ssalamah, Kettenbach, & 

Eisenhuber, 2007) and for structural abnormalities by in-house physicians and technicians. 

• The same analysis software (SPM) and operating system (Windows) were used across all 

subjects, since this can affect morphometry estimates (Chepkoech, Walhovd, Grydeland, & Fjell, 

2016; Glatard et al., 2015; Gronenschild et al., 2012). 

• During segmentation routine, intensity distributions for each tissue class was modeled using 

numerous Gaussians: two for GM, two for WM, two for CSF, three for bone, four for other soft 

tissues, and two for air (background). 

• The images in native space were used for calculating total intracranial volume (TIV; by summing 

tissue volume for GM, WM, and CSF) with the help of Tissue Volumes Utility of SPM12, which 

has been shown to be a highly reliable way to compute TIV in both control and clinical 

populations (Malone et al., 2015; Ridgway, Barnes, Pepple, & Fox, 2011; Sargolzaei et al., 2015). 

• Normalization was carried out using DARTEL toolbox because it has been shown to be a more 

sensitive approach to morphometry analyses than the standard and optimized VBM (Li et al., 

2013). Note that since DARTEL, as implemented here, was used to create a study specific group 

template, it is important to note that characteristic of the group can affect the final individual 

normalized tissue maps (Michael, Evans, & Moore, 2016). This can create artefactual group 

differences, but since the current study did not feature such comparison it is immune to this 

criticism.  



• Spatial smoothing was applied normalized GM in DARTEL space in order to - (i) validate choice 

of parametric tests, (ii) account for residual individual differences remaining from normalization 

(cf. Bookstein, 2001), and (iii) increase signal-to-noise ratio (Kurth, Luders, & Gaser, 2015) 

• Quality assurance review of the final smoothed GM images was performed using VBM8 toolbox. 

Sample homogeneity was assessed using a covariance matrix and volumes with an overall 

covariance below two standard deviations were inspected further to ensure that there were no 

abnormalities in these volumes. 

• For the regression models, none of the continuous covariates was mean centered as the contrasts 

testing for the average effect were irrelevant for the VBM analysis (cf. 

http://mumford.fmripower.org/mean_centering/). 

• Global normalization was achieved by entering TIV values as globals (as recommended 

by Ridgway et al., 2009) in proportional scaling. This means that GM volume at each voxel 

was first divided by TIV and statistical analysis was carried out on these values. Note that 

proportional scaling significantly changes the interpretation of the final results (cf. Mechelli, 

Price, Friston, & Ashburner, 2005 and http://en.wikibooks.org/wiki/SPM/VBM). Modulated 

images with no globals applied reveal brain regions with absolute volumetric differences in GM, 

while modulated images with TIVs as globals reveal brain regions containing disproportionately 

larger or smaller (compared to TIV) amount of GM. We acknowledge that although the 

proportional relation between GM volume and TIV doesn’t hold when TIV is the only regressor 

in the model (for more, see Liu, Johnson, Long, Magnotta, & Paulsen, 2014), it can’t be rejected 

when age and gender are additionally included in the regression model (Barnes et al., 2010), as 

we have done here. We additionally checked whether the current data met the assumptions of the 

proportional scaling method to ensure validity of this approach of adjustment for brain size over 

other approaches (ANCOVA, residual method, etc.; for more, see O’Brien et al., 2011). 

http://mumford.fmripower.org/mean_centering/
http://en.wikibooks.org/wiki/SPM/VBM


• To avoid activations lying outside of the brain (due to low variance problem; Ridgway, Litvak, 

Flandin, Friston, & Penny, 2012) and to increase power of FWE-correction by reducing analysis 

regions, we created a mask using the Masking Toolbox (Ridgway et al., 2009; 

http://www0.cs.ucl.ac.uk/staff/g.ridgway/masking/), which attempts to find an optimal threshold 

to binarize an average (GM) image based on correlation with the average image. Any voxel that 

fell outside of this mask was excluded from the analysis. This has been shown to be a more 

reliable approach (in terms of likelihood of false negatives) than using an arbitrary threshold (e.g., 

0.2) to remove voxels with intensity below this value (Ridgway et al., 2009). 

• All statistical parametric maps are displayed on smoothed, representative scans (average of 305 

T1 images, provided in SPM12; Ridgway et al., 2008). All peaks of activations are reported in 

MNI-coordinates but no Brodmann Area (BA) labels have been reported as assigning functional 

activations to cytoarchitectotonically defined BAs can be inaccurate in the absence of 

probabilistic maps of underlying cytoarchitectotonic variability (Devlin & Poldrack, 2007). 

