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Supplementary Notes

Note A- Recipe for GMA

Below we provide a recipe of the main steps to use GMA. The Supplementary README (S2
File) provides further details about the code files listed in each step as well as all other code files,
including their actions, inputs, and outputs.

Step 1: Choose signatures and replicate prior models

Code file: User_model_(1).m

The first step is to identify empirical signatures reported in each prior study. For example, if prior
study 1 reports a regression model, one can select the empirical signatures as the intercept of the
model, variable coefficients, and a measure of the model’s goodness of fit. Other prior studies
might have different model structures and empirical signatures. In general, any statistic that
provides relevant information about the phenomena of interest can be selected as a signature.

Once the signatures are extracted and entered into User_model_(l).m code files, the prior
models should be replicated (in the same code files). This replication requires simulated data for
explanatory and response variables—discussed in Step 2 below—and with that data, it samples
from the explanatory variables and estimates the model outputs. The sample from the explanatory
variables is drawn considering the study sample size, subject characteristics, and the variables used
in the respective study. The same model structures reported in the prior studies should be replicated
and their outputs are then chosen as simulated signatures. Note that the simulated signatures and
their orders should be the same as their empirical counterparts.

Step 2: Generate simulated data for explanatory and response variables

Code files:  User_DataGeneration.m and User_SIGMA.m for the explanatory variables
User_Meta_model.m for the response variable

To replicate prior models and estimate their simulated signatures, data for explanatory and
response variables are needed. The multivariate explanatory variables (generated in
DataGeneration.m) should include all variables used in the prior models. A hypothesized meta-
model (specified in Meta_model.m) also produces the response variable. See the paper for more
information about providing/simulating explanatory variables and developing a meta-model.

Step 3: Initiate the GMA and optimization solver

Code files:  User_Generallnputs.m
User_Optlnitiation.m



This step is to igeptify parameters needed for GMA (e.qg., the number of replications in equation
e|(?.,Xf,yf(ﬁ))=§Z(?. —Yf(l‘))) and initial conditions for the optimization solver (e.g., initial value

s=1

for B to start the optimization search). See the Supplementary README (S2 File) for more
information.

Step 4: Weighting matrix, optimization and iteration

Code files:  GMA_W_star.m GMA_Optimization.m
GMA_ObjFn.m

The weighing matrix W, a positive semi-definite matrix, can be estimated optimally when it is
proportional to the inverse of the covariance matrix of the simulated signatures. However,
simulated signatures are computed based on estimated B while no estimated p is available at the
beginning. Hence, a two-step procedure is used. In the first step, the we use a diagonal W with
diagonal elements inverse of square of empirical signatures (and the non-diagonal elements be
zero). Once the meta-model is estimated using this initial W, the estimated B can be replaced

for a second step using a more efficient W which is the inverse of the covariance matrix of
simulated signatures.

Two implementation considerations need attention. First, to estimate the covariance
matrix of simulated signatures, the number of replications to generate S series of simulated
signatures should be large. This large number is only used once to better estimate the covariance
matrix of simulated signatures, so it does not significantly increase the computational time.
Second, if the estimated B in the second round is very different than the estimated B in the first

round, it is recommended to continue with additional iterations until the estimated p converges
(this number of iterations is presented by ‘Opt_n’ in the codes). Using W and optimization
initial conditions identified in the previous step, optimization solver attempts to minimize a
weighted squared of the difference between the vectors of simulated and empirical signatures.
See the Supplementary README (S2 File) for more information about the codes.



Note B- Details of simulated scenarios

Below we report additional details on the simulated scenarios discussed in the paper.

B.1-Scenarios 1-4 (linear models)

In Table A, we provide details of 1000 replications of scenario 1. In each case, we report for the
three prior studies and the meta-model, the mean, standard deviation, means of lower and upper
95% confidence interval bounds, and the percentage of 95% confidence intervals that incorporates
the true parameter value.

In the first four scenarios, the explanatory variables for true data are normally distributed
based on the mean and covariance matrix in Table C. In scenarios 1 and 3, GMA estimates are
found by using mean and covariance values obtained from the (imitated) prior study samples. In
scenarios 2 and 4, the covariance matrix of explanatory variables is assumed to be available from
an auxiliary data source, which enables simulation of required samples for GMA. This assumption
is similar to the approach used in the empirical example where samples of explanatory variables
could be found from the NHANES data.

B.2-(Co)Estimating the correlation matrix of explanatory variables

In another comparison, reported in Table B, we assess GMA’s ability to also estimate the
correlation matrix of explanatory variables from the reported prior study coefficients. This case
would be applicable when prior studies do not report the correlation/covariance matrices, and no
other data source exists to inform the data generation of explanatory parameters. In this setting,
we could use GMA to simultaneously estimate the parameters of joint distribution for the
explanatory variables, as well as the data generation process for the response variable. Specifically,
we assume prior studies have provided mean and variances of each explanatory variable but
correlations should be estimated as part of GMA. In scenario 1, parameter estimates from prior
studies (our signatures) include information about those correlations and thus the correlations
could be estimated. The comparison with the case where correlations from prior studies are used
for generating X variables is reported in Table B. Interestingly, the two cases perform rather
similarly, with somewhat larger confidence intervals for model parameters when correlation
matrix is also estimated using the GMA.

B.3-Sensitivity of results to distribution of explanatory variables

In Figures A and B, we assess the sensitivity of GMA to availability of accurate information on
covariance matrix in scenarios 1 and 2. Specifically, we changed the precision of correlation matrix
of explanatory variables using the following formula and assessed the quality of estimated meta-
models:

Cr; = (1 — @).Cr; + @.Uniform[—1,1]



Here Cr; is one of the 3 elements of correlation matrix for explanatory variables used in
generation of simulated data in GMA, Cr; is the true value of the corresponding correlation element
(see Table C for those values), and ¢ is a weight that allows us to assess a continuum between
correct correlation matrix (¢ = 0) and a fully random one (¢ = 1). In simulations, we only use
valid (positive semi-definite) correlation matrices that are generated from this formulation. The
sum of squared errors in estimated parameters, weighted by corresponding variance of each
parameter, follows an approximate Chi-squared distribution, so we report this error term and the
fraction of 100 simulations for each ¢ that falls under the 95% confidence level (i.e., suggesting a
good overall fit). As expected the precision of GMA depends on having relatively accurate
estimates for the correlation matrix of explanatory variables. Moreover, the results are more
sensitive in scenario 2, where a single explanatory variable is available from each prior study and
errors in correlation matrix would not be compensated for by information in other signatures.

B.4-Scenario 5 (ANOVA)

Next, we report on scenario 5, the ANOVA study. Here sample data for prior studies are generated
using the true model of y=1+x,+x, +xx,+N(0,1), where X,:N(0,0.2), and X,:N(01), with a
correlation of 0.4 between the two variables. Each prior study first categorizes the samples into
three (for X,) or four (for X,) groups representing the relevant percentiles (e.g., different quartiles

for X,) for the corresponding factor. Then ANOVA is conducted on the sample assessing the

existence of a main effect in each case, and main effects (category means-grand mean), MST,
MSE, and grand mean are used as signatures in estimating a meta model of the form
Y =B+ BX + X, + BxX, +N(0,8,). Table D reports sample results from one instance of this

experiment, as well as fraction of estimated confidence intervals in 1,000 iterations (at 80% and
95% confidence levels) which include the true parameter values.

B.5-Scenario 6 (non-linear model)

In Table E, we provide additional details on scenario 6, where two linear models are estimated on
data from a nonlinear data generating process, and the correctly specified model structure is
estimated for the meta-model. The true model is specified based on an empirical estimate which
used a nonlinear regression and raw data to estimate the relationship. GMA is able to extract a
precise estimator (coefficient of determination (R?)=0.997) of the true model from rather mediocre
linear approximations, with no access to any raw data.

B.6-Scenario 7 (random effects meta-analysis)

In scenario 7, we compare random effects meta-analysis using the GMA with classical methods.
In this setup, the meta-analysis starts with prior reports on effect sizes and their standard deviation
(within study standard deviation) and the goal is to combine those effect sizes, assuming that each
effect size comes from a somewhat different data generating processes. While different, the true
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effect sizes are all assumed to come from an underlying normal distribution with mean x and
standard variation o. So the goal of meta-analysis is to estimate these two quantities based on the
reported effect-size and within-study variance.

In simulating data from this process, we use a mean of =10 for true effect sizes in prior
studies, and five levels of between study variance (¢*={1, 2, 4, 8, 16}) to create five distinct
scenarios. The observed effect size for each study is different from the true effect size (for that
study) due to within study variation. The normally distributed within study error for each prior
effect size has a mean zero and a variance that is randomly drawn from a Uniform [0-10]
distribution. We repeat the analysis 200 times for each between study variance scenario. In each
replication, five “prior” true effect sizes are generated using  and o, along with the corresponding
within study variance for each prior study, ¢i. The “observed” effect sizes, ui, are then generated
based on these within study variances and the true effect size that is not observed. Next, the xi and
ei are supplied to both GMA and classical random-effects meta-analysis that uses the DerSimonian
and Laird method [29], and estimates for « and o are obtained using each method. Neither method
requires any other inputs. Table F reports the mean absolute error for estimates of x and mean
absolute percent error for estimates of o using these two methods. For small values of 4 (1, 2, and
4) GMA provides better estimates than classical meta-analysis. Estimates for x are not significantly
different across the two methods. GMA can accommodate other error distributions or more
complex model setups but to keep the comparisons conservative we restrict this scenario to what
can be done using classical meta-analysis tools.

B.7-Impact of measurement noise

To assess GMA’s ability to identify measurement noise in explanatory variables and correct for
that, we conducted 11 sets of analysis, each using the model specification in scenario one, with
different levels of measurement noise. Specifically, we added a normally distributed measurement
noise and changed the standard deviation of the measurement noise as a fraction, 9, of the standard
deviation in each explanatory variable, changing 6 between 0 and 1 with increments of 0.1. In each
setting, we conducted 100 replications to assess large scale results. In each replication, we
generated three prior studies with poorly measured explanatory variables, which in turn added to
biases in the signatures. As signatures, we used the regression coefficients, error terms, and
reported variances of the explanatory variables. We also added three measurement error standard
deviation parameters (fs to B7 in Table G) to the meta-model parameters (oto Ba) and the true
covariance matrix elements (not reported) to be estimated by GMA. Table G reports the results
across 100 replications in each setting, including the 95% confidence interval (calculated using
bootstrapping), the percentage of true parameters falling into this range, and the mean and median
of the estimated parameters. Overall, the addition of these new parameters reduces the reliability
of GMA estimates: confidence intervals are larger and parameter estimates less accurate.
Nevertheless, GMA estimates largely fall within confidence intervals and estimates for
measurement noise correctly increase with the increases in the actual measurement noise.



Note C- BMR estimation details

Table H provides additional details on the prior studies used for the BMR estimation case,
including both estimated models and sample statistics for the explanatory variables. Parameter
estimates for each model (i.e., the model intercept, variable coefficients, and standard deviation of
the error term) and the coefficient of determination (R?) are used as signatures, leading to a total
of 115 signatures going into the GMA procedure.

Table | details the estimated meta-models and the uncertainty in their parameters and
Table L reports the estimated effects of different measurement methods for BMR and FM.

C.1-Samples of explanatory variables

Samples of explanatory variables are needed in the BMR estimation case. While complexity of
measuring BMR significantly reduces the availability of datasets useful for direct estimation of
BMR, the explanatory variables going into BMR equation are easier to measure, and available in
many datasets. In fact, a few waves of the NHANES dataset includes all the relevant variables for
large samples of population. However, the samples used in prior studies of BMR are different from
those of the NHANES sample, therefore we need to fine tune the sampling procedure from
NHANES subjects to get study-specific samples that are closer in their distribution of explanatory
variables to the original studies. The sampling process is conducted following two steps:

1) Providing a large dataset of explanatory variables

Despite the relatively large size of the NHANES database (in tens of thousands), the
number of individual data in some age and BMI groups is not large enough, particularly
for individuals at the tails of distributions, to accommodate many independent samples.
For instance, there are few elderly subjects with BMI of larger than 40 (morbidly or
super obese) in the NHANES, while one of the prior studies (Lazzer et al. [48]) needs
2,000 of those individuals—see Table H. This requires us to sample a large set of
explanatory variables (H, A, L, and F) from a subpopulation not found in large numbers
in the NHANES data.

Thus, rather than directly sampling from NHANES, we opt for simulating a large
dataset based on joint distributions of explanatory variables in NHANES, from which
we can then sample without any restrictions. Specifically, we first find transformations
that turn the marginal distributions of the explanatory variables into normal
distribution, then calculate the mean and covariance matrix of these transformed
variables, assuming multivariate normality. We can then draw unlimited samples from
this multivariate normal distribution and transform it back into corresponding
explanatory variable sets. In the first step we estimated the following transformation
functions to calculate multi-variate normal distributions from NHANES adult data:
H1369 | 0281/4-0.251 and FO-038/H4-0-981 For each various age groups (18-19, 20-25, 26-
30,..., 80-85 years old) we estimate the mean and covariance matrix of these
transformed statistics from NHANES data separately so that we account of impact of
aging on the explanatory variables.

To sum up, this process allows for generating a larger sample of simulated
individuals with statistics consistent with empirical NHANES samples. Compared
using the relevant statistical test [49], the covariance matrices of this large sample of



simulated individuals and NHANES data (3,322 individuals from 2000-2008 rounds)
are not statistically different.

2) Draw sample data for each prior study

Now that a large simulated dataset is available, samples can be drawn that are consistent
with each prior study. To ensure this consistency (i.e., the drawn samples follow the
same subject statistics as those presented in Table H), we use sampling functions. The
sampling functions specify the probability that a simulated subject is included in the
study, and we use the functional form:

P(accepting a data point) = (1 + exp(—CY wyIm, — u,])))~! where w and m
are parameters to be estimated for each prior study, and u is sample means for W, H, A,
L, and F provided in Table H. The sampling function parameters (w and m) are
separately estimated for each study to match the mean and variance of relevant sample
statistics reported in each prior study (this can be seen as a simulated method of
moments estimation). Table K reports these estimated sampling functions. With these
functions in hand, the explanatory variables needed for GMA are generated by drawing
from the large pool of data consistent with NHANES and accepted based on the study-
specific sampling functions.

C.2-Numerical stability and overconfidence in measures of fit

Two implementation considerations need attention. First, given the large number of signatures,
numerical stability in optimization steps could be an issue in inverting the empirical signatures’
covariance matrix—for calculating the efficient weighting matrix. To address this issue, before
inversion, we add a small positive number (epsilon) to the diagonal of the covariance matrix. This
“ridging” of simulated covariance matrix is a common practice in many estimation settings where
singular matrices may result from simulation.

Second, we suspect many researchers pick explanatory variables to get the best fit for the
sample at hand. This customization of the regression function can lead to inflated fit measures that
mislead GMA. For example, Piers et al. [50] provides the R? of 0.9 for young and elderly subjects
using a small sample size (less than 40) and, with only one explanatory variable (W). While more
complex models (i.e., those including more explanatory variables) with larger sample sizes report
lower R>—see Table H. If we put too much emphasis on matching this high R?, GMA may
unrealistically adjust other model coefficients. As a first step to fix such problems we inflate the
variance in R? signatures by 0.01 to account for the additional variance that is due to sample-
specific model customization and not sampling alone. This is a crude fix for the complex inter-
study heterogeneity and more reliable solutions are a promising avenue for future research.

C.3-Bootstrapped confidence intervals

Table J reports results of estimating the 95% confidence intervals using bootstrap method (Note
1) based on 200 iterations, for the best fitting model structure. These results are consistent with
the confidence intervals using asymptotic derivation and are slightly larger and asymmetric, which
is expected in comparing bootstrapped and analytical confidence intervals that rely on asymptotic
normality.



C.4-Variations in measurement methods

Table L reports the impact of different measurement technologies on measured BMR and fat mass.
Specifically, taking Deltatrac (indirect calorimetry, open circuit) and DXA (Dual-energy X-ray
absorptiometry) as the standard methods for measuring BMR and Fat Mass, respectively, we
define o parameters that specify the bias in other measurement methods compared to the
benchmarks above. These bias parameters are incorporated into simulation models of prior studies
to transform benchmark measure of BMR and FM to study-specific measures, which are then used
in estimation. For example, if one study measures Fat Mass using Bioelectrical Impedance
Analysis (BIA) with a=1.036, in creating its simulated signatures, Fat Mass values from the meta-
model are multiplied by 1.036 to get the study-specific Fat Mass values entering the relevant
regression. The value of 1.036 informs us that BIA relatively overestimates Fat Mass (this estimate
is consistent with findings in Hendel, Gotfredsen (51)) and a similar interpretation can be applied
to other bias estimates. Estimated bias parameters remain around 1, which is reassuring; when
they are (statistically) significantly different from one, that indicates a notable difference between
that measurement method and the benchmark. Therefore, we hope these estimates can prove
helpful for understanding the differences among prior studies and offering a quantitative method
for comparing and calibrating alternative measurement methods.

C.5-Goodness of fit and its determinants

In our BMR example, the goodness of fit measure is calculated at 2,356 which rejects the
hypothesis that the estimated meta-model is fully consistent with the empirical signatures (the y?
test statistic at 95% confidence level is 122.1). Given the large number of signatures (115 in this
example), this result should not be surprising. Two potential explanations can be used to
understand these results. First, inconsistencies among the empirical signatures may be induced by
various biases in prior studies (e.g., publication bias may lead to the presentation of only a subset
of statistical results with some unobservable bias), or by use of populations different from those
we simulate (e.g., due to limited information reported on the explanatory variables). Second, we
only explored a handful of alternative models; better model structures may be hypothesized that
could reconcile the various empirical signatures.

We further explore the variations among the prior studies by calculating the changes in
goodness of fit measure (A) when excluding each study. Specifically, we can remove signatures
associated with each prior study and measure the resulting change in the goodness of fit measure.
The larger this change for a study, the more those empirical signatures are inconsistent with the
estimated meta-model. This measure may point to studies that are inconsistent with the rest of
prior empirical evidence. It may also point to the weaknesses of the meta-model in covering a
range of empirical regularities identified in that subset of prior studies.

In our example, we calculate and report these changes (A values) in Table H, along with
this measure normalized by the number of signatures each prior study includes, to have a number
that is comparable across prior studies. Based on this measure, we find 3 (out of 16) studies—{[52],
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[48], and [53]—which together account for 80.1% of the goodness of fit measure. These three
studies also include significantly larger error per signature (ranging between 1.3-4.2% per
signature, compared to 0.1-0.5% per signature for all other studies). Two of these studies, [48] and
[53], are coming from extremely obese subjects (average BMI of 41.6 and 47.1) which may partly
explain the larger errors. In fact, in this BMI range, we had limited data from NHANES and thus
had lower confidence in the estimated covariance matrix for generation of explanatory variables.

C.6-Minimum theoretical error

To put the comparison of prediction errors on the validation dataset in perspective, it is helpful to
have an estimate for the minimum error that is feasible to achieve in predicting BMR using the
available explanatory variables (i.e., H, A, F, and L). This theoretical minimum should exist
because due to unobserved genetic and environmental factors, individuals would always have
some variation in their BMR that is not predictable by the four explanatory variables above. This
minimum error would provide us with an estimate for what a perfect model can achieve. We use
two approximations to measure this theoretical minimum.

First, we can use the best fitting model structure found using the GMA (i.e., model 4 in
Table 1), and use the validation dataset to estimate the parameters of that model structure. The
resulting equation would have the minimum error feasible for the validation sample and provides
one approximation for the minimum theoretical error possible. This is the error that is reported in
the text (mean absolute percentage error (MAPE) of 6.60%). Note that this method is both
estimating and calculating the error using the same sample of 159 subjects, and as such its
predictive power may not extend to out of sample predictions. In fact, if we divided our dataset
into the training and prediction subsets using a 10-fold cross validation method, the prediction
error would increase to 6.73%. This result indicates that GMA, using the results of several large
sample studies, can provide equations that are more precise than the one estimated using a smaller
sample but the same exact population group.

Alternatively, the minimum error could be approximated using the GMA equation itself.
Specifically, the individual variations are accounted for in the error term of the data generating
function in our GMA estimate. This error is distributed normally with mean O and standard
deviation of 136 Kcal/Day in our best fitting model. Therefore, we can generate simulated BMRs
(including this noise term) for 159 simulated subjects that have the same values of explanatory
variables as those in the validation dataset. We can then compare those simulated BMRs with the
predicted values for the same subject, using the GMA-estimated equation. Repeating this
procedure for a large number of times (20,000 replications in this case), we can calculate the
expected MAPE on this validation dataset, if the data generating process was indeed following our
estimated GMA. This expected error is 6.40%, which provides another estimate for the minimum
error feasible in predicting BMR.
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Either of these estimates for the minimum achievable error—based on the validation
dataset—in predicting BMR is very close to the error achieved by GMA, and shows that GMA has
closed most of the prediction gap between prior models and the best that is feasible.
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Note D- Statistical setup and assumptions of GMA

Recall the general data generating processy = f(x,g;BO) describing the relationship between the
response  variable 'y and explanatory variables X= [Xi ]; 1=12,...,1  where
Bo =4} i=12...,3 are the function’s parameters and & is a random error term with E(s)=0.

As mentioned earlier, in GMA, we estimate the data generating model by utilizing the
results of L available prior studies, each including a subset of |, <1;1=12,...,L explanatory
variables and a response variable denoted by X, and Y, , respectively. Let v, =h,(X,,y,) be the
empirical signatures from study | estimated by N, observations.

To estimate B, using the GMA, we simulate the function f using a set of parameters B to
generate y° values given simulated X° values, and transform X® and Y values using the function
v (B) = h,(Xf,yf(B)). We posit that the resulting vector of statistics (v, (B)) would be close to
the estimated parameters in the empirical studies (7, ) if B is close to B,. Consequently, we find
a vector of P that minimizes the estimated expected error between simulated signatures and

S
empirical signatures, i.e., e, :%Z(’i, —yf(ﬂ)), for each study using the following optimization
s=1
model.
B =argmin{e” We},
B
where W is a positive semi-definite matrixand e=[e; e --- €[] .

Assumptions:

Let y,, denote the vector of parameters in study |, estimated by the estimator function h,(X,,y,).

Suppose the function h,(X,,y,) , is in a form of ¥, =argmin q,(X,,y,,v), where ¢,(X,,y,,Y) can
v

be a negative-likelihood function, a loss function, or any other functions minimized to obtain the

estimates. For example, in the case of linear regression, the g function for regression coefficients
is an ordinary least square loss function. Also, define the vectors of estimated and simulated

signatures  across all studies, respectively, by Y()=[7s() 7.() ... 7O and

ys(.):[ygT(.) yfT(.) ySLT(.)]T. Following Gourieroux et al. (1993), we make the
subsequent assumptions to study the asymptotic properties of proposed GMA.

(Al). The Stochastic loss function used for estimating signatures in study I, i.e., g,(X,,y,,Y) .

asymptotically approaches a continuous non-stochastic function with a unique minimum. For
large enough samples, the loss function of each study will be deterministic whose minimizer
is the vector of the true parameters of the sub-model estimated in the corresponding study.
More rigorously, the vector-valued function
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a(X,y,y) =[0,(X Y, y) (X, Y,.7) ... a(X,.y,,1)]" asymptotically tends to the non-
stochastic function Q(FvaﬁOv'Y)=[Q0(F11R17ﬁ017) Ql(FZ’szl}O"Y) Q|(F|'R|vBo"Y)]

Q (R, Ry.Bo.v) F R;1>0

I"and
land ®' for study I, respectively, and is Rq the marginal distribution of between-study

eviat&ns, asgme?l: |50 be  independent of within-study errors. In other words,
nllglq Y1) =Q(F, ’BO’Y). We assume that the limit function is continuous and has a

where is the limit function, and

X

are marginal distributions of

unique optimum denoted by Yo = argymin Q(F.R.Bo.7) , implying that v() is a consistent

estimator of Yo

(A2). The information about explanatory variables (i.e., X) given by prior studies suffice to
fully identify the distribution of X . This information could be in the form of full distribution
information, estimated parameters of the distribution, or observed explanatory variables. In
the case that prior studies provide only the estimated parameters of the distribution, it is
assumed that those estimates are consistent.

(A3). Define the so-called binding function by g(F,R,)=argmin Q(F,R,-,y) and assume
v

g(F,R,) is one to one and %{?’B) is of full-column rank. Consequently, y, =g(F,R,B,)

. This assumption states that there exists a minimizer for the limit loss functions of all studies
that is defined by marginal distributions of explanatory and response variables. If true

parameters of the data generating process (B, ) were known, this minimizer would be the true
parameters of the sub-model in each study.

(A4). Assume the difference between each study’s score function and its corresponding

S S S
simulated score  function, i.e, leﬁw_ﬁézw
=1

asymptotically follows a normal distribution with zero mean and a variance given by
V = lim(var(z,)) .
n—o

Note that these general assumptions discussed in (Al1-A4) hold true for most estimators
including maximume-likelihood estimators, least square estimators, etc.

Note E- Consistency of GMA estimators
Proposition 1. Under assumptions (Al) - (A3), the GMA estimator |3 =argmin{e’ We} is a
B

consistent estimator of the data generating model’s parameters, B,.
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Proof The first-order, condltlon of the optlmlzatlon criterj

n n

Also, the first-order Taylor expansion of { Z(y Y (B))} around B, is given by

s=1

léi&ys(ﬁ)} W{%i{?—vs(ﬁo)— or B Bo)ﬂ ~ 0, which leads to

s=1 aB s=1

- ([reard®] Jieare) ]| [1eawr® ]| G-
(BB"”HEH op }W&Z op H {s B } [ 2 (B‘))} o

Recall that y°()=argming,(X},y;,y) which asymptotically tends to the binding function
Y

g(F,R,). Consequently, y*(B,) tends to 9(F,R,B,)=7, (A3). Sincey is a consistent

S A~
estimator of v, (Al), {?—éZyS(BO)}—)O for fixed S, which implies that B is a consistent
s=1

estimator of B,. m

Note F- Asymptotic distribution of estimators

Proposition 2. Under assumptions (Al)-(A4), the estimator B =argmin{e" We} is
B

asymptotically normal when and S is fixed, i.e., \/ﬁ(ﬁ—ﬁo)i N (0,X(S,W)),

where n=min{n,} and

(5, W) :(“éj(agT(F, R.Bo) \,, 9(F, R,[}O)J_

op op
(agT(F,R,BO)WJol(,O_KO) Jolwag(F,R,BO)J(agT(F,R,BO)Wag(F,R,ﬂo)j1
op op op op
where |, :rl]im var{\/HW},
K, = lim cov) yn CCYYe) R AAOCYLY| oy g CQERBoTo).
" o o o1y
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Proof: Based on (Al), it is true that W:O , Where w denotes 290%Y.7)

evaluated at y . Using the first-order Taylor expansion of aaX.y. 1) around vy, , we get

a Xa ' 62 X1 ' ~ -~ = a X! '
AO%Y.Y0) | FUXYY0) (7 T, (F-70) = I A Ta)
oy oyoy oy
Consider the dataset used in each study (i.e., X, and Y,) as one stream of simulated data,
denoted by X°® and y° . Consequently, by replacing ¥ with y*(B) , we have

S -1 aq(xsvys’YO)
—Yo zJO _—
(v°(B)—7,) -

S S S S
Thus, Vn(y - éZys B)) ~ Jol{\/ﬁw - \/F%ZW} Therefore, under
s=1 s=1

assumptions (A4), this difference is asymptotically normally distributed with zero mean and the
following covariance matrix.

S f—

var(\/ﬁ(? —%Zys(p))] = Jg{(ﬂéjlo - 2K, +¥ KO}J;l = (1+ é}]gl(lo ~K, )35 (P2)
s=1

Based on (A2) and (A3), (P1) in Proposition S2, and the fact that oy*(B) asymptotically tends to

’YO = g(FvR!BO) ’

i gy [09 (FRBo)\, O0(F.RBo) ) A8 (F.RBo) il = 1 on y].

Consequently, +/n(p— B,) is asymptotically normally distributed with zero mean and the
variance of

(agT (F,R,Bo)Wﬁg(F,R,Bo)]_l(ﬁgT(F,R,Bo)anr[ \/ﬁ{?_ 13 )DW ag(F,R,BO)J
S s=1 °

op op op op
29" (F.R.Bo) \,, 99(F. R, o)
op op

Using (P2), the asymptotic variance of /n(p — B,) iswritten as

£(5.W) :(1+ é][agT (F.R.B,) W@g(F,R,mj

B B
(agT (FRBo) i1, K, )IW ag(F,R,BO)IagT(F,R,BO) Wag(F,R,ﬁo)J -
o op op op
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Note G- Optimal choice of signatures’ covariance matrix and its
estimate

Proposition 3. Under assumptions (Al)-(A4), the optimal choice of the matrix W is
W =J."(1,-K,)J;', which minimizes X(S,W). Consequently, the optimal X(S,W)is
R 1Y ag" (F,R, L. gF.R.B))

> (S,W )=(1+§j£ g (aB BO)‘]O(IO_KO) 1‘]0 g( aB BO)] .

A consistent estimator of X(S, W) is given by (s, W") = (1+ é )(FT A—lr)—l where

1 S o o S S = 1 S
s=1 s=1

generated using any consistent estimator of B, , e.g., |§ computed using an identity W matrix.

I is a numerical derivation of M, with respect to B evaluated at ﬁ .

