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Dynamic Role of trans Regulation
of Gene Expression in Relation to Complex Traits

Chen Yao,1,2 Roby Joehanes,1,2,3 Andrew D. Johnson,1,2 Tianxiao Huan,1,2 Chunyu Liu,1,2

Jane E. Freedman,4 Peter J. Munson,5 David E. Hill,6,7 Marc Vidal,6,7 and Daniel Levy1,2,*

Identifying causal genetic variants and understanding their mechanisms of effect on traits remains a challenge in genome-wide association

studies (GWASs). In particular, how genetic variants (i.e., trans-eQTLs) affect expression of remote genes (i.e., trans-eGenes) remains un-

known.Wehypothesized that some trans-eQTLs regulate expressionof distant genes by altering the expressionofnearby genes (cis-eGenes).

Using publishedGWASdatasetswith39,165 single-nucleotide polymorphisms (SNPs) associatedwith1,960 traits,we exploredwhole blood

geneexpressionassociationsof trait-associatedSNPs in5,257 individuals fromtheFraminghamHeart Study.We identified2,350 trans-eQTLs

(atp<10�7);more than80%of themwere foundtohave cis-associatedeGenes.Mediation testingsuggested that for35%of trans-eQTL-trans-

eGene pairs in different chromosomes and 90%pairs in the same chromosome, the disease-associated SNPmay alter expression of the trans-

eGene via cis-eGene expression. In addition, we identified 13 trans-eQTL hotspots, affecting from ten to hundreds of genes, suggesting the

existence of master genetic regulators. Using causal inference testing, we searched causal variants across eight cardiometabolic traits (BMI,

systolic and diastolic blood pressure, LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, and fasting blood glucose) and iden-

tified several cis-eGenes (ALDH2 for systolic and diastolic blood pressure,MCM6 andDARS for total cholesterol, and TRIB1 for triglycerides)

that were causal mediators for the corresponding traits, as well as examples of trans-mediators (TAGAP for LDL cholesterol). The finding of

extensive evidence of genome-wide mediation effects suggests a critical role of cryptic gene regulation underlying many disease traits.
Introduction

Genome-wide association studies (GWASs) have identified

tens of thousands of genetic variants associated with com-

plex traits and diseases.1,2 Genetic variants identified by

GWASs, however, explain only a small proportion of

phenotypic variation, even for diseases known to have a

strong genetic component, such as obesity, diabetes, and

schizophrenia.3,4 This knowledge void has been termed

the ‘‘missing heritability.’’5 One important consideration

in the search for missing heritability is that the top

GWAS single-nucleotide polymorphisms (SNPs) are often

not causal variants for their associated traits, but rather

are in linkage disequilibrium (LD) with causal SNPs.3 In

addition, fewer than 5% of GWAS SNPs are non-synony-

mous substitutions, while the remainder are located

within non-coding regions.2,6 This suggests that instead

of directly altering the amino acid sequence of proteins,

SNPs can affect phenotypes by other mechanisms, such

as regulation of gene transcription levels.

Expression quantitative trait loci (eQTLs) are genetic var-

iants that are associated with gene transcription levels.7

eQTLs that alter expression of nearby transcripts (cis-

eGenes) are referred to as cis-eQTLs, whereas those associ-

ated with expression of remote transcripts (trans-eGenes),

usually on different chromosomes, are referred to as

trans-eQTLs.8,9 When SNPs at a trans-eQTL locus affect

the expression of multiple trans-eGenes, the region is
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defined as a trans-eQTL hotspot.10 cis-eQTLs typically

