SUPPORTING INFORMATION

SUPP. METHODS

DNA library preparation and next generation sequencing (NGS)

1µg of genomic DNA was sheared into 200-500bp fragments. The fragments were processed and amplified as previously described (Wang, et al., 2014). For each capture reaction, we pooled 50 pre-capture DNA libraries together. The targeted DNA was captured with a customized retinal disease gene panel (Supp. Table S1) for target capture sequencing to screen for variants in known disease-causing genes. If no causative variants were identified, we performed whole exome sequencing (WES) by capturing the DNA with NimbleGenSeqCap EZ Hybridization and Wash kit (NimbleGenSeqCap EZ Human Exome Library v.2.0) following the manufacturer's instructions. We used the Illumina HiSeq 2000 (Illumina, San Diego, CA) to sequence captured libraries.

Bioinformatics analysis

Paired-end sequencing reads were obtained for each sample. Reads were mapped to human reference genome hg19 using Burrows-Wheeler Aligner (Li and Durbin, 2009). Base quality recalibration, local realignment and variant calling were performed as previously described (Wang, et al., 2014). We obtained the variant frequencies from a series of public and internal control databases including Exome Aggregation Consortium (ExAC) database, CHARGE consortium (Psaty, et al., 2009), ESP-6500 (Tennessen, et al., 2012) and 1000 Genome Project (Abecasis, et al., 2010). Since RP is a rare Mendelian disorder, variants with a frequency higher than 1/200 (for a recessive model) or 1/10,000 (for a dominant model) were filtered out. After frequency-based filtering, we filtered out synonymous variants, identified known retinal disease-causing variants and predicted the pathogenicity of variants using SIFT (Ng and Henikoff, 2003), PolyPhen-2 (Adzhubei, et al., 2010), LRT (Chun and Fay, 2009), MutationTaster (Schwarz, et al., 2010) (Supp. Table S2) as previously described (Xu, et al., 2015a; Xu, et al., 2015b).

Sanger sequencing

A 500bp sequence flanking both sides of candidate variants were retrieved from the UCSC genome browser (hg19 assembly). We masked the repetitive sequences with RepeatMasker (Smit, 1996-2010). We used Primer3 (Untergasser, et al., 2012) to design primers to amplify a 500bp PCR product to sequence the variant and at least 50bp region surrounding it. After PCR, ABI 3730xl was used to sequence the amplicons.

Immunohistochemistry

Eyes of adult albino wild-type mice were fixed overnight in modified Davidson's fixative for paraffin embedding. Eye sections of 7 µm were cut (Microtome, Leica). Slides were de-paraffinized, and antigen retrieval was performed by boiling sections in 0.01 M Tris-EDTA buffer (pH 9.0) for 30 minutes, followed by cooling for 30 minutes at room

temperature. Slides were washed in phosphate-buffered saline (PBS), incubated for 1 hour at room temperature in hybridization buffer (10% normal goat serum, 0.1% Triton X-100, PBS), and then incubated overnight in primary antibody (anti-mouse ADIPOR1; 1:100 dilution; Santa Cruz, Dallas, TX, USA) diluted in hybridization buffer. Slides were then washed in PBS, incubated with secondary antibody (Alexa 488 anti-rabbit; 1:500 dilution; Invitrogen, Carlsbad, CA, USA) diluted in hybridization buffer at room temperature for 2 hours, washed in PBS, mounted with anti-fade medium (Prolong; Invitrogen) to reduce bleaching, and cover-slipped. 4',6-Diamidino-2-phenylindole with 1:1000 dilution (DAPI) (Life Technology, Carlsbad, CA, USA) was used for nuclear counterstaining. Fluorescent images were produced with an Apotome 2 microscope (Zeiss, Pleasanton, CA, USA) and processed with ZEN software and Photoshop CS4 software (Adobe, San Jose, CA, USA).

