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Supplementary Notes  
 

Note A- Recipe for GMA 

Below we provide a recipe of the main steps to use GMA. The Supplementary README (S2 

File) provides further details about the code files listed in each step as well as all other code files, 

including their actions, inputs, and outputs.   

 

Step 1: Choose signatures and replicate prior models 

Code file:  User_model_(l).m 

The first step is to identify empirical signatures reported in each prior study. For example, if prior 

study 1 reports a regression model, one can select the empirical signatures as the intercept of the 

model, variable coefficients, and a measure of the model’s goodness of fit. Other prior studies 

might have different model structures and empirical signatures. In general, any statistic that 

provides relevant information about the phenomena of interest can be selected as a signature.  

Once the signatures are extracted and entered into User_model_(l).m code files, the prior 

models should be replicated (in the same code files). This replication requires simulated data for 

explanatory and response variables—discussed in Step 2 below—and with that data, it samples 

from the explanatory variables and estimates the model outputs. The sample from the explanatory 

variables is drawn considering the study sample size, subject characteristics, and the variables used 

in the respective study. The same model structures reported in the prior studies should be replicated 

and their outputs are then chosen as simulated signatures. Note that the simulated signatures and 

their orders should be the same as their empirical counterparts. 

 

Step 2: Generate simulated data for explanatory and response variables  

Code files:  User_DataGeneration.m and User_SIGMA.m for the explanatory variables 

User_Meta_model.m for the response variable 

 

To replicate prior models and estimate their simulated signatures, data for explanatory and 

response variables are needed. The multivariate explanatory variables (generated in 

DataGeneration.m) should include all variables used in the prior models. A hypothesized meta-

model (specified in Meta_model.m) also produces the response variable. See the paper for more 

information about providing/simulating explanatory variables and developing a meta-model. 

 

Step 3: Initiate the GMA and optimization solver 

Code files: User_GeneralInputs.m 

User_OptInitiation.m 
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This step is to identify parameters needed for GMA (e.g., the number of replications in equation 

) and initial conditions for the optimization solver (e.g., initial value 

for  to start the optimization search). See the Supplementary README (S2 File) for more 

information. 

 

Step 4: Weighting matrix, optimization and iteration 

Code files: GMA_W_star.m  GMA_Optimization.m 

GMA_ObjFn.m 

 

The weighing matrix , a positive semi-definite matrix, can be estimated optimally when it is 

proportional to the inverse of the covariance matrix of the simulated signatures. However, 

simulated signatures are computed based on estimated  while no estimated is available at the 

beginning. Hence, a two-step procedure is used. In the first step, the we use a diagonal W with 

diagonal elements inverse of square of empirical signatures (and the non-diagonal elements be 

zero). Once the meta-model is estimated using this initial , the estimated  can be replaced 

for a second step using a more efficient  which is the inverse of the covariance matrix of 

simulated signatures.  

Two implementation considerations need attention.  First, to estimate the covariance 

matrix of simulated signatures, the number of replications to generate  series of simulated 

signatures should be large. This large number is only used once to better estimate the covariance 

matrix of simulated signatures, so it does not significantly increase the computational time. 

Second, if the estimated  in the second round is very different than the estimated  in the first 

round, it is recommended to continue with additional iterations until the estimated  converges 

(this number of iterations is presented by ‘Opt_n’ in the codes). Using  and optimization 

initial conditions identified in the previous step, optimization solver attempts to minimize a 

weighted squared of the difference between the vectors of simulated and empirical signatures. 

See the Supplementary README (S2 File) for more information about the codes. 
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Note B- Details of simulated scenarios 

Below we report additional details on the simulated scenarios discussed in the paper.   

 

B.1-Scenarios 1-4 (linear models) 

In Table A, we provide details of 1000 replications of scenario 1.  In each case, we report for the 

three prior studies and the meta-model, the mean, standard deviation, means of lower and upper 

95% confidence interval bounds, and the percentage of 95% confidence intervals that incorporates 

the true parameter value.   

In the first four scenarios, the explanatory variables for true data are normally distributed 

based on the mean and covariance matrix in Table C. In scenarios 1 and 3, GMA estimates are 

found by using mean and covariance values obtained from the (imitated) prior study samples. In 

scenarios 2 and 4, the covariance matrix of explanatory variables is assumed to be available from 

an auxiliary data source, which enables simulation of required samples for GMA. This assumption 

is similar to the approach used in the empirical example where samples of explanatory variables 

could be found from the NHANES data.  

 

B.2-(Co)Estimating the correlation matrix of explanatory variables  

In another comparison, reported in Table B, we assess GMA’s ability to also estimate the 

correlation matrix of explanatory variables from the reported prior study coefficients. This case 

would be applicable when prior studies do not report the correlation/covariance matrices, and no 

other data source exists to inform the data generation of explanatory parameters. In this setting, 

we could use GMA to simultaneously estimate the parameters of joint distribution for the 

explanatory variables, as well as the data generation process for the response variable. Specifically, 

we assume prior studies have provided mean and variances of each explanatory variable but 

correlations should be estimated as part of GMA. In scenario 1, parameter estimates from prior 

studies (our signatures) include information about those correlations and thus the correlations 

could be estimated. The comparison with the case where correlations from prior studies are used 

for generating X variables is reported in Table B. Interestingly, the two cases perform rather 

similarly, with somewhat larger confidence intervals for model parameters when correlation 

matrix is also estimated using the GMA. 

 

B.3-Sensitivity of results to distribution of explanatory variables 

In Figures A and B, we assess the sensitivity of GMA to availability of accurate information on 

covariance matrix in scenarios 1 and 2. Specifically, we changed the precision of correlation matrix 

of explanatory variables using the following formula and assessed the quality of estimated meta-

models: 

𝐶𝑟̃𝑖 = (1 − φ). 𝐶𝑟𝑖 + φ. Uniform[−1,1] 
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Here 𝐶𝑟̃𝑖 is one of the 3 elements of correlation matrix for explanatory variables used in 

generation of simulated data in GMA, 𝐶𝑟𝑖 is the true value of the corresponding correlation element 

(see Table C for those values), and φ is a weight that allows us to assess a continuum between 

correct correlation matrix (φ = 0) and a fully random one (φ = 1). In simulations, we only use 

valid (positive semi-definite) correlation matrices that are generated from this formulation. The 

sum of squared errors in estimated parameters, weighted by corresponding variance of each 

parameter, follows an approximate Chi-squared distribution, so we report this error term and the 

fraction of 100 simulations for each φ that falls under the 95% confidence level (i.e., suggesting a 

good overall fit). As expected the precision of GMA depends on having relatively accurate 

estimates for the correlation matrix of explanatory variables. Moreover, the results are more 

sensitive in scenario 2, where a single explanatory variable is available from each prior study and 

errors in correlation matrix would not be compensated for by information in other signatures.  

 

B.4-Scenario 5 (ANOVA) 

Next, we report on scenario 5, the ANOVA study.  Here sample data for prior studies are generated 

using the true model of , where , and , with a 

correlation of 0.4 between the two variables.  Each prior study first categorizes the samples into 

three (for ) or four (for ) groups representing the relevant percentiles (e.g., different quartiles 

for ) for the corresponding factor.  Then ANOVA is conducted on the sample assessing the 

existence of a main effect in each case, and main effects (category means-grand mean), MST, 

MSE, and grand mean are used as signatures in estimating a meta model of the form 

.  Table D reports sample results from one instance of this 

experiment, as well as fraction of estimated confidence intervals in 1,000 iterations (at 80% and 

95% confidence levels) which include the true parameter values.   

 

B.5-Scenario 6 (non-linear model) 

In Table E, we provide additional details on scenario 6, where two linear models are estimated on 

data from a nonlinear data generating process, and the correctly specified model structure is 

estimated for the meta-model.  The true model is specified based on an empirical estimate which 

used a nonlinear regression and raw data to estimate the relationship.  GMA is able to extract a 

precise estimator (coefficient of determination (R2)=0.997) of the true model from rather mediocre 

linear approximations, with no access to any raw data. 

 

B.6-Scenario 7 (random effects meta-analysis) 

In scenario 7, we compare random effects meta-analysis using the GMA with classical methods. 

In this setup, the meta-analysis starts with prior reports on effect sizes and their standard deviation 

(within study standard deviation) and the goal is to combine those effect sizes, assuming that each 

effect size comes from a somewhat different data generating processes. While different, the true 

)1,0(1 11  22 xxxxy )2.0,0(:1 X )1,0(:2 X
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effect sizes are all assumed to come from an underlying normal distribution with mean μ and 

standard variation σ. So the goal of meta-analysis is to estimate these two quantities based on the 

reported effect-size and within-study variance. 

In simulating data from this process, we use a mean of μ=10 for true effect sizes in prior 

studies, and five levels of between study variance (σ2={1, 2, 4, 8, 16}) to create five distinct 

scenarios. The observed effect size for each study is different from the true effect size (for that 

study) due to within study variation. The normally distributed within study error for each prior 

effect size has a mean zero and a variance that is randomly drawn from a Uniform [0-10] 

distribution. We repeat the analysis 200 times for each between study variance scenario. In each 

replication, five “prior” true effect sizes are generated using μ and σ, along with the corresponding 

within study variance for each prior study, ϵi. The “observed” effect sizes, μi, are then generated 

based on these within study variances and the true effect size that is not observed. Next, the μi and 

ϵi are supplied to both GMA and classical random-effects meta-analysis that uses the DerSimonian 

and Laird method [29], and estimates for μ and σ are obtained using each method. Neither method 

requires any other inputs. Table F reports the mean absolute error for estimates of μ and mean 

absolute percent error for estimates of σ using these two methods. For small values of σ (1, 2, and 

4) GMA provides better estimates than classical meta-analysis. Estimates for μ are not significantly 

different across the two methods. GMA can accommodate other error distributions or more 

complex model setups but to keep the comparisons conservative we restrict this scenario to what 

can be done using classical meta-analysis tools.  

 

B.7-Impact of measurement noise 

To assess GMA’s ability to identify measurement noise in explanatory variables and correct for 

that, we conducted 11 sets of analysis, each using the model specification in scenario one, with 

different levels of measurement noise. Specifically, we added a normally distributed measurement 

noise and changed the standard deviation of the measurement noise as a fraction, δ, of the standard 

deviation in each explanatory variable, changing δ between 0 and 1 with increments of 0.1. In each 

setting, we conducted 100 replications to assess large scale results. In each replication, we 

generated three prior studies with poorly measured explanatory variables, which in turn added to 

biases in the signatures. As signatures, we used the regression coefficients, error terms, and 

reported variances of the explanatory variables. We also added three measurement error standard 

deviation parameters (β5 to β7 in Table G) to the meta-model parameters (β0 to β4 ) and the true 

covariance matrix elements (not reported) to be estimated by GMA. Table G reports the results 

across 100 replications in each setting, including the 95% confidence interval (calculated using 

bootstrapping), the percentage of true parameters falling into this range, and the mean and median 

of the estimated parameters. Overall, the addition of these new parameters reduces the reliability 

of GMA estimates: confidence intervals are larger and parameter estimates less accurate. 

Nevertheless, GMA estimates largely fall within confidence intervals and estimates for 

measurement noise correctly increase with the increases in the actual measurement noise.  
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Note C- BMR estimation details 
 

Table H provides additional details on the prior studies used for the BMR estimation case, 

including both estimated models and sample statistics for the explanatory variables.  Parameter 

estimates for each model (i.e., the model intercept, variable coefficients, and standard deviation of 

the error term) and the coefficient of determination (R2) are used as signatures, leading to a total 

of 115 signatures going into the GMA procedure.   

Table I details the estimated meta-models and the uncertainty in their parameters and 

Table L reports the estimated effects of different measurement methods for BMR and FM.   

 

C.1-Samples of explanatory variables 

Samples of explanatory variables are needed in the BMR estimation case. While complexity of 

measuring BMR significantly reduces the availability of datasets useful for direct estimation of 

BMR, the explanatory variables going into BMR equation are easier to measure, and available in 

many datasets. In fact, a few waves of the NHANES dataset includes all the relevant variables for 

large samples of population. However, the samples used in prior studies of BMR are different from 

those of the NHANES sample, therefore we need to fine tune the sampling procedure from 

NHANES subjects to get study-specific samples that are closer in their distribution of explanatory 

variables to the original studies. The sampling process is conducted following two steps: 

1) Providing a large dataset of explanatory variables 

Despite the relatively large size of the NHANES database (in tens of thousands), the 

number of individual data in some age and BMI groups is not large enough, particularly 

for individuals at the tails of distributions, to accommodate many independent samples. 

For instance, there are few elderly subjects with BMI of larger than 40 (morbidly or 

super obese) in the NHANES, while one of the prior studies (Lazzer et al. [48]) needs 

2,000 of those individuals—see Table H. This requires us to sample a large set of 

explanatory variables (H, A, L, and F) from a subpopulation not found in large numbers 

in the NHANES data.  

Thus, rather than directly sampling from NHANES, we opt for simulating a large 

dataset based on joint distributions of explanatory variables in NHANES, from which 

we can then sample without any restrictions.  Specifically, we first find transformations 

that turn the marginal distributions of the explanatory variables into normal 

distribution, then calculate the mean and covariance matrix of these transformed 

variables, assuming multivariate normality. We can then draw unlimited samples from 

this multivariate normal distribution and transform it back into corresponding 

explanatory variable sets. In the first step we estimated the following transformation 

functions to calculate multi-variate normal distributions from NHANES adult data: 

H1.369, L0.231/H-0.251, and F0.038/H-0.981. For each various age groups (18-19, 20-25, 26-

30,…, 80-85 years old) we estimate the mean and covariance matrix of these 

transformed statistics from NHANES data separately so that we account of impact of 

aging on the explanatory variables.    

To sum up, this process allows for generating a larger sample of simulated 

individuals with statistics consistent with empirical NHANES samples. Compared 

using the relevant statistical test [49], the covariance matrices of this large sample of 
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simulated individuals and NHANES data (3,322 individuals from 2000-2008 rounds) 

are not statistically different.   

 

2) Draw sample data for each prior study 

Now that a large simulated dataset is available, samples can be drawn that are consistent 

with each prior study. To ensure this consistency (i.e., the drawn samples follow the 

same subject statistics as those presented in Table H), we use sampling functions. The 

sampling functions specify the probability that a simulated subject is included in the 

study, and we use the functional form: 

 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡) = (1 + exp(−(∑ 𝑤𝑛|𝑚𝑛 − 𝑢𝑛|𝑁
1 )))−1 where w and m 

are parameters to be estimated for each prior study, and u is sample means for W, H, A, 

L, and F provided in Table H. The sampling function parameters (w and m) are 

separately estimated for each study to match the mean and variance of relevant sample 

statistics reported in each prior study (this can be seen as a simulated method of 

moments estimation). Table K reports these estimated sampling functions.  With these 

functions in hand, the explanatory variables needed for GMA are generated by drawing 

from the large pool of data consistent with NHANES and accepted based on the study-

specific sampling functions.  

 

C.2-Numerical stability and overconfidence in measures of fit 

Two implementation considerations need attention.  First, given the large number of signatures, 

numerical stability in optimization steps could be an issue in inverting the empirical signatures’ 

covariance matrix—for calculating the efficient weighting matrix. To address this issue, before 

inversion, we add a small positive number (epsilon) to the diagonal of the covariance matrix.  This 

“ridging” of simulated covariance matrix is a common practice in many estimation settings where 

singular matrices may result from simulation.   