reside close to transcription start sites (TSSs), suggesting

that they directly impact gene expression.11 In contrast

to cis-eQTLs, analysis of trans-eQTLs is vastly more compu-

tationally challenging and reported trans-eQTLs have

proven to be less replicable across studies.11,12 Therefore,

many eQTL studies focus only on cis-eQTLs or a small sub-

set of trans-eQTLs.12,13 trans-eQTL hotspots are of partic-

ular interest because SNPs linked to such hotpots could

serve important regulatory roles. The mechanisms by

which trans-eQTLs alter transcription of their linked

trans-eGenes are largely unknown and likely reflect indi-

rect or cryptic regulation.14,15 For example, it has been pro-

posed that expression of trans-eGenes could be mediated

by transcription factors residing close to the corresponding

trans-eQTLs.14 This phenomenon would allow cis-eQTLs

near regulatory genes to serve as master regulators for a

large number of trans-eGenes. We found that some eQTLs

can affect expression of eGenes both in a cis and trans

manner, whereby cis-eGenes mediate the associations be-

tween eQTLs and trans-eGenes.16

We investigated the associations of SNPs previously re-

ported to be associated with a variety of traits in GWASs

with whole blood gene expression measured in 5,257 Fra-

mingham Heart Study (FHS) participants. In total, we

related genotypes for 39,165 genome-wide significant

GWAS SNPs reported to be associated with 1,960 traits in

GWAS databases with expression levels of 17,873 genes
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Figure 1. Work Flow and Results Summary
42,271 SNPs associated with 1,960 traits were obtained from
GRASP (at p % 5 3 10�8). Whole blood samples were collected
from 5,257 FHS participants. Genome-wide genotyping and
mRNA expression levels were assayed. We correlated 39,165
GWAS SNPs (after filtering) with expression levels of 17,873 genes
to identify expression quantitative trait loci (eQTLs). For SNPs hav-
ing both local (cis) and remote (trans) regulation effects, we then
tested whether the effect of trans-eQTLs was mediated through
cis-eGenes. Finally, integrating genotype, gene expression, and
phenotype data, we conducted causal inference testing to identify
causal variants for eight cardiometabolic traits (BMI, systolic and
diastolic blood pressure, LDL cholesterol, HDL cholesterol, total
cholesterol, triglycerides, fasting blood glucose).
to identify cis- and trans-eQTLs and their associated

eGenes.17 Our results reveal that a large number of eQTLs

regulate gene expression in both a cis and trans manner.

Additionally, we identified 13 trans-eQTL hotspots and

found that about one third of trans regulation is signifi-

cantly mediated by the expression of cis-eGenes. As proof

of principle, we inferred causality and directionality of

SNP-transcript-trait relationships using genetic variants as

instrumental variables in causal inference analyses. Specif-

ically, we looked at eight cardiometabolic traits that were

extensively characterized in the FHS, including body

mass index (BMI), systolic and diastolic blood pressure,

low-density lipoprotein (LDL) cholesterol, high-density

lipoprotein (HDL) cholesterol, triglycerides, total choles-

terol, and fasting blood glucose levels.
Material and Methods

Study Sample
In 1948, the FHS started recruiting participants (original cohort)

from Framingham, MA, to begin the first round of physical exam-

inations and lifestyle interviews to investigate cardiovascular dis-

ease (CVD) and its risk factors. In 1971 and 2002, FHS recruited

offspring (and their spouses) and adult grandchildren of the orig-

inal cohort participants into the Offspring and Third Generation
572 The American Journal of Human Genetics 100, 571–580, April 6,
cohorts, respectively.18 A total of 5,257 participants from the

FHS Offspring and Third Generation cohorts had gene expression

profiling and genome-wide genotyping.19 Methods for collection

of whole blood samples and RNA isolation and preparation have

been described previously.19 A summary of the cardiometabolic

traits used in this study can be found in Table S1. All participants

provided informed consent and the protocols were approved by

the institutional review board.
Genotype Data
A total of 42,271 SNPs associated with 1,960 complex traits from

GWASs (at p % 5 3 10�8 in the GRASP database) were curated

and matched with ~8.5 million SNPs imputed from the 1000

Genomes Project Reference Panel. GRASP v.2.0 re-annotated geno-

type-phenotype results from 1,390 GWASs and corresponding

open-access GWAS results.2 SNPs were input to Minimac20 soft-

ware. In brief, we combined genotype data with the HapMap

CEU samples and inferred genotypes probabilistically based on

shared haplotype stretches between study samples and HapMap

release 22 build 36. For each genotype, imputation results were

summarized as an ‘‘allele dosage’’ defined as the expected number

of copies of the minor allele at that SNP (value between 0 and 2).

SNPs with imputed quality score (r2) < 0.3 and MAF < 0.01 were

filtered out, resulting in 39,165 GWAS significant SNPs for eQTL

analysis (Figure 1).
Gene Expression
Whole blood was collected in PAXgene tubes (PreAnalytiX) and

frozen at �80�C. RNA was extracted using a whole blood RNA

System Kit (QIAGEN) in FHS and mRNA expression profiling was

assessed using the Affymetrix Human Exon 1.0 ST GeneChip plat-

form (Affymetrix), which contains more than 5.5 million probes

targeting the expression of 17,873 genes. The Robust Multi-array

Average (RMA) package21 was used to normalize gene expression

values and remove any technical or spurious background varia-

tion. Linear regression models were used to adjust for technical

covariates (batch, first principal component, and residual all pro-

beset mean) and differential blood cell proportions. The pedi-

greemm package22 was used to remove the effects of sex and age

and accounted for familial relationships. 2,181 individuals from

the Third Generation cohort had complete blood cell counts

(white blood cells, neutrophils, lymphocytes, monocytes, eosino-

phils, and basophils). Using gene expression data, we imputed the

cell counts of remaining samples by partial least square (PLS) pre-

diction that was developed in participants with measured cell

counts and expression data. We did not find a significant differ-

ence when comparing results using imputed cell counts and

those using measured values. Therefore, we used measured cell

counts when they were available and used imputed values when

measured cell counts were not available.
Identifying eQTLs and trans-eQTL Hotspots
eQTL analysis was conducted on 5,257 individuals from the FHS

Offspring and Third Generation cohorts using available mRNA

expression data and genome-wide genotyping. Twenty PEER

factors were calculated using a Bayesian framework and were

used to account for hidden confounding factors in the adjusted

gene expression data.23 For each SNP-mRNA pair, a linear model

was developed to identify SNP-mRNA associations, adjusting

for PEER factors and familial relationship. p values were adjusted

for multiple comparisons using the false discovery rate (FDR)
2017



method.24 eQTLs at FDR% 0.05 were considered to be significant.

cis-eQTLs were defined as SNPs that reside within 1Mb of the tran-

scription start site. trans-eQTLs were defined as SNPs that were at a

distance greater than 5Mb from the TSS of an associated transcript

on the same chromosome or on a different chromosome. eGenes

were defined as genes associated with eQTLs. An independent set

of eQTLs was obtained by pruning eQTLs in LD (R2 > 0.2) and

within 250 Kb, while keeping themost significant SNPs per eGene.

trans-eQTL hotspots were identified by an index eQTL and nearby

SNPs in high LD (R2 > 0.8) associated with at least ten trans-

eGenes. We excluded from analysis eQTLs that resided on the

same chromosome but were less than 5 Mb from their eGenes to

avoid confounding by long-range LD patterns.
Mediation and Causal Testing
Mediation testing was conducted using the mediation package

(see Web Resources) in R with eQTL as the ‘‘exposure,’’ cis-eGene

expression as the ‘‘mediator,’’ and trans-eGene expression as the

‘‘outcome.’’ A 100% proportion of mediation effect indicated that

the entire association between an eQTL and expression of a trans-

eGene (direct effect) is explainedby effects of the eQTLon cis-eGene

expression. Significantmediation effects were defined at a permuta-

tion threshold of p < 0.005 (1,000 permutations). The causal infer-

ence test (CIT) was conducted using the statistical package CIT25 in

R based on the following conditions: (1) the trait (T) is associated

with the locus (L); (2) L is associated with the eGene mediator (G)

after adjusting for T; (3) G is associated with T after adjusting for L;

and (4) L is independent of T after adjusting for G. The p value of

CIT is defined as themaximumof the four-component test p values

by the intersection-union test framework (Figure S1).26 To deter-

mine whether cis-eGenes or trans-eGenes are causal mediators for

a trait, CIT was performed for cis-eGenes and trans-eGenes sepa-

rately. For a cis-eGene,weused its cis-eQTLwith the smallest p value

as an instrumental variable. For a trans-eGene, we calculated its best

cis-eQTL from~8million imputed SNPs residingwithin 1Mbof the

trans-eGene, based on the smallest p value.
Functional Annotation and Enrichment Testing
SNP annotations were conducted on HaploReg v.4.1,27 which

linked the SNPs with chromatin state and protein binding annota-

tion from the Roadmap Epigenomics and ENCODE project,

sequence conservation across mammals, the effect of SNPs on regu-

latory motifs, and the effect of SNPs on expression from eQTL

studies. Regulatory motif enrichment was conducted using cis-

eQTLs residing in trans-eQTL hotspots as test sets and all cis-eQTLs

as background. The gene ontology and transcription factor target

enrichment analyses were conducted by ‘‘Gene-Set Enrichment

Analysis (GSEA).’’28 The transcription factors (TFs) were extracted

from FANTOM,29 the large international consortium that mapped

all humanTFs and the genes they regulate; it contains 1,672human

genes. The protein-protein interaction (PPI) network contained a

systematically generated or literature-curated dataset of ~58,000

PPIs among 10,690 human proteins.30 We defined hub proteins as

those having no fewer than four interactions in the PPI network.
Results

eQTLs Associated with Complex Disease Traits

At aminor allele frequency> 0.01 and imputation r2> 0.3,

39,165 genome-wide significant (p < 5 3 10�8) SNPs
The Ame
reported in published GWAS databases2 were genotyped

or imputed in the FHS. At FDR < 0.05, we identified

23,579 cis-eQTLs (associated with expression of 2,933 cis-

eGenes at a corresponding p < 1 3 10�4; Table S2) repre-

senting 5,974 independent SNPs (LD threshold < 0.2)

and 2,350 trans-eQTLs (associated with expression of 606

trans-eGenes at a corresponding p < 1 3 10�7; Table S3)

representing 486 independent SNPs (LD threshold <

0.2). Because many SNPs in high LD are associated with

different traits in GWASs, we used non-pruned eQTLs in

the subsequent analyses. In total, we determined that

23,951 out of 39,165 (61%) statistically significant GWAS

SNPs are eQTLs, which is consistent with previous findings

that GWAS SNPs are enriched for eQTLs (p < 0.0001

for 10,000 random sets of 39,165 SNPs at MAF > 0.01

and r2 > 0.3; average eQTL number ¼ 9,022).13,31

Reproducibility and Mediation Effects of trans-eQTLs

In accordance with previous results,32 we found that trans

effects on gene expression are much weaker than cis effects

(Figure S2A, average trans-eQTL effect size on correspond-

ing transcript R2 ¼ 0.009 versus average cis-eQTL effect

size R2 ¼ 0.02, t test p ¼ 1.1 3 10�16). Using the Blood

eQTL Browser (meta-analysis in non-transformed periph-

eral blood samples from 5,311 individuals)12 as a reference

database, we found that 331 out of 1,686 (20%) trans-

eQTL-trans-eGene pairs from the database were statistically

significant (at p < 1 3 10�7) in our results. Among them,

323 pairs (98%) have concordant directions of effects

(Table S4). The overlapping pairs increased to 562 (33%)

when we used p < 1 3 10�4 as our trans-eQTL threshold.

On the other hand, the replication rate was much higher

for cis-eQTLs; 17,118 out of 38,608 (44%) cis-eQTL-cis-

eGene pairs in the Blood eQTL Browser were statistically

significant (at p < 1 3 10�4) in our results. Among them,

14,208 pairs (83%) had the same direction of effect. We

hypothesized that the genetic effects of trans-eQTLs on

expression of trans-eGenes are mediated in some cases by

the expression of cis-eGenes (Figure 2). To test this hypoth-

esis, we conducted mediation analyses for all 8,566 trans-

eQTL-trans-eGene pairs to identify the proportion of the

association between a trans-eQTL and trans-eGene that

was attributable to the effect of the eQTL on cis-eGene

expression. For trans-eQTLs and trans-eGenes on different

chromosomes, we found that 1,953 out of 2,324 trans-

eQTLs (84%) affect cis-eGene expression and that 2,612

trans-eQTL-trans-eGene pairs (35%) are significantly medi-

ated by expression of cis-eGenes near the trans-eQTL. The

proportion of mediation ranged from 1.4% to 100%

(mean 15%). For trans-eQTLs and trans-eGenes on the

same chromosome (by definition, separated by at least 5

Mb), we found that 913 out of 931 trans-eQTLs (98%)

affect cis-eGene expression and that 1,011 trans-eQTL-

trans-eGene pairs (90%) are significantly mediated by

expression of cis-eGenes near the trans-eQTL, suggesting

that trans-eGenes on the same chromosome are highly

regulated through cis-eGenes (Table S5).
rican Journal of Human Genetics 100, 571–580, April 6, 2017 573



Figure 2. Mediation Mechanisms of eQTLs
Genetic variants can affect traits through the followingmechanisms: (1) missense SNP affects protein structure/function; (2) non-coding
SNP affects gene expression (cis); (3) non-coding SNP affects remote (trans) gene expression directly or by (4) cis-eGene mediation of the
trans-eQTL-trans-eGene association; or (5) reverse causality (trait has feedback effect on gene expression).
trans-eQTL Hotspots

Among the 2,324 trans-eQTLs, we identified 13 trans-

eQTL hotspots across eight chromosomes, with the

index SNP associated with at least ten transcripts (Table 1

and Figure 3). Notably, 8 out of 13 trans-eQTL hotspots

were also identified in the Blood eQTL Browser,12 indi-

cating that hotspots are more replicable than individual

trans-eQTLs. For these trans-eQTL hotspots, we found
Table 1. trans-eQTL Hotspots

Hotspot Location (hg19)
Number of
trans-eQTLs

Number of trans-
eGenes Associated
with Index eQTL

Dir
tra
wit

1: 205,187,981–205,244,972 10 10 þ6

1: 248,039,451 1 12 �5

2: 60,708,597–60,725,451 14 14 �7

3: 50,093,209 1 24 þ1

3: 56,849,749–56,865,776 2 126; 84 �9

6: 135,411,228–13,543,5501 13 22 �5

6: 139,840,693–139,844,429 13 48 �7

7: 50,423,963–50,562,361 19 76 �5

12: 54,712,308–54,736,470 2 14 þ7

12: 111,884,608–112,610,714 9 13 �6

16: 57,061,189–57,061,189 2 10 �1

17: 27,072,463–27,322,441 45 32 þ5

17: 33,796,260–33,944,055 4 51 þ7

Plus sign (þ) denotes the positive association; minus sign (�) denotes the negati
aTranscription factors whose motifs were matched with promoter regions [�2 k
enrichment.
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that cis-eQTLs linked to trans-eQTL hotspots have smaller

effects compared to cis-eQTLs not located within trans-

eQTL hotspots (mean R2 0.009 versus 0.02, t test p < 1 3

10�8) and have similar effect sizes as trans-eQTLs (mean

R2 0.009 versus 0.01, Table S6, Figure S2B). We found

that eGenes associated with trans-eQTL hotspots have a

directional bias, with 65% of trans-eGenes showing the

same directional effect in relation to the trans-eQTLs,33
ectional Bias of
ns-eGenes Associated
h Index eQTL

Traits Associated
in GWAS with Index
eQTLs

trans-eGene
Enrichment
in TF Motifsa

4% platelet count NA

8% red blood cell count STAT1/STAT2

9% fetal hemoglobin level NFAT/SP1

00% age at menarche NA

4%; þ92% platelet count; mean
platelet volume

TCF3/ETS2

5% fetal hemoglobin NA

0% erythrocyte count SP1/TCF3

9% childhood acute
lymphoblastic leukemia

PAX4

9% mean platelet volume ETS2

2% LDL cholesterol; blood
pressure; asthma

NA

00% HDL cholesterol IRF8/IRF2

5% mean corpuscular volume E4F1

5% mean platelet volume ETS2/MAZ

ve association.
b, 2 kb] around transcription start site of the trans-eGenes; NA, no TF target
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Figure 3. trans-eQTL Hotspots
x axis denotes the chromosomal location
of SNPs. y axis denotes the number of
trans-eGenes.
rather than equal ratios of overexpression versus under-

expression, as would be expected if the trans-eQTLs

randomly affect the direction of expression of their corre-

sponding trans-eGenes. For example, for age at menarche

and HDL cholesterol, the associated trans-eGenes show

100% directionally consistent expression in relation to

the index trans-eQTL (Table 1). One explanation for this

observation is that the trans-eQTL alters the activity or

abundance of a transcription factor (TF, or other trans-

acting factor), leading to concordant expression changes

of all the target genes of this factor.