ABCA4	CDH3	GNAT2	MKKS	PLA2G5	SAG
ABCC6	CDHR1	GNPTG	MKS1	PRCD	SDCCAG8
ABHD12	CEP164	GPR179	MPV17	PRD	SEMA4A
ACBD5	CEP290	GRK1	MTTP	PROM1	SLC24A1
ADAM9	CERKL	GRM6	MYO7A	PRPF3	SLC6A5
ADAMTS18	CFB	GUCA1A	NDP	PRPF31	SNRNP200
ADGRA3	CFH	GUCA1B	NEK2	PRPF6	SPATA7
ADGRV1	CHM	GUCY2D	NMNAT1	PRPF8	TEAD1
AHI1	CIB2	HARS	NPHP1	PRPH2	TIMM8A
AIPL1	CISD2	HMCN1	NPHP3	PVRL1	TIMP3
ALMS1	CLN3	HTRA1	NPHP4	RAB28	TK2
ARL2BP	CLRN1	IDH3B	NR2E3	RAX2	TLR3
ARL6	CNGA1	IFT140	NRL	RB1	TLR4
ARMS2	CNGA3	IFT172	NYX	RBP3	TLR6
ATXN7	CNGB1	IFT27	OAT	RBP4	TMEM126A
BBIP1	CNGB3	IMPDH1	OFD1	RCD1	TMEM216
BBS1	CNNM4	IMPG1	OPA1	RD3	TMEM237
BBS10	COL11A1	IMPG2	OPA3	RDH12	TOPORS
BBS12	COL2A1	INPP5E	OPN1LW	RDH5	TREX1
BBS2	COL9A1	INVS	OPN1MW	RGR	TRIM32
BBS4	CRB1	IQCB1	OPN1MW2	RGS9	TRPM1
BBS5	CRX	ITM2B	OPN1SW	RGS9BP	TSPAN12
BBS7	CYP4V2	JAG1	OTX2	RHO	TTC8
BBS9	DFNB31	KCNJ13	PANK2	RIMS1	TTPA
BEST1	DHDDS	KCNV2	PAX2	RLBP1	TULP1
C1QTNF5	DMD	KIAA1549	PCDH15	ROM1	UNC119
C2	DTHD1	KIF11	PDE6A	RP1	USH1C
C210RF2	EFEMP1	KLHL7	PDE6B	RP1L1	USH1G
C20RF71	ELOVL4	LCA5	PDE6C	RP2	USH2A
C3	EMC1	LRAT	PDE6G	RP8	VCAN
C80RF37	ERCC6	LRIT3	PDE6H	RP9	VPS13B
CA4	EYS	LRP1B	PDZD7	RPE65	WDPCP
CABP4	FAM161A	LRP5	PEX1	RPGR	WDR19
CACNA1F	FBLN5	LZTFL1	PEX2	RPGRIP1	WFS1
CACNA2D4	FLVCR1	MAK	PEX7	RPGRIP1L	ZNF408
CAPN5	FSCN2	MERTK	PGK1	RRM2B	ZNF423
CC2D2A	FZD4	MFN2	РНҮН	RS1	ZNF513
CDH23	GNAT1	MFRP	PITPNM3		

Supp. Table S1. List of known retinal disease genes screened in this study

Bardet-Biedl syndrome-associated genes are in bold font (information from RetNet, the the Retinal Information Network).

Program	SIFT	PolyPhen-2	LRT	MutationTaster
URL	http://sift.jcvi.org/	http://genetics.bwh.h	http://www.gene	http://www.mutationt
		arvard.edu/pph2/	tics.wustl.edu/jfl	aster.org/
			<u>ab/</u>	
Version	1.0.3	2.2.2	Web version	Web version
Datasets	NCBI: GRCh37	NCBI: GRCh37	NCBI: GRCh36	NCBI: GRCh37
Outputs	[0,1]; Damaging	[0,1];	Deleterious;	disease_causing_au
and cut-	[0.95,1]; Tolerant	Probably damaging	Neutral;	tomatic;
off	[0, 0.949]	[0.957,1]; possibly	Unknown	disease_causing;
		damaging [0.453,		polymorphism;
		0.956]; Benign [0,		polymorphism_auto
		0.452]		matic

Supp. Table S2. Information of variant prediction algorithms used

SUPP. REFERENCES

- Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. 2010. A map of human genome variation from population-scale sequencing. Nature 467(7319):1061-73.
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7(4):248-9.
- Chun S, Fay JC. 2009. Identification of deleterious mutations within three human genomes. Genome Res 19(9):1553-61.
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754-60.
- Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812-4.
- Psaty BM, O'Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, Rotter JI, Uitterlinden AG, Harris TB, Witteman JC, Boerwinkle E. 2009. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2(1):73-80.
- Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. 2010. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575-6.

Smit A, Hubley, R & Green, P. 1996-2010. RepeatMasker Open-3.0.

Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM, Jordan D *et al.* 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337(6090):64-9.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3--new capabilities and interfaces. Nucleic Acids Res 40(15):e115.

- Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, Bowne SJ, Sullivan LS, Luo H, Zhao L, Wang X, Zaneveld JE *et al.* 2014. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet 133(3):331-45.
- Xu M, Gelowani V, Eblimit A, Wang F, Young MP, Sawyer BL, Zhao L, Jenkins G, Creel DJ, Wang K, Ge Z, Wang H *et al.* 2015a. ATF6 Is Mutated in Early Onset
 Photoreceptor Degeneration With Macular Involvement. Invest Ophthalmol Vis Sci 56(6):3889-95.
- Xu M, Yang L, Wang F, Li H, Wang X, Wang W, Ge Z, Wang K, Zhao L, Li H, Li Y, Sui R *et al.* 2015b. Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet.