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1 Nonlinear elastohydrodynamic flagella equations

Here we provide the derivation of the nonlinear elastohydrodynamic flagella equations by using

a formalism based on the special theory of Cosserat rods (1). An alternative derivation can be

found in Ref. (2) by using the minimization of an energy functional for the flagellum. Finally

we discuss how boundary conditions are obtained considering the case of clamped condition at

the base.

The equilibrium equations for a rod subject to general contact forces N (s, t) and contact

moments M (s, t) reads (1):

N s + F ext = 0 (1)

M s + ŝ×N + Lext = 0 (2)

where F ext, Lext are general external forces and torques. The internal moment of the bundle

M (s, t) reads:

M = (Ebφs − bF )k̂ (3)

where F (s, t) =
∫ L

s
f(s′, t)ds′. Differentiating the last expression respect to the arc length we

have:

M s = ŝ× [(Ebφss + bf)n̂ + τ ŝ] (4)

where τ(s, t) is the tension acting along the flagellum. In the absence of external torques (Lext =

0) and using Eq. 2 we obtain the resultant contact force:

N = −(Ebφss + bf)n̂ + τ ŝ (5)

Differentiating the contact force respect to the arc length we have:

N s = (−Ebφsss − bfs + φsτ)n̂ + (Ebφsφss + bφsf + τs)ŝ (6)
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The flagellum is immersed in a fluid where we will consider the low Reynolds number approx-

imation. The viscous drag force F vis is given by resistive force theory:

F vis = −ζ⊥(n̂ · rt)n̂− ζ‖(ŝ · rt)ŝ (7)

Using Eq. 1 and considering F ext = F vis we have:

rt =
1

ζ‖
(Ebφsφss + bφsf + τs)ŝ +

1

ζ⊥
(−Ebφsss − bfs + φsτ)n̂ (8)

Using the fact that ŝt = φt n̂ we obtain an equation for φ:

φt =
1

ζ‖
φs(Ebφsφss + bφsf + τs) +

1

ζ⊥
(−Ebφssss − bfss + φssτ + φsτs) (9)

An equation for the tension can be obtained by using the inextensibility condition ∂t(ŝ · ŝ) =

2ŝt · ŝ = 0. The differential equation for the tension reads:

τss −
ζ‖
ζ⊥

(φs)
2τ + Eb∂s(φsφss) + b∂s(φsf) +

ζ‖
ζ⊥
φs(Ebφsss + bfs) = 0 (10)

Next we non-dimensionalize the last equations as described in the Main Text. Additionally, we

define ζ̄ ≡ ζ⊥/ζ‖ and we non-dimensionalize the tension with respect to Eb/L
2. Finally, the

dimensionless equations read:

Sp4φt = ζ̄[(φs)
2(φss + µaf) + τsφs]− φssss − µafss + φssτ + φsτs (11)

τss −
1

ζ̄
(φs)

2τ = −∂s(φsφss)− µa∂s(φsf)− φs

ζ̄
(φsss + µafs) (12)

1.1 Boundary conditions

We need to specify the contact moment and the contact force at the boundaries. At s = 0 we

have:

M ext|s=0 = [−Ebφs|s=0 + bF (0, t)]k̂

N ext|s=0 = [Ebφss|s=0 + bf(0, t)]n̂− τ(0, t)ŝ (13)
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At s = L we have:

M ext|s=L = Ebφs|s=Lk̂

N ext|s=L = −[Ebφss|s=L + bf(L, t)]n̂ + τ(L, t)ŝ (14)

Next we switch to dimensionless variables where the external contact moment is scaled by

Eb/L, and external contact force and tension by Eb/L
2. At s = 0 we have:

M ext|s=0 = [−φs|s=0 + µaF (0, t)]k̂

N ext|s=0 = [φss|s=0 + µaf(0, t)]n̂− τ(0, t)ŝ (15)

where now F (s, t) =
∫ 1

s
f(s′, t)ds′. At s = 1 we have:

M ext|s=1 = φs|s=1k̂

N ext|s=1 = −[φss|s=1 + µaf(1, t)]n̂ + τ(1, t)ŝ (16)

We now consider the case of small curvature where φs � 1 and τ ≈ 0. At the distant boundary

condition we have no applied contact force or contact moment thus M ext|s=1 = N ext|s=1 = 0.