• Recent work has begun to reveal that within motion scanner of even few mm per minute can 

severely affect morphometric estimates of GM (Alexander-Bloch et al., 2016), and, although 

prospective motion correction techniques have been introduced to account for such effects (Stucht 

et al., 2015), no such correction was implemented in the current study due to lack of necessary 

equipment (Maclaren, Herbst, Speck, & Zaitsev, 2013).  

Additionally, time-of-day can affect all major tissue classes (GM, WM, CSF) such that apparent 

brain volume reduces from morning to evening (Nakamura, Brown, Narayanan, Collins, & 

Arnold, 2015), and this has greater impact on morphometric measures of frontal and temporal 

lobes (Trefler et al., 2016). Although we did not explicitly account for this effect, all participants 

were scanned during relatively fixed hours in the afternoon (15:00 to 19:00). 

Thus, we acknowledge that in-scanner movement and time-of-day may have contributed to noise 

in our data, but we find a systematic biasing of our results to be unlikely. 

http://www0.cs.ucl.ac.uk/staff/g.ridgway/masking/


• We note here that although we computed GMV using volume-based representation, the GMV 

computed using surface-based representation tends to be highly correlated with this method 

(Winkler et al., 2010). Additionally, it is interesting to note that variation in surface area and 

cortical thickness are two independent contributors to variation in GMV at both regional and local 

level, with surface area being the more significant contributor (Winkler et al., 2010). Thus, future 

studies can use surface-based morphometry techniques to investigate the same question. We 

would predict that a similar effect would be observed in l-aSTS: greater surface area would be 

associated with reduced moral condemnation for accidents.   

• Why should we carry out VBM analysis?2  

One may wonder as to why we need to carry out VBM analysis (or any other morphometry 

studies in general) when functional neuroimaging studies can inform us about functional 

correlates of inter-individual differences in behavior. There are various advantages afforded by 

VBM analysis that make it a complementary approach to assess the source of individual 

differences (Kanai & Rees, 2011)- 

(i)   Inter-individual variability in human behavior can be predicted from the structure of the 

human brain (grey matter volume, cortical thickness, surface area, white matter tracts, etc.) 

measured with MRI. Although the same holds true for functional neuroimaging, the advantage 

provided by VBM is that they allow experimenters to link an individual’s performance measured 

in an ecologically valid environment to brain structure measurement. Such assessment can be 

difficult to implement in MRI scanner settings in certain tasks, for example tasks that require 

participant to interact with multiple other individuals simultaneously, and thus can’t be studied in 

an fMRI study (Camerer & Mobbs, 2017). 

(ii) Since the heritability of a particular cognitive function (e.g., mental state reasoning) is 

contingent on the extent to which the respective brain structures (e.g., rTPJ) are influenced by 

genetic factors (Ge et al., 2016; Winkler et al., 2010), morphometry studies can be used to 

                                                           
2 We were prompted to discuss this based on a reviewer suggestion.  



generate interesting hypotheses for multimodal studies linking function, structure, genes, and 

behavior. 

(iii)  Correlational data between GMV and performance can also be used to generate interesting 

hypotheses as to which brain regions might be important for the performance of the task. For 

example, in the current study, it was only after we found VBM effect at aSTS that we decided to 

carry out new analysis on our fMRI data to see if there was any correlation between functional 

activity in this region and performance. A further prediction can also be made for conducting 

neurostimulation studies (TMS, tDCS) whereby disrupting the function of aSTS (mental state 

reasoning) would lead to reduced task performance (increased condemnation of accidental harm 

cases).    

Supplementary Text S4: Replicating the results with the GLM-based ToM mask 

In this section, we show that even if we focus only on these 42 participants, we still get all primary 

regions of interest observed with gICA and also get VBM effects in the same region. 

Replicating primary VBM results in the GLM-derived ToM mask 

Here we focused only on the 42 participants for whom the MATLAB randomization did not fail and thus 

the General Linear Model (GLM) approach was appropriate for modelling the data (see main text). The 

ToM network at group-level was localized by entering beta-weights from canonical HRF contrasts from 

first-level in a one sample t-test. Whole-brain analyses were thresholded at p < 0.05, Family-wise Error 

(FWE) corrected at the threshold level (cluster-defining threshold: p < 0.05 (corrected), extent threshold: 

k > 10). The results were masked with meta-analysis map from (Mar, 2011). The results revealed the 

expected nodes of the ToM network, viz. bilateral temporoparietal junction (TPJ), sections of medial 

prefrontal cortex (mPFC), temporal poles (TP), superior temporal sulcus (STS), and precuneus (PC).  



 

Note: The accompanying color bar in the figure below denotes t-values. 

List of all coordinates along with labels derived from the Anatomy toolbox (Eickhoff et al., 2005) is 

provided below:  



x y z

50 -42 10 < 0.0001 730 (R Middle Temporal Gyrus)

46 -52 20 (R Middle Temporal Gyrus)

-56 -50 10 < 0.0001 583 (L Middle Temporal Gyrus)

52 28 4 0.0120 24 (R IFG (p. Triangularis))

52 -38 2 0.0058 33 (R Middle Temporal Gyrus)

54 2 -20 < 0.0001 238 (R Middle Temporal Gyrus)

48 -18 -12

54 20 14 0.0092 28 (R IFG (p. Opercularis))

4 -54 44 < 0.0001 262 (R Precuneus)

-6 48 32 < 0.0001 627 (L Superior Medial Gyrus)

10 54 20 (R Superior Medial Gyrus)

-46 28 -6 0.0006 156 (L IFG (p. Orbitalis))

-46 14 20 0.0024 34 (L IFG (p. Opercularis))

-52 0 -22 0.0086 46 (L Middle Temporal Gyrus)

26 -2 -20 0.0108 19 (R Amygdala)

36 22 -22 0.0136 32 (R IFG (p. Orbitalis))

-56 -16 -12 0.0105 23 (L Middle Temporal Gyrus)

-26 0 -22 0.0141 24 (L Amygdala)

MNI coordinate
Label (Anatomy toolbox)

p (FWE-

corrected)
k

 

Same multiple regression models used in the main text to explore GMV and moral condemnation 

association on voxel-level were used, but with one crucial difference: for image-based small volume 

correction the ToM mask used was from the GLM-analyzed localizer data instead of gICA-analysed.  

The results again revealed that more severe moral condemnation for accidental harm condition was 

associated with reduced GMV in the left aSTS/MTG (x = -60, y = -12, z = -14; β = -0.0268; k = 17; 

p(FWE-corrected) = 0.0116). No such activation was found in the right aSTS/MTG. Additionally, no 

such result was found for any of the other conditions. Thus, the same result is obtained irrespective of 

whether we used a functional mask derived from GLM-based analysis of the ToM localizer task or gICA-

based.  

Supplementary Text S5: Descriptive statistics for moral condemnation 



Average for 

condition
Range Min Max Mean SD

neutral 4.06 1.06 5.12 2.12 0.90

accidental 4.81 1.67 6.47 4.11 1.16

attempted 5.17 1.67 6.83 5.19 1.03

intentional 2.50 4.50 7.00 6.34 0.62  

Supplementary Text S6: Exploratory analysis at rTPJ 

VBM results at rTPJ: Although no effect was observed for any condition between the grey matter volume 

in rTPJ with moral judgment in any condition even at a more liberal, uncorrected threshold of p < 0.001. 

Below is a scatter plot illustrating the negative linear associations between GMV in rTPJ (ρ(47) = -0.316, 

p = 0.027, n = 49, two-tailed) and the severity of moral condemnation of accidental harm at a highly 

liberal threshold (p < 0.05 (uncorrected)) for a comparison with Figure 2 in the main text. The solid lines 

indicate a linear fit to the data, while the curved lines represent mean 95% confidence intervals for these 

lines. Extracted grey matter volume data presented in figures are non-independent of the statistical test 

conducted and should not be used for effect-size estimates (Vul & Pashler, 2017). They are included here 

only as a visual aid for interpretation of results. 

 



fMRI results at rTPJ: For ROI analysis, the data from spherical ROIs with a radius of 8 mm was extracted 

from rTPJ at [56, -56, 20] in MarsBar. This analysis revealed that there was indeed a negative correlation 

between parameter estimate during acceptability segment and reduced condemnation for accidents, but 

this effect was not significant (ρ(40) = -0.213, p = 0.088, n = 42, one-tailed).  

Discussion: Why the predicted effect was not observed in the rTPJ?   

