Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries

Elsa Roedern, Ruben-Simon Kühnel, Arndt Remhof* and Corsin Battaglia

Supporting Information

Table of Content

- Supporting Figures and Tables
 - Figure S1. a) *In situ* PXD of Mg(en)₁(BH₄)₂ during heating from 30 to 100 °C. b) Differential scanning calorimetry (DSC) and c) Thermogravimetric analysis (TGA) of Mg(en)₃(BH₄)₂ and Mg(en)₁(BH₄)₂.
 - Figure S2. In situ PXD of Mg(en)₃(BH₄)₂ + 2 Mg(BH₄)₂ during heating from 30 to 85 °C.
 - Table S1. Infrared (FTIR) and Raman peaks of Mg(BH₄)₂, Mg(en)₃(BH₄)₂ and Mg(en)₁(BH₄)₂
 - Figure S3. SEM image and elemental EDX maps of the Cu electrode after Mg plating in a Cu/Mg(en)₁(BH₄)₂/Mg cell at 60 °C.
 - Figure S4. SEM image and elemental EDX maps of Cu electrode in the reference cell Cu/Mg(en)₁(BH₄)₂/Mg, kept at 60 °C, but to which no plating current was applied.
- References

Supporting Figures and Tables

Figure S1. a) *In situ* PXD of Mg(en)₁(BH₄)₂ during heating from 30 to 100 °C. b) Differential scanning calorimetry (DSC) and c) Thermogravimetric analysis (TGA) of Mg(en)₃(BH₄)₂ and Mg(en)₁(BH₄)₂, 30 - 300 °C, $\Delta T/\Delta t = 5$ °C/min, He flow.

Figure S2. a) *In situ* PXD of Mg(en)₃(BH₄)₂ + 2 Mg(BH₄)₂ during heating from 30 to 85 °C, b) mass proportion of Mg(en)₃(BH₄)₂, Mg(BH₄)₂ and Al₂O₃ (internal standard, normalized to 10 wt%), values obtained by Rietveld refinement.

Mg(BH ₄) ₂				Mg(en)₃(BH₄)₂				Mg(en) ₁ (BH ₄) ₂				approx.	
FTIR Raman			FTIR		Raman		FTIR		Raman		Description		
								3332	m	3320	m,b	N-H	stretching
								3319	m			N-H	stretching
				3301	S	3294	m,b	3303	m			N-H	stretching
								3280	m	3279	S	N-H	stretching
				3251	S	3250	S	3253	S	3248	S	N-H	stretching
				3166	m	3159	w,b	3166	m,sh	3160	w,b	N-H	stretching
				2962	m,sh			2964	m			C-H	stretching
				2937	m	2940	s,b	2945	m	2933	s,b	C-H	stretching
				2887	m	2876	S	2889	m	2877	S	C-H	stretching
								2322	s,b	2350	S	B-H	stretching
		2305	S	2300	s/sh							B-H	stretching
2266	S	2267	m,sh			2256	S	2254	s,sh	2256	m,b	B-H	stretching
				2226	S							B-H	stretching
		2193	m					2198	s,b	2204	S	B-H	stretching
				2158	s,sh							B-H	stretching
				1602	w,sh							N-H	bending
				1573	m	1574	w,b	1585	S	1577	w,b	N-H	bending
				1461	m	1454	m	1458	m	1443	m	C-H	bending
		1387	m			1378	w,b			1380	w,b	B-H	bending
								1359	m,b				
										1340	m,b		
				1332	m			1328	m			NH2	wagging
						1315	w			1310	w,b		
				1278	m	1262	m	1280	m	1265	m	CH2	gamma
1259	S							1240	w,b			B-H	bending
										1182	m,b		
		1171	m,b					1160	w,sh	1162	w,b	B-H	bending
1130	m,b							1143	m,sh			B-H	bending
								1120	m, sh				
				1090	b,sh	1084	m,b	1097	m,b	1084	m	C-N	stretching
1070	w,b			1080	b,sh			1070	w, sh			B-H	bending
				1004	S	1012	m,b	1006	S	1003	m	C-C	stretching
				968	S	960	w,b	960	S	971	w	NH2	wagging
				910	m					951	W		
								908	m				
						856	S			856	S		

Table S1. Experimentally observed Infrared (FTIR) and Raman peaks of $Mg(BH_4)_2$, $Mg(en)_3(BH_4)_2$ and $Mg(en)_1(BH_4)_2$, approx. description based on literature references^[2–5].

Figure S3. SEM image and elemental EDX maps of the Cu electrode after Mg plating in a $Cu/Mg(en)_1(BH_4)_2/Mg$ cell at 60 °C. The patches are identified by EDX as Mg without N and B.

Figure S4. SEM image and elemental EDX maps of Cu electrode in the reference cell

 $Cu/Mg(en)_1(BH_4)_2/Mg$, kept at 60 °C, but to which no plating current was applied. A few particles can be found on the Cu electrode surface, which are identified by EDX as electrolyte particles with Mg, N and B.

References

- J. Chen, Y. S. Chua, H. Wu, Z. Xiong, T. He, W. Zhou, X. Ju, M. Yang, G. Wu, P. Chen, *Int. J. Hydrogen Energy* **2015**, *40*, 412–419.
- [2] M. G. Giorgini, M. R. Pelletti, G. Paliani, R. S. Cataliotti, J. Raman Spectrosc. 1983, 14, 16–21.
- [3] T. Iwamoto, D. F. Shriver, *Inorg. Chem.* **1971**, *10*, 2428–2432.
- [4] A. D. Allen, C. V Senoff, *Can. J. Chem.* **1965**, *43*, 888–895.
- [5] A. M. A. Bennett, G. A. Foulds, D. A. Thornton, G. M. Watkins, Spectrochim. Acta A 1990, 46, 13–22.