
A Mechanistic Model for Atherosclerosis and its Application to the Cohort of Mayak Workers

A Solving the Mechanistic Atherosclerosis Model

To solve the model outlined in the main text, first we defined P (M,F,R; a) to be the
probability that in an individual of age a there are M macrophages, F foam cells and R
atherosclerotic states (plaques). As motivated in the Materials and Methods section of
the main text, we assume the absence of atherosclerotic lesions at birth, i.e.
P (0, 0, 0; 0) = 1 and P (M,F,R; 0) = 0 for other values of M , F and R. The survival
function S(a) is the probability of not having had stroke until age a for a worker not
deceased from any other cause until age a. In the model it is assumed that first stroke
occurs a lag time tlag after the first vulnerable plaque has developed. The survival
function S(a) is therefore the lagged probability of the absence of vulnerable plaques:

S(a) =
∑
M

∑
F

P (M,F, 0; a− tlag) (a)

From Fig 1 in the main text, it is clear that this probability changes with time:

d

da
P (M,F,R; a) = Nν0 [P (M − 1, F,R; a) − P (M,F,R; a)]

+ α [(M − 1)P (M − 1, F,R; a) −MP (M,F,R; a)]

+ β [(M + 1)P (M + 1, F,R; a) −MP (M,F,R; a)]

+ ν1 [(M + 1)P (M + 1, F − 1, R; a) −MP (M,F,R; a)]

+ ν2 [(F + 1)P (M,F + 1, R− 1; a) − FP (M,F,R; a)] (b)

This system of ordinary differential equations for P (M,F,R; a) for different M , F , R
can be rewritten using the generating function

Ψ(m, f, r; a) =
∑
M

∑
F

∑
R

P (M,F,R; a)mMfF rR (c)

yielding the partial differential equation

∂

∂a
Ψ(m, f, r; a) = Nν0(m− 1)Ψ(m, f, r; a)

+ α(m2 −m)
∂

∂m
Ψ(m, f, r; a)

+ β(1 −m)
∂

∂m
Ψ(m, f, r; a)

+ ν1(f −m)
∂

∂m
Ψ(m, f, r; a)

+ ν2(r − f)
∂

∂f
Ψ(m, f, r; a) (d)

The survival function is rewritten

S(a) =
∑
M

∑
F

∑
R

P (M,F,R; a− tlag)1M1F 0R = Ψ(1, 1, 0; a− tlag) (e)

and the initial condition evaluates to Ψ(m, f, r, 0) = 1 from the absence of lesions at
birth. The partial differential equation, Eq (d), can be transformed into a set of
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ordinary differential equations by the method of characteristics:

d

da
m = −αm2 + (α+ β + ν1)m− (β + ν1f) (f)

d

da
f = ν2f − ν2r

d

da
r = 0

d

da
Ψ = Nν0(m− 1)Ψ

As we are interested in the survival function, Eq (e), we can apply the conditions
m(af ) = 1, f(af ) = 1 and r(af ) = 0 where af is the age for which the survival is
calculated. This immediately eliminates r as r(a) ≡ 0. A semi-analytical solution to the
remaining set of ordinary differential equations, assuming constant parameters on
successive, short time intervals, can be constructed analogous to ref. [1]. However, the
direct numerical integration turned out to be more efficient.

B A Descriptive Model for Stroke in Mayak Workers

The previous section dealt with the calculation of the survival function of the stochastic
model. This section is about the descriptive model which is most easily parameterized
in terms of the hazard function h(a). The hazard function is equally suited for model
definition as it is connected to the survival function S(a) by:

h(a) = − d

da
lnS(a) (g)

When analyzing the cohort restricted to workers with doses below 2 Gy, we set h = h0
where

h0 = 10−5eψage+ψbirth+ψcalendar+ψcat (h)

and

ψage = ψ0 + ψ1 ln
a

60
+ ψ2 ln2 a

60
(i)

ψbirth = ψb
b− 1930

10

ψcalendar = ψc, 0
b+ a− 1990

10
+ ψc, 1

LT(b+ a− ψc, knot)

10
ψcat = ψgraduation + ψblood pressure + ψsmoking

Here, a and b denote age and birth date, respectively. Units of years have been dropped.
We have applied a function LT(t):

LT(t) =

{
0 for t < 0

t for t ≥ 0
(j)

Summands in ψcat depend on the workers’ individual information. They evaluate to
zero for workers not entered into higher education, with normal blood pressure, and
non-smoking. For other persons, the corresponding summand was determined by the fit.
Parameter values of the best fit can be found in Table A and Table B.

When analyzing the full cohort, the response to ionizing radiation is parametrized by

h = h0

(
1 + d

λ

2
(1 − tanh(a− µ))

)
(k)
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Table A. Values and 68% confidence intervals for the parameters associated
with the continuous variables in the best fit of the empirical model.

ψ0 ψ1 ψ2 ψc, 0 ψc, 1 ψc, knot

6.6+0.1
−0.1 5.3+0.2

−0.2 −1.7+0.7
−0.7 0.29+0.06

−0.06 −0.41+0.13
−0.12 1995+2

−3

Inclusion of ψb did not improve the fit significantly, therefore we set it to zero.

Table B. Values and 68% confidence intervals for the parameters associated
with the categorical variables in the best fit of the empirical model.

ψgraduation 0 for normal, −0.41+0.09
−0.09 for higher education, 0.27+0.10

−0.10 if unknown

ψblood pressure 0 for normal, 0.28+0.08
−0.09 for hypertension, −0.07+0.12

−0.12 if unknown

ψsmoking 0 for non-smoker, 0.19+0.08
−0.08 for smoker, −0.14+0.37

−0.41 if unknown

where d is the (hitherto, i.e. age-dependent) accumulated dose from external γ-exposure,
h0 has been defined in Eq (h) and λ and µ are parameters to be determined by the fit.
This model corresponds to the standard Linear-No-Threshold model, confined to ages
below about µ. A smooth transition between ages at elevated and normal risk is
obtained using the hyperbolic tangent. The choice for this function is motivated by the
results of ref. [31] of the main text.

C Applying the Mechanistic Model to Stroke in Mayak
Workers

In the mechanistic model, variables such as birth year, graduation etc. cannot directly
be applied to the hazard function. Instead, they are implemented by applying them to
any of the biological parameters. Like for the empirical model, we started the analysis
with the variables of birth year, calendar year and graduation. As the effects of birth
year should be relevant especially for young ages, i.e. for early stages of the disease, we
modified Nν0 with birth year. Calendar year could act on any stage of the disease
progression. However, the observed kink in the risk in the early 90s (see ref. [31] of the
main text), around the time of the dissolution of the Soviet Union, can be best
described if the last stochastic step proportional to ν2 was affected. Graduation can be
viewed as a surrogate for lifestyle and working conditions. Thus, we cannot causally
assign it to any step in the development of the disease. The choice for Nν0 was
motivated by the fact that it most closely resembles the way graduation is implemented
in the empirical model.

Nν0(b, graduation) = Nν′0 exp

[
ψb
b− 1930

10
+ ψgraduation

]
(l)

ν2(b+ a) = ν′2 exp

[
ψc, 0

b+ a− 1990

10
+ ψc, 1

LT(b+ a− ψc, knot)

10

]
Here, Nν′0 corresponds to Nν0 for a worker born in 1930 and without higher education.
Such an equivalence cannot be established for ν′2 as the second term in the exponential
does not vanish for the year 1990. After some testing, birth year turned out to be
insignificant and was therefore dropped from the model.

As explained in the last part of the Material and Methods section of the main text,
we tested for age dependence of any biological parameter. When age dependence was
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Table C. Values and 68% confidence intervals for the parameters associated
with the continuous variables in the best fit of the mechanistic model.

Nν′′0 ψNν0 γ ν1 ψc, 0 ψc, 1 ψc, knot

2.4+0.9
−0.6 1+0.0

−0.3 0.12+0.01
−0.01 2.1+0.7

−0.6 0.37+0.06
−0.07 −0.38+0.13

−0.13 1984.5+3.0
−2.3

A lag time of 10 years has been applied. Values for α = 12 year−1 and ν′′2 = 10−7 year−1

have been fixed as the choice does not affect the fit. For a definition of Nν′′0 and ν′′2 see
Eqs (m) and (n).

Table D. Values and 68% confidence intervals for the parameters associated
with the categorical variables in the best fit of the mechanistic model.

ψgraduation 0 for normal, −0.41+0.08
−0.09 for higher education, 0.27+0.10

−0.10 if unknown

ψblood pressure 0 for normal, 0.50+0.14
−0.14 for hypertension, −0.03+0.18

−0.17 if unknown

ψsmoking 0 for non-smoker, 0.27+0.12
−0.12 for smoker, −0.36+0.52

−0.56 if unknown

included in Nν0 (together with graduation), the parameterization reads:

Nν0(a, graduation) = Nν′′0

(
a+ 10

20

)ψNν0
exp [ψgraduation] (m)

Information on blood pressure and smoking status was revealed to be best applied to ν2.
This adds to the dependence on calendar year b+ a:

ν2(b+ a,blood pressure, smoking) =

= ν′′2 exp

[
ψc, 0

b+ a− 1990

10
+ ψc, 1

LT(b+ a− ψc, knot)

10

]
eψsmoking+ψblood pressure (n)

The best estimates of the parameter values can be found in Tables C and D.
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