As noted in the main text, we did not find any effect at the rTPJ3, which is surprising given the amount of 

research that places rTPJ at the center of morally relevant mental state reasoning (reviewed in Chakroff & 

Young, 2015). As argued in the main text, this can be due to the different aspects of ToM subserved by 

different regions (l-aSTS versus rTPJ) such that the aspect relevant for shaping the brain-structure 

relationship is neurally grounded in l-aSTS. Nevertheless, we entertain other mutually compatible 

explanations for this null effect below.  

One plausible explanation is that the underlying assumption about equivalence between structural and 

functional relationship is misplaced when it comes to mental state attribution. We would expect the VBM 

effect at rTPJ based on a previous functional data (Chakroff et al., 2016; Young & Saxe, 2009). 

Functional imaging studies deal with short-lived brain-behavior association while structural imaging deal 

with long-term brain-behavior associations and it is possible that for some regions there is no homologous 

                                                           
3It is noteworthy that morphometry studies exploring neuroanatomical correlates of ToM skills have 

found a wide variety of regions, some usual suspects, like TPJ and dmPFC (Rice & Redcay, 2015; Valk et 

al., 2017), while others that are not as extensively discussed in the ToM literature, e.g., anterior temporal 

lobes (Irish, Hodges, & Piguet, 2014), right inferior frontal gyrus (Rice & Redcay, 2015), ventrolateral 

prefrontal cortex (Hirao et al., 2008), amygdala (Rice, Viscomi, & Riggins, 2014), middle temporal gyrus 

(Grosse Wiesmann, Schreiber, Singer, Steinbeis, & Friederici, 2017), etc. Thus, although much more 

attention is paid to certain regions of the ToM network (TPJ, PC, etc.), GMV of other regions that are 

consistently found across studies and paradigms are also important in explaining inter-individual variation 

in ToM skills.   

 



mapping of functional and structural variation, i.e., functional activation differences may (aSTS) or may 

not (rTPJ) be reflected in structural differences (and vice versa), at least at the macroscopic level (Kanai 

& Rees, 2011; Lewis, Kanai, Bates, & Rees, 2012). An important and unresolved issue in VBM research 

is determining which functions are linked to structural differences (Kanai & Rees, 2011); a systematic and 

principled investigation is in order.  

Another possible explanation involves our choice of ToM functional localizer task. Note that while the 

localizer task featuring social animations recruits spontaneous mental state attribution to interacting 

triangles, the moral judgment task required false belief reasoning. Thus, there may have been a mismatch 

between the assumed functional role of the rTPJ across the two tasks. Indeed, our choice of localizer task 

was based on the tacit assumption of structurally invariant functional properties in the rTPJ across 

different types of tasks. Recent meta-analyses (Molenberghs, Johnson, Henry, & Mattingley, 2016; 

Schurz, Radua, Aichhorn, Richlan, & Perner, 2014), however, have argued against such context-

insensitive specialization in the rTPJ. In particular, false belief tasks were found to elicit activity in the 

posterior parts of the rTPJ, while social animation tasks in the the anterior parts. Thus, future studies 

investigating the neuroanatomical correlates of a specific cognitive process should pay close attention to 

the choice of functional localizer task based on the task of primary interest.  

Yet another possibility is that no effect at aSTS was found in previous functional studies because most of 

the prior investigations have focused on few ROIs (dmPFC, vmPFC, bilateral TPJ, PC), while ignoring 

the rest of the ToM network (cf. Chakroff et al., 2016; Koster-Hale, Saxe, Dungan, & Young, 2013; 

Young & Saxe, 2008, 2009). The current investigation was unbiased in this sense, since we interrogated 

the entire ToM network localized using gICA and did not focus only on the few key nodes of the network.  

In passing, we also note that previous morphometry studies examining how regional variation in brain 

structure relates to individual differences in endorsed moral values (Lewis et al., 2012), moral reasoning 

skills (Prehn et al., 2015), prosocial behavior (Marsh et al., 2014; Thijssen et al., 2015; Yamagishi et al., 

2016), and moral judgments in clinical populations (Baez et al., 2015, 2016) have not found any 



correlations with GMV or cortical thickness of TPJ region. To our knowledge, only study has found any 

effect in this region: a positive correlation between rTPJ and altruistic decision making (Morishima, 

Schunk, Bruhin, Ruff, & Fehr, 2012).  
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