This lead to the conditions φs|s=1 = 0 and φss|s=1 = −µaf(1, t) respectively. The external

contact force and contact moment at the base N ext|s=0 = F head, M ext|s=0 = M head are given

by the specific viscous fluid dynamics assumed. By considering a clamped condition, the base

is fixed rt|s=0 = 0, and we obtain the condition φsss|s=0 = −µafs|s=0. Additionally, the base is

clamped and thus M ext|s=0 = 0. In the linear analysis, the four boundary conditions in Fourier

space read:

φ̃(0) = 0

φ̃sss(0) = −χ̄φ̃s(0)

φ̃s(1) = 0

φ̃ss(1) = −χ̄φ̃(1) (17)
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Concerning the constraints on the dynein distribution due to the boundary conditions, at s = 0

we have that φt|s=0 = 0 and thus both plus and minus distributions decay exponentially with

characteristic time τ̄ to n0 at the steady state. For the case of s = 1, φt|s=1 is different from

zero in general, thus the specific boundary conditions for φ at the tail constraint the evolution

of dynein bound motor distributions.

2 Numerical integration of the nonlinear flagella equations

Here, we provide the numerical algorithm to numerically solve the nonlinear Eqs. 2.10 and

2.11 in the Main Text. We consider a uniform discretization in the arc length s of the bundle

centerline with M intervals of step size ∆s = 1/M . The discrete points are denoted sm =

(m−1)∆s,m = 1, . . . ,M+1 and the time is discretized as tn = n∆t. Any continuous function

X(s, t) is denoted Xn
m in the discretized version. The study is done with ∆s = 2.5 · 10−4 and

∆t = 5 · 10−5 (dimensionless units).

2.1 Tangent angle dynamics

We will use a first-order IMEX (implicit-explicit) scheme for the integration of the tangent an-

gle φ in the very first time step (n = 0) and a second-order IMEX scheme for n ≥ 1 (3). After

discretization, the problem reduces to a linear system of equations of the form Aφn+1 = b,

where A is a (M + 1)× (M + 1) matrix and b, φn+1 are M + 1 vectors.

In the first time step (n = 0) we will use a first order IMEX scheme. The elements of the

matrix A corresponding to the rows m = 3, . . . ,M − 1 take the form:

[A]mm′ = δmm′ + α[D4]mm′ − 2β([N]mm′ − [H]mm′) (18)

where α ≡ ∆t/(Sp∆s)4, β ≡ µaζ/(2Sp4∆s2), Dk are dimensionless operators corresponding
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to the k-th derivative of second-order in accuracy, N is the operator containing the nonlin-

ear terms in Eq. (2.10) and H is the operator containing the clamped conditions at the head

of the flagellum. Standard centered operators are used whenever possible for Dk, but at the

boundaries skewed operators are applied (4). The elements of N for m = 3, . . . ,M − 1 and

m′ = 1, . . . ,M + 1 take the form:

[N]mm′ = [G0
2(n)]mm′ + [G0

0(n)]mm[D2]mm′ + 2[G0
1(n)]mm[D1]mm′ (19)

where the operators G0
k are diagonal matrices with elements:

[G0
k(X)]mm′ = δmm′DkX

n
m (20)

where DkX
n
m is a real number denoting the k-th derivative of the quantity X at point m at time

n. The elements of H for m = 3, . . . ,M − 1 and m′ = 1, . . . ,M + 1 read:

