Title:

MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways

Xingxue Yan^{1,2,*}, Zhendong Zhu^{1,2*}, Shenmin Xu^{1,2*}, Li-nan Yang^{1,2}, Xin-Hua Liao^{1,2}, Min Zheng^{1,2}, Dayun Yang^{1,2}, Jichuang Wang^{1,2}, Dongmei Chen^{1,2}, Long Wang^{1,2}, Jingfeng Liu³, Xiaolong Liu³, Ruey-Hwa Chen⁴, Xiao Zhen Zhou^{1,2,5}, Kun Ping Lu^{1,2,5,#} and Hekun Liu^{1,2,#} ¹Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian 350122, China. ²Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical

University, Fuzhou, Fujian 350122, China.

³The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025,

China.

⁴Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.

⁵Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA *These authors contribute equally to the work.

Correspondence should be addressed to Hekun Liu at fjlhk@163.com or Kun Ping Lu at klu@bidmc.harvard.edu

Key Words: miR-140-5p; Pin1; hepatocellular carcinoma; metastasis

Supplementary Tables.

Table S1. MiRNA candidates potentially targeting the 3'-untranslated region of Pin1 mRNA were

Predicted miRNAs	miRnada	PITA	TargetScan
Predicted databases			
has-miR-140			\checkmark
has-miR-140-5p		\checkmark	\checkmark
has-miR-200b		\checkmark	\checkmark
has-miR-200c		\checkmark	\checkmark
has-miR-429		\checkmark	\checkmark
has-miR-488		\checkmark	
has-miR-450a		\checkmark	
has-miR-370		\checkmark	
has-miR-548a		\checkmark	\checkmark
has-miR-876-3p		\checkmark	\checkmark
has-miR-1244			\checkmark

predicted by at least two of the five bioinformatics databases

Factor	NO.	(%)
Gender		
Male	22	88
Female	3	12
Age (years)		
≤ <u>60</u>	16	64
>60	9	36
Cirrhosis		
Presence	20	80
Absence	5	20
Tumor size (cm)		
≤5	9	36
>5	16	64
Tumor nodule number		
Solitary	18	72
Multiple (≥ 2)	7	28
Capsular formation		
Presence	15	60
Absence	10	40
Edmondson-Steiner grade		
I-II	6	24
III-IV	19	76
Vein invasion		
Presence	18	72
Absence	7	28
TNM stage		
Stage I	3	12
Stage II	8	32
Stage III	14	56
HBV		
Negative	2	8
Positive	23	92
Pin1 expression		
Low expression	9	36
High expression	16	64
MiR-140-5p expression		
Low expression	17	68
High expression	8	32

 Table S2. Clinicopathological characteristics of studied patients and

expression of Pin1 and miR-140-5p in HCC

		~
Assay		Sequence 5′ →3'
PCR		
Pin1	F	AAGATGGCGGACGAGGAG
	R	CACTCAGTGCGGAGGATGAT
GAPDH	F	ACCCACTCCTCCACCTTTG
	R	CTCTTGTGCTCTTGCTGGG
Plasmid construction		
pmirGLO-Pin1-3'UTR-WT	F	CTAGTTGTTTAAACGAGCTCGGGTGGGGAGC
		CCAGGCCTG
	R	ATGCCTGCAGGTCGACGCAGAGCAGTGGTTC
		TGGGT
pmirGLO-Pin1-3'UTR-Mut	F	CTAGTTGTTTAAACGAGCTCGGGTGGGGAGC
		CCAGGCCTG
	R	ATGCCTGCAGGTCGACGCAGAGCTCACCAA
		CTGGGT
miRNAs oligonucleotide		
miRNA-200b mimics		UAAUACUGCCUGGUAAUGAUGA
		AUCAUUACCAGGCAGUAUUAUU
miRNA-200c mimics		UAAUACUGCCGGGUAAUGAUGGA
		CAUCAUUACCCGGCAGUAUUAUU
miRNA-429 mimics		UAAUACUGUCUGGUAAAACCGU
		GGUUUUACCAGACAGUAUUAUU
miRNA-140-5p mimics		CAGUGGUUUUACCCUAUGGUAG
		ACCAUAGGGUAAAACCACUGUU
Negative control		UUCUCCGAACGUGUCACGUTT
		ACGUGACACGUUCGGAGAATT

Table S3. Sequence of oligonucleotides for plasmid construct, siRNA, qRT-PCR and miRNAs

oligonucleotide

Supplementary Figures.

Figure S1. Effect of miR-140-5p overexpression on the protein levels of Pin1 in PLC/PRF/5 cells.

(a). Like stable Pin1 knockdown, moderate overexpression of miR-140-5p downregulates Pin1 expression

in PLC/PRF/5 cells, as detected by immunoblotting analysis. GAPDH served as loading control.

Figure S2. Effect of Pin1 overexpression or stable Pin1 knockdown on the function of miR-140-5p.

(a). The protein levels of Pin1 and EMT markers in Huh7 cells after miR-140-5p overexpression were detected by Western blot assay. GAPDH served as loading control.

(b). The protein levels of Pin1, cyclinD1 and vimentin in PLC/PRF/5 cells after co-transfected with miR-140-5p and Flag-Pin1 were detected by Western blot assay. GAPDH served as loading control. (c). Cell proliferation of PLC/PRF/5 cells with NC, miR-140-5p or miR-140-5p combined with expression of Flag-Pin1 resistant to miR-140-5p was detected by MTT.

(d). Migration of PLC/PRF/5 cells infected with NC, miR-140-5p or miR-140-5p combined with expression of Flag-Pin1 resistant to miR-140-5p were assayed by transwell experiments. Scale bars, 100 µm.

(e). Migration of Huh7 cells infected with Scrambled, miR-140-5p, shPin1 or shPin1 combined with expression of miR-140-5p were assayed by transwell experiments. Scale bars, 100 μm. The protein levels of Pin1 in Huh7 cells were detected by Western blot assay. GAPDH served as loading control.

Figure S3. Stable knockdown of Pin1 inhibits migration, invasion, growth and colony formation of human HCC cells in Huh7.

(a). Phase-contrast micrographs of indicated Huh7 cells. Scale bars, 100 μm. The protein levels of EMT markers and Pin1 in two indicated Huh7 cells. GAPDH served as loading control.

(b). The growth of indicated Huh7 cells was performed by using MTT assay.

(c,d). The wound-healing assay (c) and transwell assay (d) of Huh7 cells infected with lentivirus. The invasion assay was measured with Matrigel-coated transwell experiments. Scale bars, 100 µm.

(e). The colonies of indicated Huh7 cells were counted and compared with that of scrambled.

Figure S4. Uncropped images for the key experiments in the main figure.