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1. Data characterization

We chose four test cases that represent diverse systems in order to best characterize the
difference between uFBA and steady-state models (Supplementary Table 1). Differences in
datasets include the amount of carbon, nitrogen, oxygen, sulfur, and phosphorus inside and
outside of the cells, based on the measured small metabolites (Supplementary Fig. 1). In RBCs,
29.1% of carbon in the system was located in the cell. In platelets, roughly 2.87% of measured
carbon was in the cells. In S. cerevisiae, only 0.11% of measured carbon was in the cells, while
0.963% of measured carbon was intracellular in E. coli. The low levels of intracellular carbon in
the three latter cases is due to the low volume ratio of cells to the total volume. However, over
time in the S. cerevisiae experiments all the glucose was consumed by the cells changing the
extracellular/intracellular ratio. This change is reflected in the drop in Spearman correlation of
UFBA to FBA fluxes in the later states for S. cerevisiae (Fig. 2b). Nitrogen, sulfur, and
phosphorus were predominantly located in the cells across all three cases. Each test case varied
in average cell size and the volume fraction in the system that was cells (Supplementary Table
1). The complexity of cellular metabolism varied between test cases, which affected the
percentage of the total metabolome that we were able to measure. Further, the systems varied in
how much the measured metabolites deviate from steady-state. In RBCs, platelets, and S.
cerevisiae, >80% of the measured metabolites that were in the model were not at steady-state in
at least one of the metabolic states. In E. coli, roughly 45% of measured metabolites were not at
steady-state. This is to be expected as the E. coli measurements were made during a particular
state of exponential growth. The timescale of the measurements also varied, where RBC and
platelet measurements were made over days while S. cerevisiae and E. coli measurements were
made over hours. Thus, the three test cases chosen were quite diverse.

The differences in uFBA from steady-state modeling in the main text, or lack thereof, are
reflections of the different experimental conditions mentioned above. In particular, E. coli uFBA
results were very similar to FBA modeling in part due to: (1) the chosen experimental condition
that was not dynamic, (2) the percentage of measured metabolites that deviate from steady-state,
and (3) the much smaller volume of E. coli. We anticipate that if E. coli metabolomics data is
procured in a more dynamic situation and a higher percentage of intracellular metabolites were
measured, the differences between uFBA and FBA would be comparable to those seen in the
other test cases. Further, we anticipate that using uFBA on mammalian cell culture metabolomics
data will be of interest as those cell types are 10-100x larger than RBCs.

2. Discretizing time-course metabolomics with principal component
analysis

Constraint-based modeling does not explicitly model metabolite concentrations. Thus, dynamic
metabolite profiles cannot be directly integrated with such models, as would be the case with
kinetic models. Still, the rates of metabolite change can be integrated. As constraint-based
models are linear models, integrated rates of metabolite changes should be close to linear, as



other behaviors (e.g., oscillations) cannot be accurately modeled. Thus, we used principal
component analysis (PCA) to objectively discretize non-linear time-course data into time
intervals that were predominantly linear in terms of metabolite change for piecewise analysis.
PCA was performed on the standardized Z-scores of the RBC, platelet, and yeast raw data and
determined that there were three metabolic states in the RBC data (days 1-11, days 11-18, and
days 18-43), two metabolic states in the platelet data (days 0-3 and days 3-10), and three
metabolic states in the yeast data (hours 14.5-18.5, hours 18.5-22, and hours 22-38.5)
(Supplementary Fig. 2). The E. coli data was chosen and modeled as one metabolic state as
there were only 3 time points, all during exponential growth. Further, manual inspection of RBC,
platelet, and yeast metabolites confirmed that PCA was able to separate out the majority of
nonlinear behaviors of metabolite level change into predominantly linear states; examples are
shown in Supplementary Fig. 2.

3. Model construction parameters

The extracellular metabolites were preferentially weighted to deviate from steady-state first
(eWeight = 1e6, see documentation of MATLAB code). 100 iterations of the node relaxation
algorithm were used for all models. Some metabolites were hardcoded not to be allowed to
deviate from steady-state. This was done for metabolites that were known to have very low
concentrations or not be present in the conditions in which the data was procured
(Supplementary Table 2).

Additional adjustments, RBC: NADP and NADPH measurements were ignored as they were
unreliable assays. The minimal change in cysgsh[e] in state 2 and 3 was not ignored, even though
it was not significant.

Additional adjustments, PLT: The reaction for glutathione dehydrogenase (GTHDH) was added
so that the model could reduce dehydroascorbate to ascorbate. The transport reactions for L-
histidine and L-lysine were both changed to be reversible. Glutathione peridoxase (GTHPI),
extracellular glutathione reductase (GTHPe), and mitochondrial glutathione reductase (GTHPm)
were made irreversible. For the PLT FBA model, a sink was created for ncam[e] in both states.