[H]mm′ = [G0
2(n)]mm[E]mm′ (21)

where E is a matrix with ones in the first column and zeros elsewhere. Finally, the elements bm,

m = 3, . . . ,M − 1 read:

bm = φn
m + γ[G0

2(φ)]mm − δ[G0
2(n̄)]mm

−2β{[G0
2(n)]mm(φn

m − φn
1 ) + [G0

0(n)]mmD2φ
n
m + 2[G0

1(n)]mmD1φ
n
m} (22)

where γ ≡ µ∆t/(∆s2Sp4) and δ ≡ µa∆t/(∆s
2Sp4). For n ≥ 1, the elements of the matrix A

corresponding to the rows m = 3, . . . ,M − 1 take the form:

[A]mm′ =
3

2
δmm′ + α[D4]mm′ − 3β([N]mm′ − [H]mm′) (23)

The elements of N for m = 3, . . . ,M − 1 and m′ = 1, . . . ,M + 1 read:

[N]mm′ = [G2(n)]mm′ + [G0(n)]mm[D2]mm′ + 2[G1(n)]mm[D1]mm′ (24)
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where Gk are diagonal matrices with elements:

[Gk(X)]mm′ = δmm′(2DkX
n
m −DkX

n−1
m ) (25)

The elements of H for m = 3, . . . ,M − 1 and m′ = 1, . . . ,M + 1 read:

[H]mm′ = [G2(n)]mm[E]mm′ (26)

Finally, the elements bm, m = 3, . . . ,M − 1 read:

bm = 2φn
m −

1

2
φn−1
m + γ[G2(φ)]mm − δ[G2(n̄)]mm

+β{[G2(n)]mm[−4(φn
m − φn

1 ) + (φn−1
m − φn−1

1 )]

+[G0(n)]mm(−4D2φ
n
m +D2φ

n−1
m ) + 2[G1(n)]mm(−4D1φ

n
m +D1φ

n−1
m )} (27)

The four remaining equations (m = 1, 2,M,M + 1) are found imposing the four boundary

conditions in a similar manner. The boundary conditions will be the same for n = 0 and n ≥ 1

except that we will use the operators G0
k at n = 0 instead of Gk.

2.2 Dynein dynamics

Dynein dynamics is solved by using a simple implicit method for Eq. (2.11). The evolution of

n± follows:

nn+1
±,m =

nn
±,m + η∆t(1− nn

±,m)

1 + ∆t(1− η) exp(fn
±,m)

(28)

where fn
±,m = f̄ [1∓ ζDt(φ

n
m − φn

1 )] and DtX
n
m = (Xn+1

m −Xn
m)/∆t.

3 Summary of variables and parameters

Table 1 shows a summary of the different parameters and variables and their corresponding

symbols.
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Variable Symbol
Filament bundle centerline r
Tangent vector ŝ
Normal vector n̂
Tangent angle φ
Sliding displacement ∆
Internal force density f
Contact force N
Contact moment M
Plus/minus number of bound dynein motors n±
Load per dynein motor in the plus/minus group F±
Length of the flagellum L
Axonemal diameter b
Correlation time τ0
Bending stiffness Eb

Interdoublet elastic resistance K
Normal drag coefficient ζ⊥
Dynein stall force f0
Dynein characteristic unbinding force fc
Dynein velocity at zero load v0
Dynein binding rate π0
Dynein unbinding rate at zero load ε0
Number of dynein motors in a tug-of-war unit N
Density of tug-of-war units ρ
Dynein activity µa

Sliding resistance µ
Sperm number Sp
Bundle ratio ζ
Duty ratio η
Unbinding sensitivity ratio f̄

Table 1: Main variables and parameters and their corresponding symbols
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Fig. S1. Critical frequency ωc versus Sp for the clamped condition and µ = 50, ζ = 0.4,

η = 0.14 and f̄ = 2. The circles a and b correspond to the cases Sp = 5 and Sp = 10,

respectively, from Fig. 2 in the Main Text.
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