The American Journal of Human Genetics, Volume 100

## **Supplemental Data**

## **Modeling the Mutational and Phenotypic**

#### Landscapes of Pelizaeus-Merzbacher Disease

## with Human iPSC-Derived Oligodendrocytes

Zachary S. Nevin, Daniel C. Factor, Robert T. Karl, Panagiotis Douvaras, Jeremy Laukka, Martha S. Windrem, Steven A. Goldman, Valentina Fossati, Grace M. Hobson, and Paul J. Tesar

## Figure S1.



## Figure S1 (continued).



#### Figure S1. High Density SNP Microarray Analysis

The remainder of the lines not included in Main Figure 1E. Plots demonstrating the gross genomic integrity of derived pluripotent lines. Relative copy number was calculated for each SNP in a high density SNP microarray. Every 100th SNP, arranged by ranked genomic coordinate, was plotted as a Log R Ratio. SNPs are colored by chromosome.

## Figure S2.



Figure S2 (continued).



#### Figure S2. mRNA Splicing Analysis

The remainder of the lines not included in Main Figure 2E. PLP1 mRNA splicing was quantified in PMD hiPSCs and controls using Integrated Genome Viewer's Sashimi plot function. PMD7 and 8 demonstrate skipping of exon 6 (white arrowheads). The exon 3-4 junction cannot be annotated in PMD9 (black arrowhead) due to its partial deletion. For comparison, splicing analysis of day 154 differentiated NC2 mixed OPCs and oligodendrocytes is also provided, demonstrating the presence of both DM20 and PLP1 transcripts.

| PI P1 Exon            | Forward Primer          | Reverse Primer         |
|-----------------------|-------------------------|------------------------|
| 1                     | AAAGCGAAATTCCAGGCAAGC   | GATAGAGGGAAGTGAGGGGGT  |
| 2                     | AAGGATTCTGGGTCAATCTCACA | CACAGAGGGAAGACTCGGGA   |
| 3                     | TGGCGGGAGGGGCATATGTTTC  | AGACTCGCGCCCAATTTTCCCC |
| 4                     | GGCTTTGTTCAATGGCTAGGG   | GTGGGTAGGAGAGCCAAAGC   |
| 5                     | GGCCATTCACATTGGCCTAC    | TCTATGCTCATTGGCTCAGGC  |
| 6                     | CTGGGCACAACTGTAGGGAAC   | GCCAATGCAAGTAGAAGTACGG |
| 7                     | TCCCTGAGGAAAACTCAGTGC   | GCAGGAACCAGCTATGAAGCA  |
| 3-4 Fusion<br>in PMD9 | TTCTCCAGGTCCCAGGGTAAG   | AGTGCTTCCATAGTGGGTAGGA |

# Table S1. Primers for *PLP1* Exon Sequencing.

| Sample            | Citation(s) |  |
|-------------------|-------------|--|
| PMD1              | 1           |  |
| PMD2              | 1           |  |
| PMD3              |             |  |
| PMD4              | 2           |  |
| PMD5              | 3           |  |
| PMD6              | 4; 5        |  |
| PMD7/8 (siblings) | 1; 6-8      |  |
| PMD9              | 9           |  |
| PMD10             | 1           |  |
| PMD11             |             |  |
| PMD12             | 1; 10       |  |

# Table S2. Prior Publications Involving PMD Samples in this Study.

| Panel ID | Cell Type | NIH Registry ID | Reprogramming Method | Gender |
|----------|-----------|-----------------|----------------------|--------|
| NC1      | hESC      | H1              |                      | Male   |
| NC2      | hESC      | H7              |                      | Female |
| NC3      | hESC      | H9              |                      | Female |
| NC4      | hiPSC     |                 | Episomal             | Male   |
| NC5      | hiPSC     |                 | Lentiviral           | Male   |
| NC6      | hiPSC     |                 | Lentiviral           | Female |
| NC7      | hiPSC     |                 | Lentiviral           | Male   |

# Table S3. Details on Control Pluripotent Cell Lines.

#### **Supplemental References**

- Laukka, J.J., Stanley, J.A., Garbern, J.Y., Trepanier, A., Hobson, G., Lafleur, T., Gow, A., and Kamholz, J. (2013). Neuroradiologic correlates of clinical disability and progression in the X-linked leukodystrophy Pelizaeus-Merzbacher disease. J Neurol Sci 335, 75-81.
- Hobson, G.M., Huang, Z., Sperle, K., Sistermans, E., Rogan, P.K., Garbern, J.Y., Kolodny, E., Naidu, S., and Cambi, F. (2006). Splice-site contribution in alternative splicing of PLP1 and DM20: molecular studies in oligodendrocytes. Hum Mutat 27, 69-77.
- 3. Taube, J.R., Sperle, K., Banser, L., Seeman, P., Cavan, B.C., Garbern, J.Y., and Hobson, G.M. (2014). PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing. Hum Mol Genet 23, 5464-5478.
- 4. Gencic, S., Abuelo, D., Ambler, M., and Hudson, L.D. (1989). Pelizaeus-Merzbacher disease: an Xlinked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein. Am J Hum Genet 45, 435-442.
- 5. Wood, P.L., Smith, T., Pelzer, L., and Goodenowe, D.B. (2011). Targeted metabolomic analyses of cellular models of pelizaeus-merzbacher disease reveal plasmalogen and myo-inositol solute carrier dysfunction. Lipids Health Dis 10, 102.
- Carango, P., Funanage, V.L., Quiros, R.E., Debruyn, C.S., and Marks, H.G. (1995). Overexpression of DM20 messenger RNA in two brothers with Pelizaeus-Merzbacher disease. Ann Neurol 38, 610-617.
- 7. Hobson, G.M., Davis, A.P., Stowell, N.C., Kolodny, E.H., Sistermans, E.A., de Coo, I.F., Funanage, V.L., and Marks, H.G. (2000). Mutations in noncoding regions of the proteolipid protein gene in Pelizaeus-Merzbacher disease. Neurology 55, 1089-1096.
- 8. Southwood, C.M., Garbern, J., Jiang, W., and Gow, A. (2002). The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36, 585-596.
- 9. Kleindorfer, D.O., Dlouhy, S.R., Pratt, V.M., Jones, M.C., Trofatter, J.A., and Hodes, M.E. (1995). Inframe deletion in the proteolipid protein gene of a family with Pelizaeus-Merzbacher disease. Am J Med Genet 55, 405-407.
- Inoue, K., Osaka, H., Thurston, V.C., Clarke, J.T., Yoneyama, A., Rosenbarker, L., Bird, T.D., Hodes, M.E., Shaffer, L.G., and Lupski, J.R. (2002). Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am J Hum Genet 71, 838-853.