For all 13 trans-eQTL hotspots, we found that 37% of

trans-eQTL-trans-eGene associations were mediated by

the expression of cis-eGenes (at p < 0.005 based on 1,000

bootstrap permutations, Figure 1). The strongest media-

tion effect was found at the NLRC5 locus on chromosome

16, which is associated with expression of ten eGenes at

the HLA locus on chromosome 6. We found that 80% of

the genetic effects between rs291040 and TAP1 are medi-

ated by the cis expression of NLRC5 (Table 2). Prior studies

have shown that NLRC5 acts as a master regulator of MHC
Table 2. cis-eGenes in Hotspots with >10% Mediation Effects on the Relations of trans-eQTLs

SNPs
Hotspot
Number cis-eGene trans-eGene

SNP-eGene trans
Association (b)

SNP- tra
Associat
for cis-eG

rs3811444 2 TRIM58 ZER1 �0.015 �0.011

rs6762477 3 UBA7 RCAN3 (MIM: 605860) 0.021 0.014

rs12718597 8 IKZF1 (MIM: 603023) TMEM9B
(MIM: 616877)

�0.024 �0.021

rs11065987 10 ALDH2 ARHGEF40 0.017 0.013

rs291040 11 NLRC5 (MIM: 613537) TAP1 (MIM: 170260) �0.023 �0.003

rs10512472 13 AP2B1 (MIM: 601025) TRAK2 (MIM: 607334) 0.023 0.014

aProportion of mediation of the trans-eQTL-trans-eGene association by the cis-eGene.

The American Journal of Human
class genes in immune response34 and

interacts with the RFX transcription

factor complex to induce MHC class

I gene expression.35 Using HaploReg

v.4.1, we found that SNPs in trans-

eQTL hotspots are significantly en-

riched for regulatory motifs (hyper-

geometric p ¼ 3.7 3 10�5), with 121

out of 138 (88%) SNPs in ENCODE

TF binding experiments (Table S7),

suggesting that the expression of

trans-eGenes is controlled by these

SNPs. Among 37 cis-eGenes linked to

trans-eQTL hotspots, we found that
two are TFs (NFE2 [MIM: 601490] and IKZF1 [MIM:

603023]). Although cis-eGenes are not enriched for TFs,

we found that trans-eGenes are significantly enriched for

TF targets (at FDR < 0.05, Table 1) in 9 of 13 trans-eQTL

hotspots. In addition, we found that 13 of 37 cis-eGenes

shared the same regulatory motifs with the trans-eGene(s)

of the same trans-hotspot, suggesting that both cis-eGene

and trans-eGene are under the same regulatory control.

The enriched functions of trans-eGenes are also highly

consistent with the traits affected by the trans-eQTLs. For

example, trans-eQTLs on chromosome 2 are associated

with platelet count in GWASs. We found that the trans-

eGenes in this hotspot are enriched for platelet degranula-

tion (Table S8). Moreover, analyzing 25 cis-eGenes having

binary interactions identified in a systematic screen for

protein-protein interactions (PPI),30 we found that 15 of

them are hub genes in the PPI network (Figure S3, p <

0.001 for randomly selecting 25 proteins in a PPI network),

suggesting that cis-eGenes linked to trans-eQTLs play a

central regulatory role in critical biological pathways

through their mediation effects on trans-eGenes.
to trans-eGenes

ns eGene
ion Adjusted
ene (b)

Proportion of
Mediationa

p Value
for
Mediation

27% 0.001

37% 0.002

12% 0.002

23% 0.002

88% 0.001

40% 0.001
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Causal Effects between eQTLs and Phenotypes

To test whether expression levels of eGenes (cis or trans)

associated with eQTLs might explain the observed associa-

tions between eQTLs and phenotypes, we conducted

causal inference testing (CIT) using the statistical package

CIT in R.25,36 We applied this approach to the analysis of

eight common cardiometabolic traits (BMI, blood lipid

levels [HDL-cholesterol, LDL-cholesterol, triglycerides,

and total cholesterol], fasting blood glucose, and systolic

and diastolic blood pressure [SBP and DBP]) that were

available along with genotype and gene expression data

for 5,257 FHS participants. Among cis-eQTLs, we identified

the SH2B3 (MIM: 605093)/ALDH2 (MIM: 100650) locus

as having a causal effect on DBP (p ¼ 0.005) and SBP

(p ¼ 0.02) through ALDH2 expression (Table 3). SNPs in

this locus are associated with coronary artery disease

(CAD)/myocardial infarction (MI), blood pressure, LDL-

cholesterol, and type 1 diabetes (Figure 4). Not only was

the cis-locus found to be associated with risk of CAD/

MI,37 recent studies describe the trans-regulation of

MYADM (MIM: 609959) and TAGAP (MIM: 609667)

expression by the same trans-eQTL.38,39 In addition, we

found on average that 11% of trans-regulation of trans-

eGenes for this module is mediated through expression

of ALDH2, suggesting a new target and regulatory mecha-

nism related to this CAD/MI module. Two additional

causal loci are RAB3GAP1 (MIM: 602536) for total choles-

terol (eGenes MCM6 [MIM: 601806] and DARS [MIM:

603084]) and LOC105375745 for triglycerides (eGene

TRIB1 [MIM: 609461]). Among trans-eQTLs, we identified

the TAGAP locus as having a causal effect on LDL and total

cholesterol through expression of TAGAP. The TAGAP

locus has been found to be significantly associated with

lipoprotein (a) levels40 and TAGAP was reported to be

differentially expressed in CAD patients41 and after

atorvastatin treatment.42 Another possible mechanism to

explain the association of trans-eQTLs with the expression

of their trans-eGenes is reverse causality, whereby an eQTL

alters expression of a trans-eGene through its effect on

phenotype. In this case, the phenotype serves as a medi-

ator (feedback effect). CIT, however, did not identify any

examples of reverse causal effects (at p < 0.05).
Discussion

Identifying disease-causal genes and variants within

GWASs results is an enormous challenge that simple asso-

ciation analysis cannot address.43 Unlike GWASs, where

the association between a genetic variant and trait is

unidirectional, in transcriptome-wide association studies

(TWASs) the direction of association between transcript

and phenotype is not clear and causal inference must be

drawn with caution.44 eQTL studies hold the promise of

revealing biological mechanisms of SNP-phenotype associ-

ations; integrating GWASs with TWASs may help prioritize

genes and variants for functional studies.44 In this study,
2017



Figure 4. cis- and trans-eQTLs in the ALDH2 Causal Module
Gray boxes list traits associated with SNPs from GWASs, green boxes list SNPs, red box lists the cis-eGene, and blue boxes list trans-
eGenes. Red edges represent cis-associations; green edges represent trans-associations.
we used a causal inference approach to infer causal rela-

tions and their directionality by integrating SNPs from

GWASs with gene expression and phenotype data predi-

cated on the assumption that if a gene is causally related

to a phenotype, a nearby genetic variant (i.e., a cis-eQTL)

that explains a large proportion of its expression should

be associated with the same phenotype.

We discovered that many trans-eQTL-trans-eGene associ-

ations are mediated by cis-eGene expression, reflecting a

complex regulatory mechanism. An intuitive explanation

for hidden regulation of trans-eGenes is TFs that directly

influence gene transcription. Although we found no

enrichment for TFs among trans-eGenes, we found that

more than one-third of cis-eGenes shared a commonmotif

with trans-eGenes from the same trans-hotspot, indicating

that there may exist indirect relations of cis-eGenes to TFs.

For example, we identified trans-eGenes in the chromo-

some 7 hotspot that were enriched for the targets of TF

PAX4 (MIM: 167413). The cis-eGene at this hotspot is TF

IKZF1 and although PAX4 and IKZF1 are different TFs,

they share common motifs.

Using different cell types and populations, Pierce et al.15

also reported a similar proportion (~20%) of trans-eQTLs

that act through cis-mediation, indicating that the mecha-

nism of cis-eGene mediation of trans-eGene expression
The Ame
may be a common feature genome wide. To extend this

concept, we explored how this phenomenon affects disease

pathways. For example, we observed that rs174538, which

was reported to be associated with plasma phospholipids

in GWASs,45 is a trans-eQTL of LDLR (MIM: 606945) expres-

sion (p ¼ 3.69 3 10�8). This association, however, was not

significant after adjusting for expression of FADS2 (a cis-

eGene of rs174538) and the proportion of mediation of

FADS2 (MIM: 606149) on LDLR was 100%. FADS2 is a key

gene influencing n-3 polyunsaturated fatty acids (PUFA)

levels andPUFA levelshavebeen found toupregulate LDL re-

ceptor protein expression in fibroblasts and HepG2 cells,46

indicating a likely pathway from PUFA to lipid metabolism.