Second, we suspect many researchers pick explanatory variables to get the best fit for the 

sample at hand. This customization of the regression function can lead to inflated fit measures that 

mislead GMA. For example, Piers et al. [50] provides the R2 of 0.9 for young and elderly subjects 

using a small sample size (less than 40) and, with only one explanatory variable (W). While more 

complex models (i.e., those including more explanatory variables) with larger sample sizes report 

lower R2—see Table H.  If we put too much emphasis on matching this high R2, GMA may 

unrealistically adjust other model coefficients. As a first step to fix such problems we inflate the 

variance in R2 signatures by 0.01 to account for the additional variance that is due to sample-

specific model customization and not sampling alone.  This is a crude fix for the complex inter-

study heterogeneity and more reliable solutions are a promising avenue for future research. 

 

C.3-Bootstrapped confidence intervals 

Table J reports results of estimating the 95% confidence intervals using bootstrap method (Note 

I) based on 200 iterations, for the best fitting model structure.  These results are consistent with 

the confidence intervals using asymptotic derivation and are slightly larger and asymmetric, which 

is expected in comparing bootstrapped and analytical confidence intervals that rely on asymptotic 

normality. 
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C.4-Variations in measurement methods 

Table L reports the impact of different measurement technologies on measured BMR and fat mass.  

Specifically, taking Deltatrac (indirect calorimetry, open circuit) and DXA (Dual-energy X-ray 

absorptiometry) as the standard methods for measuring BMR and Fat Mass, respectively, we 

define α parameters that specify the bias in other measurement methods compared to the 

benchmarks above.  These bias parameters are incorporated into simulation models of prior studies 

to transform benchmark measure of BMR and FM to study-specific measures, which are then used 

in estimation.  For example, if one study measures Fat Mass using Bioelectrical Impedance 

Analysis (BIA) with α=1.036, in creating its simulated signatures, Fat Mass values from the meta-

model are multiplied by 1.036 to get the study-specific Fat Mass values entering the relevant 

regression.  The value of 1.036 informs us that BIA relatively overestimates Fat Mass (this estimate 

is consistent with findings in Hendel, Gotfredsen (51)) and a similar interpretation can be applied 

to other bias estimates.  Estimated bias parameters remain around 1, which is reassuring; when 

they are (statistically) significantly different from one, that indicates a notable difference between 

that measurement method and the benchmark.  Therefore, we hope these estimates can prove 

helpful for understanding the differences among prior studies and offering a quantitative method 

for comparing and calibrating alternative measurement methods.     

 

C.5-Goodness of fit and its determinants 

In our BMR example, the goodness of fit measure is calculated at 2,356 which rejects the 

hypothesis that the estimated meta-model is fully consistent with the empirical signatures (the 𝜒2 

test statistic at 95% confidence level is 122.1). Given the large number of signatures (115 in this 

example), this result should not be surprising. Two potential explanations can be used to 

understand these results. First, inconsistencies among the empirical signatures may be induced by 

various biases in prior studies (e.g., publication bias may lead to the presentation of only a subset 

of statistical results with some unobservable bias), or by use of populations different from those 

we simulate (e.g., due to limited information reported on the explanatory variables). Second, we 

only explored a handful of alternative models; better model structures may be hypothesized that 

could reconcile the various empirical signatures.  

We further explore the variations among the prior studies by calculating the changes in 

goodness of fit measure (∆) when excluding each study. Specifically, we can remove signatures 

associated with each prior study and measure the resulting change in the goodness of fit measure. 

The larger this change for a study, the more those empirical signatures are inconsistent with the 

estimated meta-model. This measure may point to studies that are inconsistent with the rest of 

prior empirical evidence. It may also point to the weaknesses of the meta-model in covering a 

range of empirical regularities identified in that subset of prior studies.  

In our example, we calculate and report these changes (∆ values) in Table H, along with 

this measure normalized by the number of signatures each prior study includes, to have a number 

that is comparable across prior studies. Based on this measure, we find 3 (out of 16) studies—[52], 
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[48], and [53]—which together account for 80.1% of the goodness of fit measure. These three 

studies also include significantly larger error per signature (ranging between 1.3-4.2% per 

signature, compared to 0.1-0.5% per signature for all other studies). Two of these studies, [48] and 

[53], are coming from extremely obese subjects (average BMI of 41.6 and 47.1) which may partly 

explain the larger errors. In fact, in this BMI range, we had limited data from NHANES and thus 

had lower confidence in the estimated covariance matrix for generation of explanatory variables.  

 

C.6-Minimum theoretical error 

To put the comparison of prediction errors on the validation dataset in perspective, it is helpful to 

have an estimate for the minimum error that is feasible to achieve in predicting BMR using the 

available explanatory variables (i.e., H, A, F, and L). This theoretical minimum should exist 

because due to unobserved genetic and environmental factors, individuals would always have 

some variation in their BMR that is not predictable by the four explanatory variables above. This 

minimum error would provide us with an estimate for what a perfect model can achieve. We use 

two approximations to measure this theoretical minimum.  

First, we can use the best fitting model structure found using the GMA (i.e., model 4 in 

Table I), and use the validation dataset to estimate the parameters of that model structure. The 

resulting equation would have the minimum error feasible for the validation sample and provides 

one approximation for the minimum theoretical error possible. This is the error that is reported in 

the text (mean absolute percentage error (MAPE) of 6.60%). Note that this method is both 

estimating and calculating the error using the same sample of 159 subjects, and as such its 

predictive power may not extend to out of sample predictions. In fact, if we divided our dataset 

into the training and prediction subsets using a 10-fold cross validation method, the prediction 

error would increase to 6.73%. This result indicates that GMA, using the results of several large 

sample studies, can provide equations that are more precise than the one estimated using a smaller 

sample but the same exact population group. 

Alternatively, the minimum error could be approximated using the GMA equation itself. 

Specifically, the individual variations are accounted for in the error term of the data generating 

function in our GMA estimate. This error is distributed normally with mean 0 and standard 

deviation of 136 Kcal/Day in our best fitting model. Therefore, we can generate simulated BMRs 

(including this noise term) for 159 simulated subjects that have the same values of explanatory 

variables as those in the validation dataset.  We can then compare those simulated BMRs with the 

predicted values for the same subject, using the GMA-estimated equation. Repeating this 

procedure for a large number of times (20,000 replications in this case), we can calculate the 

expected MAPE on this validation dataset, if the data generating process was indeed following our 

estimated GMA. This expected error is 6.40%, which provides another estimate for the minimum 

error feasible in predicting BMR. 
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Either of these estimates for the minimum achievable error—based on the validation 

dataset—in predicting BMR is very close to the error achieved by GMA, and shows that GMA has 

closed most of the prediction gap between prior models and the best that is feasible.  
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Note D- Statistical setup and assumptions of GMA 

Recall the general data generating process  describing the relationship between the 

response variable  and explanatory variables  where 

 are the function’s parameters and  is a random error term with  

As mentioned earlier, in GMA, we estimate the data generating model by utilizing the 

results of L available prior studies, each including a subset of  explanatory 

variables and a response variable denoted by  and , respectively.  Let  be the 

empirical signatures from study l estimated by  observations. 

To estimate  using the GMA, we simulate the function f using a set of parameters  to 

generate  values given simulated  values, and transform  and  values using the function 

.  We posit that the resulting vector of statistics ( ) would be close to 

the estimated parameters in the empirical studies ( ) if  is close to .  Consequently, we find 

a vector of that minimizes the estimated expected error between simulated signatures and 

empirical signatures, i.e., , for each study using the following optimization 

model. 

, 

where  is a positive semi-definite matrix and . 

 

Assumptions: 

Let  denote the vector of parameters in study l, estimated by the estimator function .  

Suppose the function , is in a form of , where  can 

be a negative-likelihood function, a loss function, or any other functions minimized to obtain the 

estimates.  For example, in the case of linear regression, the q function for regression coefficients 

is an ordinary least square loss function.   Also, define the vectors of estimated and simulated 

signatures across all studies, respectively, by  and 

.  Following Gourieroux et al.  (1993), we make the 

subsequent assumptions to study the asymptotic properties of proposed GMA.   

(A1).  The Stochastic loss function used for estimating signatures in study l, i.e., , 

asymptotically approaches a continuous non-stochastic function with a unique minimum.  For 

large enough samples, the loss function of each study will be deterministic whose minimizer 

is the vector of the true parameters of the sub-model estimated in the corresponding study.  

More rigorously, the vector-valued function 
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 asymptotically tends to the non-

stochastic function   

where  is the limit function, and  and are marginal distributions of 

and  for study l, respectively, and is  the marginal distribution of between-study 

deviations, assumed to be independent of within-study errors.  In other words, 

.  We assume that the limit function is continuous and has a 

unique optimum denoted by , implying that   is a consistent 

estimator of .   

(A2).  The information about explanatory variables (i.e., ) given by prior studies suffice to 

fully identify the distribution of .  This information could be in the form of full distribution 

information, estimated parameters of the distribution, or observed explanatory variables.  In 

the case that prior studies provide only the estimated parameters of the distribution, it is 

assumed that those estimates are consistent.    

(A3).  Define the so-called binding function by  and assume 

 is one to one and  is of full-column rank.  Consequently, 

.  This assumption states that there exists a minimizer for the limit loss functions of all studies 

that is defined by marginal distributions of explanatory and response variables.  If true 

parameters of the data generating process ( ) were known, this minimizer would be the true 

parameters of the sub-model in each study. 

(A4).  Assume the difference between each study’s score function and its corresponding 

simulated score function, i.e.,   

asymptotically follows a normal distribution with zero mean and a variance given by 

. 

Note that these general assumptions discussed in (A1-A4) hold true for most estimators 

including maximum-likelihood estimators, least square estimators, etc.   

 

Note E- Consistency of GMA estimators 

Proposition  1.  Under assumptions (A1) - (A3), the GMA estimator  is a 

consistent estimator of the data generating model’s parameters, . 
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Proof: The first-order condition of the optimization criterion, 

, is written as 

. 

Also, the first-order Taylor expansion of around  is given by 

, which leads to  

  (P1) 

Recall that  which asymptotically tends to the binding function 

.  Consequently,   tends to  (A3).  Since  is a consistent 

estimator of  (A1),  for fixed S, which implies that  is a consistent 

estimator of .  ■ 

 

 

Note F- Asymptotic distribution of estimators 

Proposition  2.  Under assumptions (A1)-(A4), the estimator  is 

asymptotically normal when and S is fixed, i.e., , 

where  and 

 

where , 

and . 
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Proof: Based on (A1), it is true that , where  denotes  

evaluated at .  Using the first-order Taylor expansion of  around , we get 

.  Thus, .   

Consider the dataset used in each study (i.e.,  and )  as one stream of simulated data, 

denoted by  and  .  Consequently, by replacing with , we have 

.   

Thus,  Therefore, under 

assumptions (A4), this difference is asymptotically normally distributed with zero mean and the 

following covariance matrix.   

 (P2) 

Based on (A2) and (A3), (P1) in Proposition S2, and the fact that  asymptotically tends to 

, 

.   

Consequently,  is asymptotically normally distributed with zero mean and the 

variance of 

.   

Using  (P2), the asymptotic variance of  is written as  
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Note G- Optimal choice of signatures’ covariance matrix and its 

estimate 

Proposition 3.  Under assumptions (A1)-(A4), the optimal choice of the matrix  is 

, which minimizes .  Consequently, the optimal is 

 . 

A consistent estimator of is given by  where 

 with  ; ; and and  are 

generated using any consistent estimator of , e.g.,  computed using an identity W matrix.  

 is a numerical derivation of   with respect to evaluated at .   

Proof: As shown in Gourieroux et al. [18],  is a consistent estimator of .  Also, 

as , a consistent estimator of  is given by 

. 

Recall that .  Therefore, the first-order condition is 

written as .  Consequently, the second derivative with respect to  gives 

 , which implies

. 

Replacing , and  with their consistent estimators leads to a 

consistent estimator for  given by 

 

In practice, we start with a promising W (e.g., the diagonal matrix with reciprocal of squared 

signatures), estimate the , then use that to simulate a large sample (in 1000s) of signatures and 

calculate the simulated covariance matrix, which will be used in the second iteration to estimate 

. The process can be continued until convergence, which typically happens in a handful of 

iterations.  
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Note H- Asymptotic variance of meta-model estimate using delta 

method  

As shown in S3, under assumptions (A1)-(A4),  

. 

Estimation of , however, could be cumbersome, especially when  functions have 

nonlinear and complex forms.  In such a case, one can use the Delta method (Bishop et al., 1973, 

Section 14.6) to approximate the covariance function.   

Suppose  and  denote the asymptotic 

covariance of .  Using the Delta method the asymptotic covariance of  is 

written as  

 

After algebraic simplification, we have 

 

If the optimal weight matrix ( ), discussed in S4 is used, the approximate covariance matrix can 

be rewritten as  

. 
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Note I- Confidence intervals using bootstrapping methods 

The use of boot-strapping for the calculation of confidence intervals is straight forward.  

We start by estimating the meta-model using the GMA.  Then we generate M simulated data sets 

using the estimated , conduct the imitations of prior studies on these M studies, and then 

estimate the parameters of each using the GMA.  The empirical distributions of the resulting M 

estimates for can be used to construct the bootstrap confidence intervals.  Note C.3 provides a 

comparison of using bootstrapping and analytic confidence intervals in our empirical application.   

 

Note J- Goodness of fit test 

Given that the number of signatures is typically larger than the number of parameters for 

the true function that we estimate, the error function minimized in GMA usually does not reach 

zero.  In fact, the size of this error function provides insights into the goodness of model 

specification, i.e., how well the estimated model replicates the empirical signatures. 

Proposition- Under assumptions (A1)-(A4), if the data generating model is correctly specified, 

the following statistic is asymptotically distributed as a chi-square with the degrees of freedom 

equal to . 

, 

Where is a consistent estimator of . 

Proof: Suppose  is the GMA estimator.  Consequently, the test statistic  is given by 

 

The first-order Taylor expansion around  is written as 

 

From P1, it is given that 
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, 

where R is an orthogonal idempotent matrix with full-column rank 

. 

Therefore, the test statistic is written as 

 

From Proposition 2, we know that  

 

Therefore, .  ■ 

 

 

Note K- Model selection criterion  

In reality, the structure of true model f is often unknown, and one can only presume the 

structure based on experience and domain knowledge.  Thus, it would be common to propose and 

estimate a set of candidates for the true model, choosing the one that fits the data better.  Intuitively, 

the goodness-of-fit test statistic ( ), introduced earlier, can be used as a criterion for model 

selection.  However, if  is used as the sole criterion, the metric favors more complex models 

with more parameters: more complex models are prone to over-fit the signatures and thus have 

smaller  values.  To avoid overfitting, similar to Akaike information criterion (AIC), we 

discourage model complexity by introducing a penalty that penalizes the large number of model 

parameters.  Hence, the model selection criterion (MSC) is defined by 

, 

where is the number of model parameters, and  is a weight factor promoting model 

simplicity.  Larger values of  lead to simpler models and vice versa.  In AIC, the  value is 

chosen to be two.  The MSC criterion is calculated for a set of model candidates that pass the 

“specification test” and the one with the least MSC value is chosen as the best candidate for the 

true model. 
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Supplementary Tables 
 

Table A. Comparison of prior studies and meta-model in 1,000 estimations of the first scenario 

Prior models 

from Scenario 1 

 Parameters 

       

Study 1 

Inclusion percentage1 94.5% 48.5% 0.0%  0.0% 

Mean 

(SD)2 

1.004  

(0.190) 

1.839  

(0.412) 

2.551  

(0.189) 
 

3.425  

(0.494) 

Means of 95% CI bounds 0.634 – 1.374 1.003 – 2.674 2.178 – 2.924  2.414 – 4.230 

Study 2 

Inclusion percentage 95.7% 87.8%  0.1% 36.3% 

Mean 

(SD) 

0.995  

(0.123) 

0.783   

(0.280) 
 

1.321   

(0.056) 

1.508   

(0.210) 

Means of 95% CI bounds 0.749 – 1.240 0.218 – 1.347  1.209 – 1.434 1.063 – 1.862 

Study 3 

Inclusion percentage 96.1%  91.5% 84.7% 87.7% 

Mean 

(SD) 

1.006  

(0.113) 
 

0.915   

(0.146) 

1.063   

(0.068) 

1.195   

(0.172) 

Means of 95% CI bounds 0.787 – 1.224  0.607 – 1.223 0.925 – 1.201 0.843 – 1.475 

Meta-model 

estimated by 

GMA3 

Inclusion percentage 93.7% 93.2% 89.3% 90.7% 83.5% 

Mean 

(SD) 

1.001 

(0.079) 

0.967 

(0.249) 

0.961 

(0.147) 

1.013 

(0.060) 

1.016 

(0.091) 

Means of 95% CI bounds 0.856 – 1.147 0.516 – 1.418 0.717 – 1.205 0.908 – 1.117 0.881 – 1.151 

1Percentage of estimated 95% confidence intervals including the true value over 1,000 estimations; 2Mean and Standard 

Deviation of 1000 estimations; 3Covariance for explanatory variables are extracted from prior studies—see Table C for true 

covariance matrix. 

 

1 2 3 4 5



22 

 

Table B. Comparison of meta-models in 1,000 estimations of the first scenario with covariance extracted from prior studies (top row) and unknown correlations 

estimated using the GMA (bottom row). 

Prior models 

from Scenario 1 

 Parameters 

  

true value=1 

 

true value=1 

 

true value=1 

 

true value=1 

 

true value=1 

  

true value=0.05 

 

true value=0.2 

 

true value=0.7 

Meta-model 

estimated by 

GMA* 

Inclusion percentage1 93.7% 93.2% 89.3% 90.7% 83.5%     

Mean 

(SD) 2 

1.001 

(0.079) 

0.967 

(0.249) 

0.961 

(0.147) 

1.013 

(0.060) 

1.016 

(0.091) 
    

Means of 95% CI bounds 0.856 – 1.147 0.516 – 1.418 0.717 – 1.205 0.908 – 1.117 0.881 – 1.151     

Meta-model 

estimated by 

GMA† 

Inclusion percentage 93.6% 99.6% 95.5% 99.8% 98.7%  100% 100% 100% 

Mean 

(SD) 

1.003 

(0.078) 

0.996 

(0.259) 

0.989 

(0.133) 

1.004 

(0.055) 

0.998 

(0.089) 
 

0.068 

(0.117) 

0.209 

(0.115) 

0.699 

(0.061) 

Means of 95% CI bounds 0.855 – 1.150 0.103 – 1.889 0.612 – 1.366 0.888 – 1.119 0.749 – 1.247  -0.708 – 0.845 -0.435 – 0.853 0.530 – 0.864 

1Percentage of estimated 95% confidence intervals including the true value over 1,000 estimations; 2Mean and Standard Deviation of 1000 estimations;  

*Covariance for explanatory variables are extracted from prior studies; †Covariance for explanatory variables are estimated— are the correlations of the explanatory variables. 

 

0 1 2 3 4 5 6 7

75

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Table C. Mean and covariance for explanatory variables in the first four scenarios 

Variable Mean 
Covariance matrix* 

X1 X2 X3 

X1 0 0.20 0.02 0.20 

X2 0 0.02 1.00 1.57 

X3 0 0.20 1.57 5.00 

*Correlation coefficients are: 𝜌𝑋1,𝑋2
= 0.05, 𝜌𝑋1,𝑋3

= 0.2, 𝜌𝑋2,𝑋3
= 0.7 
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Table D. Results for estimating a continuous underlying model using ANOVA results that assess the mean effects 

of discretized explanatory variables 

 
 

  

ANOVA Experiment 
Parameters 

     

Sample Study 
GMA Estimate 1.05 0.84 1.09 0.78 1.05 

95% Confidence Interval (0.82,1.29) (0.33,1.36) (0.89,1.29) (-0.18,1.74) (0.85,1.25) 

80% 

Confidence 

Interval 

Inclusion percentage out of 

1000 iterations 
79.6% 79.3% 80.4% 80.4% 82.9% 

95% 

Confidence 

Interval 

Inclusion percentage out of 

1000 iterations 
95.5% 93.3% 95.3% 92.9% 96.7% 

0 1 2 3 4
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Table E. Non-linear example: measuring leakage of transmission fluid (Y) in power systems based on temperature 

and time 

Underlying true model (non-linear) * 

𝐹 = (𝛽01
+ 𝛽02

𝑇)(1 − exp{−𝛽03
𝑡}) + 𝜀0 

Intercept 
Temperature 

(T) 

Time 

(t) 
 

     

1.014 -0.122 0.675 2.22E-5 

Linear model 1 

𝐹2 = 𝑎2 + 𝑏2𝑡 + 𝑐𝑇 + 𝜀1 

0.981 

(0.034) 

-0.122 

(0.005) 

0.012 

(0.001) 
8.97E-05 0.849 

Linear model 2 

𝐹1 = 𝑎1 + 𝑏1𝑡 + 𝜀2 

0.086 

(0.005) † 
 

0.011 

(0.002) 
8.95E-05 0.491 

Meta-model estimated by GMA 

𝐹 = (𝛽1 + 𝛽2𝑇)(1 − exp{−𝛽3𝑡}) + 𝜀3 

1.044 

(0.027) 

-0.126 

(0.004) 

0.712 

(0.061) 

1.32E-05 

(6.51E-05) 
0.997‡ 

*Underlying true model is extracted from Paynabar et al.  (2012), equation (2) for part #11.  †Standard Deviation.  ‡ Model 

Selection Criterion—smaller value of MSC indicates a better fit—see Note K for more discussion about the MSC.  ‡Goodness of 

fit test does not reject the meta-model: (χ
0

= 3.4) < (χ
d=3
2 = 7.8). 

 

 

 

 

 

 

 

 

 

  

e

2R1 2 3 4
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Table F. Comparison of GMA and Analytical random-effects meta-analysis across five scenarios with different 

between study standard deviations (σ). Results are averaged over 200 replications in each scenario. 

GMA vs. 

Analytical 
𝝈𝟐 = 𝟏 𝝈𝟐 = 𝟐 𝝈𝟐 = 𝟒 𝝈𝟐 = 𝟖 𝝈𝟐 = 𝟏𝟔 

𝜇 
GMA MAE* 

0.91 0.96 1.11 1.34 1.69 

𝜇 
Analytical MAE 

1.02 1.00 1.11 1.34 1.69 

𝜎2 

GMA MAPE† 
231% 170% 106% 90% 73% 

𝜎2 

Analytical MAPE 
309% 192% 124% 91% 76% 

*Mean absolute error; †Mean absolute percentage error 
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Table G.  Results of measurement error analysis based on the case of scenario one, assuming measurement noise 

levels as a fraction (δ between 0 and 1) of the underlying variables’ actual standard deviations, and estimating the 

extended meta-model with three additional unknown parameters 

1 Percentage of estimated 95% confidence intervals including the true value over 100 estimations, for each value of 𝛿;  
2 Mean of 100 estimations;  

Prior models 

from Scenario 1 

 
 Parameters 

 

      

Standard deviations of 

measurement errors for the three 

explanatory variables (X1 – X3) † 

 

 
 

true 

value=1 

 

true 

value=1 

 

true 

value=1 

 

true 

value=1 

 

true 

value=1 

 

true 

value=

 𝛿√0.2  

 

true 

value=

 𝛿√1 

 

true 

value=

 𝛿√5 

Meta-model 

estimated by 

GMA* 

𝛿 = 0 

Inclusion percentage1 96% 92% 90% 89% 100% 82% 82% 85% 

Mean2 1.01 2.16 1.46 0.85 0.34 0.17 0.25 0.33 

Median3 1.01 1.25 1.17 0.87 0.17 0.14 0.20 0.26 

95% CI bounds4 0.88 - 1.16 0.43 - 7.72 0.35 - 3.26 0.15 - 1.4 0 - 1.05 0 - 0.42 0 - 0.62 0 - 0.87 

𝛿 = 0.1 

Inclusion percentage 96% 94% 90% 89% 100% 87% 84% 86% 

Mean 1.01 2.03 1.45 0.86 0.39 0.15 0.25 0.35 

Median 1.01 1.14 1.14 0.91 0.28 0.09 0.19 0.28 

95% CI bounds 0.88 - 1.15 0.38 - 7.79 0.36 - 3.19 0.17 - 1.4 0 - 1.04 0 - 0.42 0 - 0.62 0 - 0.88 

𝛿 = 0.2 

Inclusion percentage 97% 98% 90% 87% 100% 87% 84% 83% 

Mean 1.01 2.06 1.42 0.85 0.44 0.16 0.26 0.40 

Median 1.01 1.18 1.15 0.89 0.34 0.10 0.16 0.30 

95% CI bounds 0.88 - 1.15 0.38 - 7.08 0.4 - 3.15 0.18 - 1.4 0 - 1.13 0 - 0.43 0 - 0.66 0 - 0.98 

𝛿 = 0.3 

Inclusion percentage 98% 97% 91% 86% 97% 89% 84% 84% 

Mean 1.01 2.16 1.68 0.74 0.51 0.17 0.28 0.41 

Median 1.01 1.22 1.19 0.86 0.42 0.12 0.20 0.31 

95% CI bounds 0.87 - 1.15 0.16 - 8.71 0.27 - 3.54 0.07 - 1.49 0 - 1.24 0 - 0.44 0 - 0.7 0 - 1.11 

𝛿 = 0.4 

Inclusion percentage 99% 99% 90% 81% 95% 88% 87% 86% 

Mean 1.01 2.74 1.50 0.75 0.56 0.20 0.30 0.49 

Median 1.01 1.29 1.21 0.80 0.46 0.19 0.20 0.35 

95% CI bounds 0.86 - 1.16 0.22 - 11.51 0.12 - 3.78 0.05 - 1.54 0 - 1.38 0 - 0.46 0 - 0.75 0 - 1.28 

𝛿 = 0.5 

Inclusion percentage 99% 98% 88% 79% 96% 84% 83% 89% 

Mean 1.01 2.51 1.62 0.72 0.59 0.22 0.37 0.58 

Median 1.01 1.31 1.20 0.72 0.49 0.23 0.38 0.42 

95% CI bounds 0.84 - 1.18 -0.6 - 11.63 -0.07 - 4.36 -0.24 - 1.68 0 - 1.48 0 - 0.5 0 - 0.8 0 - 1.46 

𝛿 = 0.6 

Inclusion percentage 99% 99% 89% 84% 95% 81% 86% 89% 

Mean 1.01 2.66 1.56 0.72 0.65 0.24 0.41 0.70 

Median 1.01 1.21 1.14 0.69 0.54 0.25 0.45 0.56 

95% CI bounds 0.84 - 1.18 -0.16 - 12.42 -0.44 - 4.4 -0.24 - 1.78 0 - 1.63 0 - 0.52 0 - 0.87 0 - 1.65 

𝛿 = 0.7 

Inclusion percentage 98% 98% 87% 81% 94% 80% 85% 93% 

Mean 1.01 2.91 1.92 0.56 0.67 0.25 0.47 0.84 

Median 1.01 1.16 1.14 0.63 0.47 0.26 0.53 0.68 

95% CI bounds 0.84 - 1.19 -1.61 - 16.87 -0.57 - 5.66 -0.72 - 1.82 0 - 1.77 0 - 0.55 0 - 0.97 0 - 1.86 

𝛿 = 0.8 

Inclusion percentage 98% 98% 89% 81% 95% 81% 87% 97% 

Mean 1.01 2.92 1.69 0.62 0.70 0.29 0.54 0.89 

Median 1.00 1.23 1.13 0.56 0.59 0.34 0.68 0.64 

95% CI bounds 0.8 - 1.21 -1.93 - 15.86 -0.44 - 4.89 -0.4 - 1.76 0 - 1.9 0 - 0.58 0 - 1.04 0 - 2.07 

𝛿 = 0.9 

Inclusion percentage 98% 99% 89% 81% 95% 78% 87% 98% 

Mean 1.01 2.42 1.79 0.60 0.71 0.31 0.60 1.07 

Median 1.00 1.03 1.06 0.52 0.53 0.39 0.75 1.12 

95% CI bounds 0.79 - 1.22 -3.63 - 18.18 -0.75 - 5.34 -1.19 - 2 0 - 2.04 0 - 0.6 0 - 1.14 0 - 2.28 

𝛿 = 1 

Inclusion percentage 98% 99% 89% 78% 93% 73% 88% 97% 

Mean 1.01 2.50 1.81 0.55 0.80 0.33 0.66 1.11 

Median 1.00 1.00 0.95 0.47 0.59 0.41 0.82 1.05 

95% CI bounds 0.78 - 1.23 -10.22 - 19.71 -1.56 - 6.86 -0.43 - 1.97 0 - 2.17 0 - 0.64 0 - 1.23 0 - 2.53 

0 1 2 3 4 5 6 7



28 

 

3 Median of 100 estimations;  
4 95% confidence interval estimated using bootstrap method;  

* Covariance for explanatory variables are estimated using GMA— are used as the elements of a square root matrix of the covariance 

matrix. Estimating the square root matrix ensures that the covariance matrix is always semi-definite positive;  
† We assumed that all three explanatory variables are affected by measurement errors; therefore, after generating explanatory multivariate random 

variables, we added random measurement errors with standard deviation of . Also, the true values of are proportional to 𝛿 and the 

true standard deviations of the explanatory variables (√0.2, √1, and √5).  

138


75


75

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Table H. Studies which estimate BMR (in Kcal/day) for white males, over 18 years old, based on a recent review of the literature [16] 

Study* 

 Estimated Models 

(intercept, variable coefficients, and 𝜎(𝜀) used as 

signatures) 

𝑅2 

(used as 

signature) 

n1 

Sample Statistics†   Change in goodness of fit  

W5 H4 A3 L7 F6 BMI8 ∆%9 ∆%/#Sgnt. 10 

Lazzer et al., 2010. 
[48] 

𝐵𝑀𝑅1 = 1050 + 11𝑊 − 3.3𝐴 + 𝜀1 0.60 

2000 123.9 

(22.6) 

170 

(10) 

46.3 

(13.8) 

78.2 

(14.4) 

45.8 

(8.5) 

41.6 

(6.8) 

 0.3% 

1.6% 
𝐵𝑀𝑅2 = 542 + 10.5𝑊 + 3.1𝐻 − 3.1𝐴 + 𝜀2 0.60  10.2% 

𝐵𝑀𝑅3 = 830 − 2.4𝐴 + 19.6𝐿 + 𝜀3 0.59  11.0% 

𝐵𝑀𝑅4 = 1021 − 3.3𝐴 + 11.9𝐿 + 9.8𝐹 + 𝜀4 0.60  7.8% 

Bosy-Westphal et 

al., 2008. [54] 
𝐵𝑀𝑅5 = 865 − 5.3𝐴 + 17.1𝐿 + 10.1𝐹 + 𝜀5 0.7 

69 
83 

(10.4) 

174 

(6) 

68.8 

(6.7) 

58.3 

(6) 

24.6 

(8.6) 

27.4 

(3.4) 

 

0.9% 0.2% 

123 
90.7 

(15) 

181 

(7) 

45.7 

(6.6) 

65.7 

(8.6) 

24.9 

(12.4) 

27.6 

(4.2) 

 

Huang et al., 2004. 
[53] 

𝐵𝑀𝑅6 = 329 + 10𝑊 + 4.1𝐻 − 2.3𝐴 + 𝜀6 0.750 

218 
146.4 

(32.3) 

176.1 

(8.6) 

43.9 

(12.9) 

81 

(12) 

62.5 

(21.9) 

47.1 

(9.2) 

>35 

 2.2% 

1.3% 
𝐵𝑀𝑅7 = 1926 − 6.2𝐴 + 11.5𝐹 + 𝜀7 0.657  2.5% 

𝐵𝑀𝑅8 = 1436 − 6.1𝐴 + 26.8𝐵𝑀𝐼 + 𝜀8 0.647  7.5% 

𝐵𝑀𝑅9 = 826 − 2.9𝐴 + 20.5𝐹 + 𝜀9 0.588  9.3% 

Javed et al., 2010. 
[55] 

𝐵𝑀𝑅10 = 793 − 3.1𝐴 + 14𝐿 + 6.2𝐹 + 𝜀10 0.696 24 
78 

(11.5) 

177 

(8) 

51 

(21) 

62.4 

(6.9) 

14.8 

(8.6) 

24.9 

(3.3) 

 

1.4% 0.3% 

Piers et al., 1998. 
[50]‡ 

𝐵𝑀𝑅11 = 764 + 12.2𝑊 + 𝜀11 0.9 38 
73.4 

(10.9) 

177.2 

(7.7) 

23 

(3) 

61.4 

(10.2) 

12.5 

(6.7) 

23.1 

(3.2) 

 

0.7% 

0.2% 

𝐵𝑀𝑅12 = 556 + 12.2𝑊 + 𝜀12 0.9 24 
79.2 

(10.8) 

176.9 

(7.5) 

62.3 

(8) 

58.7 

(9.7) 

18.6 

(7.1) 

25.2 

(3.4) 

 

0.8% 

Soares et al., 

2000. [56]‡ 

𝐵𝑀𝑅13 = 403 + 19.4𝐿 + 8.8𝐹 + 𝜀13 - 48 
76.4 

(9.8) 
- 

24.9 

(2.4) 
- - 

23.7 

(2.3) 

 

0.5% 

0.3% 

𝐵𝑀𝑅14 = 267 + 19.4𝐿 + 8.8𝐹 + 𝜀14 - 28 
80.2 

(10.6) 
- 

63.3 

(5.6) 
- - 

26.3 

(3.6) 

 

1.3% 

Ravussin et al., 

1992. [57] 
𝐵𝑀𝑅15 = 914 − 4.3𝐴 + 14.3𝐿 + 6𝐹 + 𝜀15 0.68 327 

93.2 

(39.8) 
- 

32 

(15.8) 
- 

23.3 

(10.7) 
- 

 

2.1% 0.4% 



30 

 

Study* 

 Estimated Models 

(intercept, variable coefficients, and 𝜎(𝜀) used as 

signatures) 

𝑅2 

(used as 

signature) 

n1 

Sample Statistics†   Change in goodness of fit  

W5 H4 A3 L7 F6 BMI8 ∆%9 ∆%/#Sgnt. 10 

Tataranni et al., 

1995. [58] 
𝐵𝑀𝑅16 = 681 − 1.6𝐴 + 15.9𝐿 + 5.9𝐹 + 𝜀16 0.73 353 

100 

(28) 

173 

(6) 

29 

(7) 

66 

(11) 

34 

(19) 
- 

 

0.9% 0.2% 

Blanc et al., 2004. 
[59] 

𝐵𝑀𝑅17 = 1294 + 9.7𝑊 − 8.6𝐴 + 𝜀17 0.74 
72 

85.5 

(12.5) 
- 

75.1 

(3.2) 

58 

(6.1) 

25 

(7.6) 

27.6 

(4.2) 

 0.9% 
0.2% 

𝐵𝑀𝑅18 = 773 − 8.6𝐴 + 22.8𝐿 + 𝜀18 0.77  0.6% 

De Lorenzo et al., 

2000. [52] 

𝐵𝑀𝑅19 = 841 + 12.8𝑊 + 𝜀19 0.34 
46 

80.1 

(10.8) 

177.4 

(6.8) 

30.2 

(13.1) 

61.8 

(8.2) 
- 

25.4 

(2.7) 

 18.0% 
4.2% 

𝐵𝑀𝑅20 = 1186 + 12.5𝑊 − 10.6𝐴 + 𝜀20 0.69  11.3% 

Ferraro et al., 

1992. [60] 
𝐵𝑀𝑅21 = 754 − 4.5𝐴 + 17.2𝐿 + 5.3𝐹 + 𝜀21 0.639 114 

84.1 

(23.6) 

176 

(7) 

34 

(14) 

63.2 

(10.3) 

20.8 

(16.5) 
- 

 

2.4% 0.5% 

Ganpule et al., 

2007. [61] 

𝐵𝑀𝑅22 = 30 + 11.5𝑊 + 5.6𝐻 − 3.3𝐴 + 𝜀22 0.834 
71 

68.3 

(11.5) 

170.5 

(7.1) 

36 

(16) 

55.3 

(7.4) 

12.9 

(6.4) 

23.4 

(3.1) 

 1.5% 
0.3% 

𝐵𝑀𝑅23 = 573 − 2.6𝐴 + 18.8𝐿 + 6.4𝐹 + 𝜀23 0.840  1.9% 

Fontvieille et al., 

1993. [62] 
𝐵𝑀𝑅24 = 767 − 2.2𝐴 + 15𝐿 + 4.4𝐹 + 𝜀24 0.88 63 

98 

(36) 

177 

(6) 

31 

(9) 
- - - 

 

1.0% 0.2% 

Nielsen et al., 

2000. [63] 
𝐵𝑀𝑅25 = 888 − 5.2𝐴 + 15.6𝐿 + 7.8𝐹 + 𝜀25 0.45 100 - - 

32 

(8) 

63.7 

(17.7) 

15.9 

(20.6) 

25.1 

(9.3) 

 

1.6% 0.3% 

Wyatt et al., 

1999. [64]‡ 
𝐵𝑀𝑅26 = 753 − 4.1𝐴 + 17.2𝐿 + 7.9𝐹 + 𝜀26 0.805 16 

79.8 

(12) 

178 

(7.5) 

46.2 

(11.2) 

58.8 

(9.1) 

17.3 

(8) 

25 

(3.6) 

 

0.7% 0.1% 

Luhrmann et al., 

2010. [65] 
𝐵𝑀𝑅27 = 63 + 27.5𝐿 + 𝜀27 0.53 155 

79.7 

(10.9) 

172.9 

(6.5) 

66.9 

(5.2) 

58.2 

(5.9) 

21.4 

(6.4) 

26.7 

(3.4) 

 

0.9% 0.3% 

1n: sample size; 2reported values for each measure are mean and (standard deviation); 3Age (years); 4Height (cm); 5Weight (kg); 6Fat Mass (kg); 7Lean Mass (kg); 8Body Mass 

Index (kg m-2); 9percentage of reduction in goodness of fit measure when excluding each prior model from calculation of the measure; 10total ∆% of the study divided by the 

number of signature of the study, providing a normalized measure of impact of study. 

*Studies that do not include the sex effect in regression are excluded.  †Standard deviations are reported in the studies, or estimated from standard error of the mean (SEM) or 

ranges.  ‡Studies that mixed sample statistics for females and males—gender differences for the similar sample population in NHANES database are used to estimate sample 

statistics for males. 

 

 

  



31 

 

Table I. Parameter estimates and standard deviations for coefficients of the four different meta-model specifications 

Hypothesized meta-model MSC 

BMR=558 + 2.8H  + 7.5F + 12L - 3.1A + N(0,170) 

         (38)*  (0.2)      (0.1)    (0.1)  (0.1)             (10) 
2,676 

BMR=851 + 1.1H + 8.7F + 13L - 3A - 3.3BMI + N(0,172) 

          (48)   (0.3)    (0.2)    (0.2)  (0.1) (0.7)                 (10) 
2,722 

BMR=231 + 4.4H + 3.1F + 16.2L - 2.4A + 0.06F2 - 0.03L2 + N(0,128) 

         (121)  (0.4)    (0.9)     (2.4)    (0.2)    (0.01)      (0.02)              (10) 
2,429 

BMR= -3526 + 3.6H + 11F - 5.8L - 2.6A - 130 ln(F)  + 1299 ln(L)  + N(0,136) 

           (529)   (0.4)    (0.6)  (2.4)    (0.15)   (20)               (161)                     (11) 
2,390 

*(standard deviation)    
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Table J. Alternative 95% confidence intervals found using bootstrapping for the BMR estimation   

Meta-model 4 in Table I 

BMR=    -3526     +        3.6H      +      11F      -    5.8L   -   2.6A    -  130 ln(F)  + 1299 ln(L)    +   N(0,136) 

       (-5084,-1966)*    (2.9,5.2)         (8.6,11.9) (-12.8,1.9)    (-3,-2.3) (-160,-47)         (750,1778)                      (0,148)           

*(95% confidence interval) 
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Table K. The sampling functions used to generate the required samples of explanatory variables for the underlying 

studies using the NHANES data. 

Study Models* 

 Estimated parameters in the sampling function†  

w  m 

w1 w2 w3 w4 w5 w6  m1 m2 m3 m4 m5 m6 

Lazzer et al., 2010. 

[48] 
1,2,3,4 0.53 -0.91 -0.22     67.13 144.34 38.96    

Bosy-Westphal et 

al., 2008. [54] 
5 

-0.08 -0.06 -0.21     82.04 177.50 69.30    

-0.22 0.96 -1.00     87.33 167.50 46.64    

Huang et al., 2004. 

[53] 
6,7,8,9 -0.96 1.00 -0.06     156.60 193.27 43.74    

Javed et al., 2010. 

[55] 
10 -0.88 -0.13 1.00     77.75 177.00 45.00    

Piers et al., 1998. 

[50]‡ 
11,12 

-0.06 0.03 -0.46     65.41 157.74 23.00    

-0.07 -0.09 -0.15     72.98 220.91 63.22    

Soares et al., 2000. 

[56]‡ 
13,14 

0.002  -0.64   -0.47  54.43  25.16   23.25 

-0.07  -0.23   -0.11  82.23  62.33   10.58 

Ravussin et al., 

1992. [57] 
15 0.97  -0.63     79.95  0.02    

Tataranni et al., 

1995. [58] 
16 -0.06 -0.16 -0.17     185.0 167.00 27.00    

Blanc et al., 2004. 

[59] 
17,18 -0.01  -0.43   0  218.0  75.19   29.60 

De Lorenzo et al., 

2000. [52] 
19,20 0.28 -1.00 -0.48     162.23 181.90 17.20    

Ferraro et al., 1992. 

[60] 
21 1.00 -0.75 -0.56     85.10 177.83 25.69    

Ganpule et al., 

2007. [61] 
22,23 -0.93 -1.00 1.00     56.43 164.63 71.75    

Fontvieille et al., 

1993. [62] 
24 0.97 -1.00 -0.69     78.50 174.69 2.13    

Nielsen et al., 

2000. [63] 
25   -0.48 0.12 -0.22 0.75    33.13 52.33 0.03 27.76 

Wyatt et al., 1999. 

[64]‡ 
26 -0.22 0.38 -0.28     65.31 158.97 50.25    

Luhrmann et al., 

2010. [65] 
27 -0.08 -0.04 -0.29     76.26 177.22 66.78    

*See Table H.  †Probability of data selection is  𝑃(𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡) = (1 + exp(−(∑ 𝑤𝑛|𝑚𝑛 − 𝑢𝑛|𝑁
1 )))−1 where w 

and m are estimated using the GMA, and u is sample statistics representing W, H, A, L, and F (provided in Table H).   
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Table L. Impact of different measurement technologies 

Estimation 
Measurement 

technology 
Database/Study Impact* 

Fat Mass  

Dual-energy X-ray 

absorptiometry (DXA) 

NHANES;  

Javed et al., 2010; Piers et al., 1998; Blanc et al., 2004; 

De Lorenzo et al., 2000; Nielsen et al., 2000; Wyatt et al., 

1999. 

1 

Siri's equation and BOD-

POD for body density 

Bosy-Westphal et al., 2008. 0.838 (0.795,0.916)†    

Bioelectrical impedance 

analysis  

Lazzer et al., 2010; Huang et al., 2004; Luhrmann et al., 

2010. 

1.036 (1.033,1.040) 

Hydostatic  Ravussin et al., 1992; Tataranni et al., 1995; Ferraro et 

al., 1992; Fontvieille et al., 1993. 

0.844 (0.712,1.110) 

Equations based‡  Ganpule et al., 2007. 0.865 (0.708,1.025) 

Total body water Soares et al., 2000. 0.963 (0.711,1.700) 

BMR  

Deltatrac  Huang et al., 2004; Javed et al., 2010; Piers et al., 1998; 

Soares et al., 2000; Blanc et al., 2004; Nielsen et al., 

2000; Luhrmann et al., 2010. 

1 

Chamber  Ravussin et al., 1992; Ferraro et al., 1992; Ganpule et al., 

2007; Fontvieille et al., 1993. 

0.932 (0.891,0.990) 

Pneumotachograph  Tataranni et al., 1995. 0.882 (0.846,0.924) 

Vmax 29  Lazzer et al., 2010; Bosy-Westphal et al., 2008. 1.038 (1.028,1.048) 

SensorMedics 2900 Wyatt et al., 1999; De Lorenzo et al., 2000. 0.956 (0.940,0.983) 

*Taking Deltatrac and DXA as the standard methods for measuring BMR and Fat Mass, respectively, the impacts of other 

factors are estimated by GMA. †95% confidence interval estimated using bootstrap method; ‡Tahara's equations (2002) are 

used to predict body density from the sum of skinfold thickness.  Then, Brozek equation (1963) is used for estimation of 

body fat percentage. 
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Figure A. Sensitivity of the estimated parameters in scenarios 1 (two independent variable per prior study) to the error (φ) in 

correlation of the independent variables used for data generation. Normalized squared errors are reported for 100 random 

correlation matrices for each value of φ. 
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Figure B. Sensitivity of the estimated parameters in 2 (one independent variable per prior study) to the error (φ) in correlation of 

the independent variables used for data generation. Normalized squared errors are reported for 100 random correlation matrices 

for each value of φ. 
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