Proof: As shown in Gourieroux et al. [18], A is a consistent estimator of W™ = (1, - K,) . Also,
as tim- DY T FQFER B 1)
N oyoy ooy
_ofa(X YY)
ooyt
Recall that y, =argmin Q(F,R,B,,v) =9(F,R,B,) . Therefore, the first-order condition is
v

=J,, a consistent estimator of J, is given by

9Q(F.R,B.9(F.R,B))

written as o =0. Consequently, the second derivative with respect to p gives
2 2
8 Q(F7 R’_I?O’YO) + a Q(F’ R’PO’YO) ag(F7 R’BO) =O , Wthh Implles
oyop oyoy op
g(F,R,B,) _ 3 azQ(F,R,BO,YO)
op T oyopt

82Q(F1R1B0’V0)
oyop’

consistent estimator for X(S, W) given by

with their consistent estimators leads to a

Replacing (I, -K,), J,and

£(S, W) = (1 + %)(FTAlF)l

In practice, we start with a promising W (e.g., the diagonal matrix with reciprocal of squared

signatures), estimate the [3 , then use that to simulate a large sample (in 1000s) of signatures and
calculate the simulated covariance matrix, which will be used in the second iteration to estimate

f} . The process can be continued until convergence, which typically happens in a handful of
iterations.
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Note H- Asymptotic variance of meta-model estimate using delta
method

As shown in S3, under assumptions (Al)-(A4),

JnB-p)>N©,2(S, W)

Estimation of X(S,W), however, could be cumbersome, especially when q(-) functions have

nonlinear and complex forms. In such a case, one can use the Delta method (Bishop et al., 1973,
Section 14.6) to approximate the covariance function.

Suppose f = arg mﬁin[éé(?—ys(ﬁ))} [ Z(y Y (B))} and X, denote the asymptotic

s=1
S A
covariance of (éz (y-v° (B))) . Using the Delta method the asymptotic covariance of B is

written as

g Sa-r o] w36 o) D [Eg(?—YS(B))TWESZS;(?—VS(B))B

After algebraic simplification, we have
5 _)u Say(ﬁ)} {wayswﬂ giavs(ﬁ)} W
S'E P S'E P ST OB

rear®|[1ear®] J1eo®]]
{52 op M§z op }W%Z op

s=1 s=1 s=1

N—

If the optimal weight matrix (W), discussed in S4 is used, the approximate covariance matrix can
be rewritten as

i:(“%ﬂ%i&ﬂﬂ {iaﬂﬁ)ﬂ

s=1 aB s=1 aB
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Note I- Confidence intervals using bootstrapping methods

The use of boot-strapping for the calculation of confidence intervals is straight forward.
We start by estimating the meta-model using the GMA. Then we generate M simulated data sets
using the estimated [3 , conduct the imitations of prior studies on these M studies, and then
estimate the parameters of each using the GMA. The empirical distributions of the resulting M

estimates for f} can be used to construct the bootstrap confidence intervals. Note C.3 provides a
comparison of using bootstrapping and analytic confidence intervals in our empirical application.

Note J- Goodness of fit test

Given that the number of signatures is typically larger than the number of parameters for
the true function that we estimate, the error function minimized in GMA usually does not reach
zero. In fact, the size of this error function provides insights into the goodness of model
specification, i.e., how well the estimated model replicates the empirical signatures.

Proposition- Under assumptions (Al)-(A4), if the data generating model is correctly specified,
the following statistic is asymptotically distributed as a chi-square with the degrees of freedom
equal to dim(y) —dim(B) .

zo=—mﬁm[f > v(s»} Ei(?—v%ﬁ»]

1+S

Where \fV* is a consistent estimator of W".

Proof: Suppose ﬁ is the GMA estimator. Consequently, the test statistic y, is given by

= f{ Z(v V(B))} [;i(‘v‘—ﬂﬁ»}

The first-order Taylor expansion around B, is written as

S [ z(*—w(ﬂo)—@”ﬁ“")(ﬁ Bo)ﬂ [;Z[v 700G Bo)ﬂ

From P1, it is given that

1S B) |

_gET_(ﬂ—BO%

e ar@)[1ear®)T. J1eor®)]) [1<or®)

EZ op HEZ o } {Ez o ﬂ {52 o } {"ZY (B‘))}
and thus,
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\/ﬁ{?—%ZYS(Bo)}—\/ﬁEZWa? °)](ﬁ—ﬂo) ~(-RNA 7~ 37 00|

where R is an orthogonal idempotent matrix with full-column rank

-1

reoa®][1eor®] Jico®]| [1ear®] .
s e

e < 0P = P = P

Therefore, the test statistic is written as
s _18 ' - _ 18
Xo = m\/ﬁ{v—ggvs(ﬁo)} (1-R)"W"(1- R)[v—ggvs(ﬁo)}
From Proposition 2, we know that

1S, d S )
\/ﬁ[y—ggiﬂ (Bo)}—”\{o,(mwj J

d
2
Therefore, x, — Yainy)-dimp) - ®

Note K- Model selection criterion

In reality, the structure of true model f is often unknown, and one can only presume the
structure based on experience and domain knowledge. Thus, it would be common to propose and
estimate a set of candidates for the true model, choosing the one that fits the data better. Intuitively,
the goodness-of-fit test statistic ( 4,), introduced earlier, can be used as a criterion for model

selection. However, if 4, is used as the sole criterion, the metric favors more complex models

with more parameters: more complex models are prone to over-fit the signatures and thus have
smaller 4, values. To avoid overfitting, similar to Akaike information criterion (AIC), we

discourage model complexity by introducing a penalty that penalizes the large number of model
parameters. Hence, the model selection criterion (MSC) is defined by

MSC = y, + Axdim(p) ,

where dim(p)is the number of model parameters, and 4 >0 is a weight factor promoting model

simplicity. Larger values of A lead to simpler models and vice versa. In AIC, the A value is
chosen to be two. The MSC criterion is calculated for a set of model candidates that pass the
“specification test” and the one with the least MSC value is chosen as the best candidate for the
true model.
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Supplementary Tables

Table A. Comparison of prior studies and meta-model in 1,000 estimations of the first scenario

Parameters
Prior models
from Scenario 1 a Vs Vs Va Vs
Inclusion percentage! 94.5% 48.5% 0.0% 0.0%
Study 1 Mearzl 1.004 1.839 2.551 3.425
(SD) (0.190) (0.412) (0.189) (0.494)
Means of 95% CI bounds 0.634-1.374 1.003-2.674 2.178-2.924 2.414 - 4.230
Inclusion percentage 95.7% 87.8% 0.1% 36.3%
Study 2 Mean 0.995 0.783 1.321 1.508
(SD) (0.123) (0.280) (0.056) (0.210)
Means of 95% CI bounds 0.749 -1.240  0.218 - 1.347 1.209-1.434  1.063-1.862
Inclusion percentage 96.1% 91.5% 84.7% 87.7%
Study 3 Mean 1.006 0.915 1.063 1.195
(SD) (0.113) (0.146) (0.068) (0.172)
Means of 95% CI bounds 0.787 — 1.224 0.607-1.223  0.925-1.201  0.843 - 1.475
Inclusion percentage 93.7% 93.2% 89.3% 90.7% 83.5%
g&ﬁ;ﬂ%dg; Mean 1.001 0.967 0.961 1.013 1.016
GMAZ (SD) (0.079) (0.249) (0.147) (0.060) (0.091)

Means of 95% CI bounds 0.856-1.147 0.516-1.418 0.717-1.205 0.908-1.117 0.881-1.151

Percentage of estimated 95% confidence intervals including the true value over 1,000 estimations; 2Mean and Standard
Deviation of 1000 estimations; 3Covariance for explanatory variables are extracted from prior studies—see Table C for true
covariance matrix.
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Table B. Comparison of meta-models in 1,000 estimations of the first scenario with covariance extracted from prior studies (top row) and unknown correlations
estimated using the GMA (bottom row).

Parameters
Prior models
from Scenario 1 ﬁo ,Bl ,82 ﬂe, ﬂ4 ﬂs ﬂe ﬂ7
true value=1 true value=1 true value=1 true value=1 true value=1 true value=0.05  true value=0.2  true value=0.7
Inclusion percentage! 93.7% 93.2% 89.3% 90.7% 83.5%
Zﬁﬁgﬂ%"g' Mean 1.001 0.967 0.961 1.013 1.016
GMA* Y (SD)? (0.079) (0.249) (0.147) (0.060) (0.091)
Means of 95% CI bounds 0.856-1.147 0.516-1.418 0.717 — 1.205 0.908 - 1.117 0.881 —1.151
Inclusion percentage 93.6% 99.6% 95.5% 99.8% 98.7% 100% 100% 100%
Zﬁﬁ;ﬁg' Mean 1.003 0.996 0.989 1.004 0.998 0.068 0.209 0.699
GMA? Y (SD) (0.078) (0.259) (0.133) (0.055) (0.089) (0.117) (0.115) (0.061)
Means of 95% CI bounds 0.855-1.150 0.103 -1.889 0.612 — 1.366 0.888 - 1.119 0.749 — 1.247 -0.708 — 0.845 -0.435-0.853  0.530 - 0.864

IPercentage of estimated 95% confidence intervals including the true value over 1,000 estimations; 2Mean and Standard Deviation of 1000 estimations;
“Covariance for explanatory variables are extracted from prior studies; Covariance for explanatory variables are estimated— g, , are the correlations of the explanatory variables.
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Table C. Mean and covariance for explanatory variables in the first four scenarios

Covariance matrix*

Variable Mean X X X

X1 0 0.20 0.02 0.20
X2 0 0.02 1.00 1.57
X3 0 0.20 1.57 5.00

*Correlation coefficients are: py, y, = 0.05, px, x, = 0.2, py, x, = 0.7
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Table D. Results for estimating a continuous underlying model using ANOVA results that assess the mean effects
of discretized explanatory variables

. Parameters
ANOVA Experiment 5 A 7 y: 7
0 2 3 4
samole Stud GMA Estimate 1.05 0.84 1.09 0.78 1.05
ample Study 9504 Confidence Interval (0.82,1.29) (0.33,1.36)  (0.89,1.29)  (-0.18,1.74)  (0.85,1.25)
80% .
Confidence Inclusion percentage outof 74 go, 79.3% 80.4% 80.4% 82.9%
1000 iterations ’ '

Interval
95% .

' Inclusion percentage out of 0 0 0 0 0
Icncigl;u\fi;nce 1000 terations 95.5% 93.3% 95.3% 92.9% 96.7%
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Table E. Non-linear example: measuring leakage of transmission fluid (Y) in power systems based on temperature
and time

Temperature ~ Time

Intercept o,
Underlying true model (non-linear) * M ® _,
F = (Bo, + Bo,T) (1 — exp{—Bo,t}) + & A I Ps Pa R
1.014 -0.122 0.675 2.22E-5
Linear model 1 0.981 -0.122 0.012
8.97E-05 0.849
F, =a,+ byt +cT +¢& (0.034) (0.005) (0.001)
Linear model 2 0.086 0.011
. 8.95E-05 0.491
Fi=a; +bit+¢, (0.005) f (0.002)
Meta-model estimated by GMA 1.044 -0.126 0.712 1.32E-05 0.997¢
F = (B + BT)(1 — exp{—Pst}) + &3 (0.027) (0.004) (0.061) (6.51E-05) E—

*Underlying true model is extracted from Paynabar et al. (2012), equation (2) for part #11. fStandard Deviation. ¥ Model
Selection Criterion—smaller value of MSC indicates a better fit—see Note K for more discussion about the MSC. *Goodness of

fit test does not reject the meta-model: (x, = 3.4) < (x3=3 =7.8).
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Table F. Comparison of GMA and Analytical random-effects meta-analysis across five scenarios with different
between study standard deviations (o). Results are averaged over 200 replications in each scenario.

ir':{al@t\ﬁél ot =1 0’ =2 o’ =4 c2=8 o2 =16
EMA MAE" 0.1 0.96 111 1.34 1,60
Znalytical MAE 1.02 1.00 111 134 1.69
gZM A MAPE' 231% 170% 106% 90% 73%
o 309% 192% 124% 91% 76%

Analytical MAPE
“Mean absolute error; "Mean absolute percentage error
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Table G. Results of measurement error analysis based on the case of scenario one, assuming measurement noise
levels as a fraction (8 between 0 and 1) of the underlying variables’ actual standard deviations, and estimating the

extended meta-model with three additional unknown parameters

Prior models
from Scenario 1

Parameters

Standard deviations of
measurement errors for the three
explanatory variables (X1 — Xs)

By

Py

P,

s

P

Bs

B

B

true true true
true true true true true value=  value= value=
value=1 value=1 value=1 value=1 value=1 5V032 oV 5VE

Inclusion percentage? 96% 92% 90% 89% 100% 82% 82% 85%

Mean? 1.01 2.16 1.46 0.85 0.34 0.17 0.25 0.33

§=0 Median® 1.01 1.25 1.17 0.87 0.17 0.14 0.20 0.26
95% ClI bounds* 0.88-116 043-7.72 0.35-326 0.15-14 0-105 0-042 0-0.62 0-0.87

Inclusion percentage 96% 94% 90% 89% 100% 87% 84% 86%

Mean 1.01 2.03 1.45 0.86 0.39 0.15 0.25 0.35

§=01 Median 1.01 1.14 1.14 0.91 0.28 0.09 0.19 0.28
95% CI bounds 0.88-1.15 0.38-7.79 0.36-3.19 0.17-14 0-1.04 0-042 0-0.62 0-0.88

Inclusion percentage 97% 98% 90% 87% 100% 87% 84% 83%

Mean 1.01 2.06 1.42 0.85 0.44 0.16 0.26 0.40

§=02 Median 1.01 1.18 1.15 0.89 0.34 0.10 0.16 0.30
95% CI bounds 0.88-115 0.38-7.08 0.4-3.15 0.18-14 0-113 0-043 0-0.66 0-0.98

Inclusion percentage 98% 97% 91% 86% 97% 89% 84% 84%

Mean 1.01 2.16 1.68 0.74 0.51 0.17 0.28 0.41

§=03 Median 1.01 1.22 1.19 0.86 0.42 0.12 0.20 0.31
95% CI bounds 0.87-115 0.16-871 0.27-354 007-149 0-124 0-044 0-07 0-111

Inclusion percentage 99% 99% 90% 81% 95% 88% 87% 86%

Mean 1.01 2.74 1.50 0.75 0.56 0.20 0.30 0.49

§=04 Median 1.01 1.29 121 0.80 0.46 0.19 0.20 0.35
95% CI bounds 0.86-1.16 0.22-1151 0.12-3.78 005-154 0-138 0-046 0-0.75 0-1.28

Inclusion percentage 99% 98% 88% 79% 96% 84% 83% 89%

Meta-model Mean 1.01 2,51 1.62 0.72 0.59 0.22 0.37 0.58

estimated by §=05 i

GMA* Median 1.01 1.31 1.20 0.72 0.49 0.23 0.38 0.42
95% CI bounds 0.84-118 -0.6-11.63 -0.07-4.36 -0.24-168 0-1.48 0-05 0-08 0-1.46

Inclusion percentage 99% 99% 89% 84% 95% 81% 86% 89%

Mean 1.01 2.66 1.56 0.72 0.65 0.24 0.41 0.70

§=06 Median 1.01 121 1.14 0.69 0.54 0.25 0.45 0.56
95% CI bounds 0.84-118 -0.16-124: -044-44 -024-178 0-1.63 0-052 0-0.87 0-1.65

Inclusion percentage 98% 98% 87% 81% 94% 80% 85% 93%

5=07 Mean 1.01 291 1.92 0.56 0.67 0.25 0.47 0.84

Median 1.01 1.16 1.14 0.63 0.47 0.26 0.53 0.68
95% CI bounds 0.84-119 -1.61-16.8 -057-566 -0.72-182 0-177 0-055 0-0.97 0-1.86

Inclusion percentage 98% 98% 89% 81% 95% 81% 87% 97%

Mean 1.01 2.92 1.69 0.62 0.70 0.29 0.54 0.89

§=08 Median 1.00 1.23 1.13 0.56 0.59 0.34 0.68 0.64
95% CI bounds 0.8-121 -1.93-15.8¢ -0.44-489 -04-1.76 0-19 0-058 0-1.04 0-2.07

Inclusion percentage 98% 99% 89% 81% 95% 78% 87% 98%

Mean 1.01 242 1.79 0.60 0.71 0.31 0.60 1.07

§=09 Median 1.00 1.03 1.06 0.52 0.53 0.39 0.75 1.12
95% CI bounds 0.79-122 -3.63-18.1¢ -0.75-5.34 -1.19-2 0-2.04 0-06 0-114 0-228

Inclusion percentage 98% 99% 89% 78% 93% 73% 88% 97%

P Mean 1.01 2.50 1.81 0.55 0.80 0.33 0.66 111

Median 1.00 1.00 0.95 0.47 0.59 0.41 0.82 1.05
95% CI bounds 0.78-1.23 -10.22-19.7 -156-6.86 -0.43-197 0-217 0-0.64 0-1.23 0-2.53

1 Percentage of estimated 95% confidence intervals including the true value over 100 estimations, for each value of &;

2 Mean of 100 estimations;
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% Median of 100 estimations;
495% confidence interval estimated using bootstrap method;

*Covariance for explanatory variables are estimated using GMA— Bg_15 are used as the elements of a square root matrix of the covariance

matrix. Estimating the square root matrix ensures that the covariance matrix is always semi-definite positive;
TWe assumed that all three explanatory variables are affected by measurement errors; therefore, after generating explanatory multivariate random

variables, we added random measurement errors with standard deviation of g. ., . Also, the true values of g, . are proportional to & and the

true standard deviations of the explanatory variables (+0.2, V1, and v5).
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Table H. Studies which estimate BMR (in Kcal/day) for white males, over 18 years old, based on a recent review of the literature [16]

Estimated Models R? Sample Statisticst Change in goodness of fit
Study* intercept, variable coefficients, and used as used as nt
gignatufés) o) Si(gnature) W5 H¢  AS LT F5 BMI A% A%/#Sgnt. 10
BMR, = 1050 + 11W — 3.34 + & 0.60 0.3%
Lazzeretal., 2010. BMRz =542 +10.5W +3.1H —3.14 + & 0.60 000 1239 170 463 782 458 416 10.2% 6%
[48] BMR; = 830 — 2.44 + 19.6L + & 0.59 (226) (10) (138) (144) (85 (638) 11.0%
BMR, = 1021 — 3.3A + 11.9L + 9.8F + &, 0.60 7.8%
83 174 688 583 246 27.4
Bosv-Westohal et ® (104) ) @7 () (@6 (34
| Zoos 5'34 BMRs = 865 — 5.34 + 17.1L + 10.1F + & 07 0.9% 0.2%
al., 2008. [54] s 07 181 457 657 249 276
(15) (7) (6.6) (8.6) (12.4) (4.2)
BMRg =329 + 10W + 4.1H — 2.3A4 + &, 0.750 2.2%
471
Huang et al., 2004. BMR; = 1926 — 6.2A+ 11.5F + ¢, 0.657 )18 146.4 176.1 439 81 62.5 ©2) 2.5% 139
53] BMRg = 1436 — 6.14 + 26.8BMI + & 0.647 (323) (86) (129) (12) (19) . 7.5% '
BMRgy = 826 — 2.94 + 20.5F + &, 0.588 9.3%
78 177 51 624 148 249
Javedetal, 2010 pyrp ' 793 _ 314 + 14L + 6.2F + £1 0.696 2% 1.4% 0.3%
[55] (11.5) (8 (21) (6.9) (86) (3.3)
734 1772 23 614 125 231
BMRy, = 764 + 12.2W + &, 0.9 38 0.7%
Piers et al., 1998. (109) 7.7y (3 (102) (6.7 (32 029t
- . 0
[S0)* 792 1769 623 587 186 252
BMRy, = 556 + 12.2W + &, 0.9 24 0.8%
(108) (75) @8 ©O7) (71 (34
BMR 403 + 19.4L + 8.8F + 48 764 24.9 237 0.5%
= . . & - - - - 270
Soares et al., B " (9.8) 2.4) (23) 0.3%
. 0
2000- eF BMR,, = 267 + 19.4L + 8.8F + 28 802 63.3 26.3 1.3%
= ' O T 1 (10.6) (5.6) (3.6) e
Ravussin et al. 93.2 32 23.3
' BMRys = 914 — 4.3A + 14.3L + 6F + 0.68 327 - - - 2.1% 0.4%
1992. [57] 15 £1s (39.8) (15.8) (10.7) ’ ’
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Estimated Models

RZ

Sample Statisticst

Change in goodness of fit

Study* intercept, variable coefficients, and d d nt
e e Ao e Y WS HY AR L7 F5 BMI A% A%IHSgN 0
i 100 173 29 66 34
Lot A BMRyg = 681~ 1.6A + 15.9L + 5.9F + 10 0.73 353 - 0.9% 0.2%
- [58] (8) () (™ @1y (9
Blanc et al., 2004. BMR; = 1294 4+ 9.7W — 8.6A + &, 0.74 7o 85.5 75.1 58 25 27.6 0.9% 0.2%
.27/0
[59] BMRyg = 773 — 8.6A + 22.8L + £, 0.77 (125) 32) (61 (7.6) (42) 0.6%
De Lorenzoetal, BMRio =841+ 12.8W + ¢ 0.34 P 80.1 177.4 302 618 25.4 18.0% 42
- .27/0
2000. [52] BMRyy = 1186 + 12.5W — 10.64 + £, 0.69 (108) (6.8) (131) (82) @7 11.3%
841 176 34 632 208
Eggzaro etal, BMRy; = 754 — 454 + 17.2L + 5.3F + &5, 0.639 114 - 2.4% 0.5%
. [60] (236) (7) (14) (10.3) (16.5)
Ganpule et al., BMR;; = 30 + 11.5W + 5.6H — 3.34 + &, 0.834 . 683 1705 36 553 129 234 1.5% 0.3%
070
2007. [61] BMRys = 573 — 2.6A + 18.8L + 6.4F + £55 0.840 (115 (7.1) (16) (74) (64 (3 1.9%
iei 98 177 31
Egg;‘”eg'z'e ol BMR,, = 767 — 224 + 15L + 4.4F + &5, 0.88 63 - - - 1.0% 0.2%
.[62] @6 6
- 32 637 159 251
'2\'(;8'(')53” etal, BMRys = 888 — 5.24 + 15.6L + 7.8F + 55 0.45 100 - - 1.6% 0.3%
-[63] (8) (17.7) (20.6) (9.3)
Wyatt et al., 798 178 462 588 173 25
1999, [64]' BMR,g = 753 — 414 + 17.2L + 7.9F + &4 0.805 16 0.7% 0.1%
: (12) (75) (11.2) (91) (8  (36)
797 1729 669 582 214 267
Lummann etals BMR,, = 63+ 27.5L + &7 053 155 0.9% 0.3%
- [65] (10.9) (65 (5.2) (5.9 (6.4) (3.4)

In: sample size; 2reported values for each measure are mean and (standard deviation); 3Age (years); “Height (cm); SWeight (kg); 5Fat Mass (kg); "Lean Mass (kg); 8Body Mass
Index (kg m-2); ®percentage of reduction in goodness of fit measure when excluding each prior model from calculation of the measure; °total A% of the study divided by the

number of signature of the study, providing a normalized measure of impact of study.

*Studies that do not include the sex effect in regression are excluded. Standard deviations are reported in the studies, or estimated from standard error of the mean (SEM) or
ranges. iStudies that mixed sample statistics for females and males—gender differences for the similar sample population in NHANES database are used to estimate sample

statistics for males.
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Table I. Parameter estimates and standard deviations for coefficients of the four different meta-model specifications

Hypothesized meta-model MSC
BMR=558 + 2.8H + 7.5F + 12L - 3.1A + N(0,170) 2 676

38)* (0.2) (0.1) (0.1) (0.1) (10) '
BMR=851 + 1.1H + 8.7F + 13L - 3A - 3.3BMI + N(0,172) 2722

(48) (0.3) (0.2) (0.2) (0.1)(0.7) (10) '
BMR=231 + 4.4H + 3.1F + 16.2L - 2.4A + 0.06F> - 0.03L? + N(0,128) 2429

(121) (0.4) (0.9) (24) (0.2) (0.01) (0.02) (10) '
BMR=-3526 + 3.6H + 11F - 5.8L - 2.6A - 130In(F) + 12991n(L) + N(0,136) 2390
(529) (0.4) (0.6) (2.4) (0.15) (20) (161) (12) —

*(standard deviation)
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Table J. Alternative 95% confidence intervals found using bootstrapping for the BMR estimation

Meta-model 4 in Table |

BMR= -3526 + 36H + 11F - 58L - 2.6A - 130In(F) +1299In(L) + N(0,136)
(-5084,-1966)* (2.952)  (8.6,11.9) (-12.81.9) (-3,-2.3) (-160,-47)  (750,1778) (0,148)

*(95% confidence interval)
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Table K. The sampling functions used to generate the required samples of explanatory variables for the underlying
studies using the NHANES data.

Estimated parameters in the sampling function®

Study Models* w m
W1 W2 W3 W4 Ws Ws ma m2 ma ma ms Me
Lazzer et al., 2010.
1,2,34 0.53 -0.91 -0.22 67.13 144.34 38.96
[48]
Bosy-Westphal et -0.08 -0.06 -0.21 82.04 17750 69.30
al., 2008. [54] -0.22 096 -1.00 87.33 167.50 46.64
Huang et al., 2004.
6,7,8,9 -0.96 1.00 -0.06 156.60 193.27 43.74
[53]
Javed et al., 2010.
10 -0.88 -0.13 1.00 77.75 177.00 45.00
[55]
Piers et al., 1998, -0.06 0.03 -0.46 65.41 157.74 23.00
11,12
[50]* -0.07 -0.09 -0.15 72.98 22091 63.22
Soares et al., 2000. 0.002 -0.64 -0.47 54.43 25.16 23.25
13,14
[56] -0.07 -0.23 011  82.23 62.33 10.58
Ravussin et al.,
15 0.97 -0.63 79.95 0.02
1992. [57]
Tataranni et al.,
16 -0.06 -0.16 -0.17 185.0 167.00 27.00
1995. [58]
Blanc et al., 2004.
17,18 -0.01 -0.43 0 218.0 75.19 29.60
[59]
De Lorenzo et al.,
19,20 0.28 -1.00 -0.48 162.23 181.90 17.20
2000. [52]
Ferraro et al., 1992.
21 1.00 -0.75 -0.56 85.10 177.83 25.69
[60]
Ganpule et al.,
22,23 -0.93 -1.00 1.00 56.43 164.63 71.75
2007. [61]
Fontvieille et al.,
24 0.97 -1.00 -0.69 78,50 174.69 2.13
1993. [62]
Nielsen et al.,
25 -0.48 0.12 -0.22 0.75 33.13 52.33 0.03 27.76
2000. [63]
Wyatt et al., 1999.
26 -0.22 0.38 -0.28 65.31 158.97 50.25
[64]
Luhrmann et al.,
-0.08 -0.04 -0.29 76.26 177.22 66.78
2010. [65]

*See Table H. Probability of data selection is P(accepting a data point) = (1 + exp(— (Y wy|m,, — u,[))) ™! where w
and m are estimated using the GMA, and u is sample statistics representing W, H, A, L, and F (provided in Table H).
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Table L. Impact of different measurement technologies

Estimation Measurement Database/Study Impact*
technology
Dual-energy X-ray NHANES; 1
absorptiometry (DXA) Javed et al., 2010; Piers et al., 1998; Blanc et al., 2004;
De Lorenzo et al., 2000; Nielsen et al., 2000; Wyatt et al.,
1999.
Siri's equation and BOD-  Bosy-Westphal et al., 2008. 0.838 (0.795,0.916)"
POD for body density
Fat Mass Bioelectrical impedance  Lazzer et al., 2010; Huang et al., 2004; Luhrmann et al., 1.036 (1.033,1.040)
analysis 2010.
Hydostatic Ravussin et al., 1992; Tataranni et al., 1995; Ferraro et 0.844 (0.712,1.110)
al., 1992; Fontvieille et al., 1993.
Equations based* Ganpule et al., 2007. 0.865 (0.708,1.025)
Total body water Soares et al., 2000. 0.963 (0.711,1.700)
Deltatrac Huang et al., 2004; Javed et al., 2010; Piers et al., 1998; 1
Soares et al., 2000; Blanc et al., 2004; Nielsen et al.,
2000; Luhrmann et al., 2010.
Chamber Ravussin et al., 1992; Ferraro et al., 1992; Ganpule et al., 0.932 (0.891,0.990)
BMR 2007; Fontvieille et al., 1993.
Pneumotachograph Tataranni et al., 1995. 0.882 (0.846,0.924)
Vmax 29 Lazzer et al., 2010; Bosy-Westphal et al., 2008. 1.038 (1.028,1.048)
SensorMedics 2900 Wyatt et al., 1999; De Lorenzo et al., 2000. 0.956 (0.940,0.983)

*Taking Deltatrac and DXA as the standard methods for measuring BMR and Fat Mass, respectively, the impacts of other
factors are estimated by GMA. 795% confidence interval estimated using bootstrap method; fTahara's equations (2002) are
used to predict body density from the sum of skinfold thickness. Then, Brozek equation (1963) is used for estimation of

body fat percentage.
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Supplementary Figures
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Figure A. Sensitivity of the estimated parameters in scenarios 1 (two independent variable per prior study) to the error () in
correlation of the independent variables used for data generation. Normalized squared errors are reported for 100 random
correlation matrices for each value of .
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Figure B. Sensitivity of the estimated parameters in 2 (one independent variable per prior study) to the error (¢) in correlation of
the independent variables used for data generation. Normalized squared errors are reported for 100 random correlation matrices
for each value of ¢.
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