A recent study reported that Fads1 KO mice had 40% less

atheromatous plaque compared to wild-type littermates.47

Therefore, the FADS gene could be a putative therapeutic

target for cardiovascular disease prevention and treatment.

We found that 10 out of 13 trans-eQTL hotspots are

blood trait related and five of them replicated in the Blood

eQTL Browser.12 Among the 227 trans-eGenes associated

with platelet SNPs, 26 were reported as platelet eQTL-

genes,48 suggesting that trans-eQTLs are highly tissue spe-

cific and that SNPs might remotely affect tissue-specific

eGenes. For example, some of the loci identified in GWASs

for platelet traits (e.g., ARHGEF3) affect the expression of
rican Journal of Human Genetics 100, 571–580, April 6, 2017 577



hundreds of genes and may be key drivers of hematopoi-

esis and affect multiple blood cell lineages.49

This study has several limitations. First, the Blood eQTL

Browser12 is the only database that includes extensive

trans-eQTL results in a comparable large sample size. There-

fore, our results cannot readily be validated in other tissues

as most other large eQTL databases provide only cis-eQTLs.

Second, although ours is one of the largest studies to detect

trans-eQTLs, we are still underpowered for causal inference

testing, which tests the SNP-phenotype association as the

first condition. Therefore, many genes were excluded

from causality testing because they did not fulfill the first

condition.

In summary, we provide evidence of a cis-mediated

mechanism that explains distal regulation of trans-eGenes

by their trans-eQTLs. Importantly, the causal loci, espe-

cially the trans-eQTLs identified from our integrative

genomic approach, could not be detected from traditional

GWASs by searching SNPs around the GWAS signal. Our

next steps are to explore eQTL data from more disease-

related tissues and to incorporate whole-genome sequence

data to identify more causal eQTLs. We speculate that it

may be worthwhile to apply this approach across eQTL

databases and across multiple phenotypes as a means of

identifying plausible targets for therapeutic intervention.
Supplemental Data

Supplemental Data include three figures and eight tables and can

be found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2017.02.003.
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Figure S1. Possible relationships between a
causal factor (L), a potential mediator (G) and
an outcome (T).
A) The eGene-mediated relationship, in which
genotype (L) acts on phenotype (T) through
gene expression (G).
B) The reverse causality model, in which gene
expression changes (G) are the consequence of
phenotype (T).
C) The independent model, in which the
genotype affects gene expression(G) and
phenotype (T) independently.

If gene expression is a consequence of T (Fig.
S1b) or independently affected by L (Fig. S1c),
rather than a mediator in the path from G to T
(Fig. S1a), the estimated effect of L on T should
not be affected by conditioning on G. However,
if gene expression is indeed a mediator, this
conditioning should drastically reduce the
observed effect of L on T (Fig. S1a).



Figure S2 . Genetic effects of A) cis-eQTLs, trans-eQTLs; B) cis-eQTL on trans-hotspots, and trans-eQTLs 
on trans-hotspots. 

 

 (A) 

 

(B) 



Figure S3. Protein-protein interactions of  cis-
eGenes (red) and their interaction proteins (blue) 



Table 1. Clinical Characteristics of the Framingham Heart Study Participants 

Clinical Trait Mean 
(SD) Clinical Trait Mean (SD) 

Age, years  51 (15.7) Total cholesterol, mg/dL 188 (36.3) 
Sex, male (percentage) 46 %  Triglycerides, mg/dL 116 (83.5) 

Fasting blood glucose, mg/dL 100 
(21.5) HDL cholesterol (HDL-C), mg/dL 56 (17.0) 

Body mass index(BMI), kg/m2 27.5 (5.5) Hypertension*, (%) 40% 
Systolic blood pressure (SBP), 
mm Hg 

122 
(16.6) Diabetes mellitus*, (%) 8% 

Diastolic blood pressure (DBP), 
mm Hg 74 (9.9) Lipid treatment, (%) 28% 

Current Smoker 13% Non-drinkers 29% 
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