Supplementary Information

p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner

Qian Cong^{1,2#}, Hao Jia^{3,2#}, Ping Li^{1,2}, Shoutao Qiu^{1,2}, James Yeh², Yibin Wang⁴, Zhen-Lin Zhang², Junping Ao⁵, and Baojie Li^{1,2*}, Huijuan Liu^{1,2*}

Supplementary Figure legends

Figure S1. p38α deficiency did not affect monocyte/osteoclast apoptosis or DC-Stamp expression.

- A. TUNEL assays on p38 α deficient and control monocyte/osteoclast cultures. Right panel: quantitation data. Scale bar, 50 μ m. N=3.
- B. Realtime PCR results showed that p38α deficient and control monocyte/osteoclast cultures showed similar levels of DC-Stamp. N=3.

Figure S2. SB203580 greatly inhibited osteoclast differentiation in p38 α deficient and WT monocytes.

TRAP staining of SB203580-treated WT and p38 α deficient monocyte cultures in the presence of M-CSF and RANKL (Upper panels). Bottom panel: Quantitation data. Scale bar, 200 μ m. N=3. P-values are based on Student's t-test. **p<0.01 when the value of drugs-treated group compared to control group.

Figure S3. p38β knockdown did not significantly affect osteoclast differentiation.

- A. Western blot analysis showed the protein levels of $p38\alpha$ and $p38\beta$ in WT and $p38\alpha$ deficient monocyte cultures.
- B TRAP staining of WT and p38α deficient monocyte cultures with p38β knocked down with siRNA, in the presence of M-CSF/RANKL (left panel). Upper right panel: western blot showing knockdown of p38β in WT and p38α deficient monocytes. Bottom right panel: quantitation data for TRAP positive osteoclasts. Scale bar, 200 µm. N=3.

Figure S4. LysM-Cre mediated p38a ablation did not affect body size and weight

- A. Body weights and the lengths of limbs of 2.5-month-old LysM-Cre; $p38\alpha^{f/f}$ and control mice. N=8.
- B. Body weights and the lengths of limbs of 6-month-old LysM-Cre; $p38\alpha^{f/f}$ and control mice. N=8.

Figure S5. Histomorphometry results revealed that LysM-Cre; $p38\alpha^{f/f}$ mice showed distinct alterations in bone mass at 2.5 and 6 month of age.

- A. A representative staining of femur bones of 2.5 month-old LysM-Cre; p38α^{f/f} and control mice. Upper panel scale bar, 200µm. Bottom panel scale bar, 50 µm. N=8.
- B. Two and half-month-old LysM-Cre; $p38\alpha^{f/f}$ mice only showed a minor increase in BV/TV and a decrease in trabecular separation but not a change in trabecular number or thickness compared to control mice. N=8.
- C. A representative staining of the femur bones of 6 month-old LysM-Cre; $p38\alpha^{f/f}$ and control mice. Scale bar, 200 μ m.
- D. Six month-old LysM-Cre; $p38\alpha^{f/f}$ mice showed a decrease in BV/TV, trabecular number, trabecular thickness, and an increase in trabecular separation compared to control mice. N=8

For all results in Fig. S5, P-values are based on Student's t-test. *p<0.05, **p<0.01 when the value of mutant mice or cells was compared to that of control mice or cells.

Figure S6. p38α deficient monocytes isolated from 6-month-oldmice behaved just like monocytes isolated from 2.5-month-oldmice.

- A. p38α deficiency increased cell proliferation in monocyte/osteoclast cultures isolated from 6-month-oldmice. WT and p38α deficient monocytes were induced to differentiate by M-CSF/RANKL. At day 2, these cells were immunostained for Ki67 to detect S phase cells (left panel). The ratios of Ki67 positive cells to DAPI-stained cells were used as an indicator of cell proliferation rate. Right panel: quantitation data. Scale bar, 50 µm. N=3.
- B. TRAP staining showed that p38 α deficiency promoted osteoclast differentiation in low cell density culture but slightly inhibited osteoclast differentiation in high cell density cultures. Monocytes were isolated from 6-month-old LysM-Cre; p38 $\alpha^{f/f}$ and control mice, plated at different densities, and cultured in the presence of M-CSF/RANKL. After 7 days, the cultures were stained for TRAP (left panels). Right panels: quantitation data. Scale bar, 200 µm. N=3.

C. p38α deficiency did not affect resorbing activity of osteoclasts on dentine slices. WT and p38α deficient monocytes were isolated from 6-month-old mice and were induced to differentiate into osteoclasts by M-CSF and RANKL for 2 days. The osteoclasts were counted and the same numbers of cells were plated onto dentine slices. After 7 days, the dentine slices were sonicated and stained with Gill's hematoxylin. Bottom panel: quantitation data. Scale bar, 200 µm. N=3.
For all results in Fig. S6, P-values are based on Student's t-test. **p<0.01 when the

value of mutant mice or cells was compared to that of control mice or cells.

Figure S7. Co-culture experiments showed that $p38\alpha$ deficient monocytes showed a decreased capacity in supporting MSC osteogenic differentiation.

- A. WT MSCs were plated and 24 hrs later, monocytes isolated from 2.5-month-old WT and mutant mice were plated on top of the MSCs. These cells were co-cultured for 4 more days in α MEM in the absence of M-CSF/RANKL. The suspension cells were then washed off and the MSCs were stained for ALP. Bottom panel: quantitation of ALP. N=3.
- B. WT MSCs were plated and 24 hrs later, monocytes isolated from 2.5-month-old WT and mutant mice were plated on top of the MSCs. These cells were co-cultured for 4 days in α MEM in the presence of M-CSF/RANKL. The suspension cells were then washed off and the MSCs were stained for ALP. Bottom panel: quantitation of ALP.

For all results in Fig. S7, P-values are based on Student's t-test. **p<0.01 when the value of mutant mice or cells was compared to that of control mice or cells.

Figure S8. p38 α deficiency down-regulated TGF β and IGF1 but not other coupling regulators tested in monocytes/osteoclasts.

- A. p38 α deficiency led to a decrease in the mRNA levels of TGF β and IGF1 but failed to affect the mRNA levels of other coupling factors tested in p38 α deficient monocytes/osteoclasts compared to control cells. N=3.
- B. The mRNA levels of TGFB were not altered during osteoclast differentiation

induced by M-CSF/RANKL.

C. The mRNA levels of IGF1 were not altered during osteoclast differentiation induced by M-CSF/RANKL.

For all results in Fig. S8, P-values are based on Student's t-test. *p<0.01 when the value of mutant cells was compared to that of control cells.

В

0

0

Α

В

Supplementary Figure S8

1d

8d

7d

9d

2d

3d

5d

4d

6d

7d

8d

9d

2d

1d

3d

4d

5d

6d

Supplementary Figure S9A The full length blots for Fig. 1A

Supplementary Figure S9B The full length blots for Fig. 1D

Supplementary Figure S9C The full length blots for Fig. 2D

Supplementary Figure S9D The full length blots for Fig. 2E

Supplementary Figure S9E The full length blots for Fig. 2F

Supplementary Figure S9F The full length blots for Fig. 5C

Supplementary Figure S9G The full length blots for Fig. 7F

Supplementary Figure S9H The full length blots for Fig. 7G

Supplementary Figure S9I The full length blots for Supplementary Fig. S3A

Supplementary Figure S9JThe full length blots for Supplementary Fig. S3B

	1	
Primer	Forword 5'-3'	Reverse 5'-3'
Mitf	CCCTCTCACCTGTTGGAGTCA	CCGTTTCTTCTGCGCTCATAC
Pu.1	GATGGAGAAGCTGATGGCTTGG	TTCTTCACCTCGCCTGTCTTGC
c-Fos	CCTGCCCCTTCTCAACGAC	GCTCCACGTTGCTGATGCT
Nfate1	CTCGAAAGACAGCACTGGAGCAT	CGGCTGCCTTCCGTCTCATAG
Trap	GCTGGAAACCATGATCACCT	GAGTTGCCACACAGCATCAC
Integrinβ3	CACCATCCACGACCGAAAAG	GGTACGTGATATTGGTGAAGGTAGAC
Pdgf-aa	GGATACCTCGCCCATGTTCTG	AATGACCGTCCTGGTCTTGCA
Pdgf-bb	GACCACTCCATCCGCTCCTTT	CTTGCACTCGGCGATTACAGC
IGF-1	TTTTCTATGGCAGCCTCAGTATTT	TCTCCCTCTTCTGGCAAAGTTAT
Bmp2	TGGAAGTGGCCCATTTAGAG	TGACGCTTTTCTCGTTTGTG
TGF-β1	AGCAACAATTCCTGGCGTTACCT	CGAAAGCCCTGTATTCCGTCTCC
IL-6	TTGCCTTCTTGGGACTGATGCT	GTATCTCTCTGAAGGACTCTGG
LIF	CAACCAACAACATGCGAGTG	GGTATTGCCGATCTGTCCTG
DC-Stamp	CTAAGGAGAAGAAAACCCTTG	CAGCATAGAAGACAACAATCC
Bmp4	CGAGAAGGCAGAGGAGGAG	CAAACTTGCTGGAAAGGCTC
Bmp6	ATGGCAGGACTGGATCATTGC	CCATCACAGTAGTTGGCAGCG
IL-11	GGACAGGGAAGGGTTAAAGG	GCTCAGCACGACCAGGAC
Wnt10B	GGCTGTAACCACGACATGGAC	ACGTTCCATGGCATTTGCAC
Ephrin B2	GACGTCCAGAACTAGAAGCTGG	CACCAGCGTGATGATGATGACG
Cthrc1	TGGACCAAGGAAGCCCTGAGT	TGAACAGGTGCCGACCCAGA
GAPDH	CCACAGTCCATGCCATCAC	CATACCAGGAAATGAGCTTGAC

Supplementary Table 1 Quantitative PCR primers:

Supplementary rable 2 Chromatin minunoprecipitation (Chr) quantitative FCK primers.				
BMP2 Primer	Forword 5'-3'	Reverse 5'-3'		
0—-101site	aagtetetgtatttgtttette	taaatgaattctctgttctttg		
-101—-201site	aactggattcacttctaggtcc	atttctctgaagagcactcgac		
-201—-301site	tgggccaaacttgaggaaagtt	cagttactccaccttggtggtg		
-301—-401site	tccagaggcatccattttacct	gccttgcagctttgggcctctg		
-401—-501site	attgttgatgtcatcaccaaag	aatgagaaagttgcctttaatg		
-501—-601site	taaatctcatataggttcggag	tteetteeetateaagtttaat		
-601—-701site	atggcttcagaggcgatcagcc	gtcactctgaatcatgagacac		
-701—-801site	aacttetgeaacaegttttaaa	aggaaggctgtctacaagggaa		
-801—-901site	tcaaaaatacettatttgacet	aactctaggttcgttcacctaa		
-901—-1001site	attttagctccccgactgaaaa	ctttccagtttgcaaagcaaag		
-1001—-1101site	atctggttcacaacgtaacgtt	ttcatagtaccaccactggcta		
-1101—-1201site	ggctcctgaatgtagggagaaa	tggccaagccagttttcttcct		
-1201—1301site	cagccagagccttactgctgga	actccagagtcaggtaacaaga		
-1301—-1401site	aggtgggtgtggaagggaagat	tgtgtccatgtgaggggacaat		
-1401—-1501site	cacacacacacacacacaca	attataaaaatacgggtacagg		
-1501—1601site	ttacataaataaatacatata	tgagtgcattattacattttat		
-1601—-1701site	gatgtgtatcggctatttctcg	acagaacttacaagttattaga		
-1701—-1801site	tettettttaatgtgetetta	ctagggcaaatccagagtccac		
-1801—-1901site	tctcccgcagctgtgggcgcgg	gagcggggcggggcgagcgcgcgc		
-1901—-2001site	caccgcggccgccccgtagggc	aacacctccccctcggaggcgc		

Supplementary Table 2 Chromatin immunoprecipitation (ChIP) quantitative PCR primers:

PDGF-AA Primer	Forword 5'-3'	Reverse 5'-3'
0	tcccgaggtgttagggctgggg	gtggggggggggggggggggggggggggggggggggggg
-101—-201site	gcccaccaggtatttggagcta	ggagcctttcatccccagcttc
-201—-301site	tgcccggctgcgcctttgtctg	gtccagttcactccctttcatg
-301—-401site	aggetgtatecagttgcatece	aaaggtccacaatcctctaacc
-401—-501site	cgagttaaggagctgacaggac	gaagtetgateagggetggaeg
-501—-601site	tgtccgcatgtgccttccccgc	aggaactcctgggttctacctt
-601—-701site	caccagccgcttcttttctatc	ctgcaccctccagatccttagc
-701—-801site	ggtgtcaaggtggcgatgaggc	tgggacacctgattgaggaact
-801—-901site	ggctttggctctggggcgcggg	agggggagtgagtctttgcgga
-901—-1001site	ccttttatggagaggggaaggc	gccaaaaagggcatgagagtcg
-1001—-1101site	gcagcagctctgggcgctgccc	ggcggggaggggggggggggggcgc
-1101—-1201site	cggtgccgcaggattgcagctg	cggcgcccgcggctcggagccc
-1201—-1301site	agettggatggatgtagetgee	gaagcgctcaggggtctcgcgg
-1301—-1401site	cgaggtgcgggtcccgggcccg	cggccggcgacaggggggggt
-1401—-1501site	gctccacacgcgcgtcctgcgg	gcagcagccgcgggaagaccag
-1501—-1601site	tgcggcggcagcggcgccagct	cgcgccgcctggcagcagccta
-1601—-1701site	gccgcgggagctgcccggcccc	ggcgcggcccggcggcctgcgt
-1701—-1801site	gtgctgggccgcgccgtgcccg	cctcgcctctccctgagggctc
-1801—-1901site	cggtagctggtaccgggccgag	ttgctgccgtcagccccgggag
-1901—-2001sit	atatgcggatttaccggccggg	gggctgggcttcttccttggtg