Additional adjustments, SC: Necessary reactions for xylose assimilation were added to the model
for each strain as specified in Bergdahl et al.* Oxygen was not allowed into the system in order
to simulate anaerobic conditions. lons, protons, and water were allowed to exchange freely. The
intracellular measurements for 1,3-bisphosphate glycerate were ignored similar to the original
publication. Extracellular measurements were reported as mean and standard deviation for three
replicates. Three pseudo-replicates were generated on a normal distribution around the mean and
standard deviation to calculate metabolite rates of change. The process was repeated 1000 times
and averaged for the final calculated 95% confidence interval.

Additional adjustments, ECO: The measurements for inositol (both intracellular and
extracellular) were ignored due to measurement error. lons, protons, and water were allowed to



exchange freely. Exchange of CO, and methanol out of the system was freely allowed.

4. Sensitivity analysis of varying metabolite node relaxation parameters

Using the RBC data, we completed a sensitivity analysis on the two parameters necessary for
metabolite node relaxation: (1) the optimization approach (“Case”), and (2) the scaling factor of
the minimum flux bounds for a feasible solution (“lambda”). See Methods for further
explanation of parameters. First, we determined the number of metabolites that were deviated
from steady-state by each Case, as well as the necessary magnitude of deviation from steady-
state to produce a feasible model (Supplementary Fig. 3). Cases 1 and 2 relaxed the fewest
metabolites while Cases 1, 2, and 4 had the smallest total magnitude of relaxation.

Next, we compared how varying both parameters affected flux predictions for the three RBC
metabolic states. Flux states were computed by MCMC sampling for the five Cases and for five
different lambda values (1x, 1.5x, 5x, 10x, and 100x of minimum magnitude necessary for a
feasible model). 25 models were built for each pairing of the two parameters. The percentage of
significantly different reactions was determined for the 25 models through a pairwise comparison
(Supplementary Fig. 4). We found that varying the optimization approach can yield changes in
results. However, the biggest changes occur when the lambda value is set to a stringent value of
1. The higher lambda values had much less change between each other and also lowered the
difference between Cases. These results indicate that a particular optimization approach has to be
well chosen. The accuracy of the various optimization approaches is compared to an independent
dataset for validation in the next section.

Further, we compared uFBA and FBA to all 25 combinations of Cases and lambdas
(Supplementary Fig. 5). The difference between uFBA and FBA was relatively constant across
all 25 parameter combinations.

5. Accuracy of metabolite node relaxation

We assessed which of the five metabolite node relaxation optimization approaches is most
accurate for determining unmeasured metabolites that should deviate from steady-state. A
qualitative dataset was procured (personal communications with Angelo D’ Alessandro) and used
for validation. This dataset measured 31 metabolites that were in the RBC model (see
Supplementary Data S3) but were unmeasured in the absolute quantitative dataset used to build
the uFBA models in the main text. The qualitative dataset had seven measurements from days 1
to 43. The time points did not line up with the metabolic states determined by PCA (see
Supplementary Fig. 2), as our absolute quantitative dataset measured metabolites every 3-4
days. Thus, we only compared State 1 with days 1-15 and State 3 with days 22-43.

We believe that the best optimization technique would minimize the number of incorrectly
relaxed metabolites from steady-state, as erroneous relaxations would lead to additional degrees



of freedom of the network. As we had three categories (accumulate, deplete, steady-state), we
determined the binary classifier accuracy of the methods three times, where the positive
prediction was each of the categories. We primarily focused on the category where steady-state
is the positive prediction and determined the optimization approach with the highest true positive
rate (TPR = TP / (TP + FN)). Case 1 had the highest TPR in both metabolic states. Further, we
looked at the average of the overall accuracy of all three categories which was also Case 1
(Supplementary Table 3). Therefore, we selected Case 1 for this study. The final code contains
all optimization approaches.

6. Observed differences between FBA and uFBA by subsystem

The underlying Spearman correlation distributions used to generate the violin plots in Fig. 2b are
shown in Supplementary Fig. 7. Determination of significantly different Spearman correlations
between uFBA and FBA was determined by comparing the distribution against the combination
of control distributions for the correlations of uUFBA vs uFBA and FBA vs FBA.

7. Additional observed differences between FBA and uFBA using other
constraint-based methods

In the main text, MCMC sampling is used to calculate differences between uFBA and FBA
formulations. Here, we further characterize the difference of modeling formulations using linear
optimization for various user-defined objective functions and assessing the solution space, using
flux variability analysis (FVA).? First, we chose several objective functions for the four test cases
and calculated the maximum flux through those reactions (Supplementary Table 4). Similar to
MCMC sampling results, there were considerable differences for flux values in the dynamic test
cases (RBC, platelet, and yeast). There was little difference in E. coli results. Second, we assess
the change in the solution space by using the uFBA formulation. We applied FVA to each State
of each test case to determine the flux range for each metabolic reaction (flux range = maximum
flux — minimum flux). FVA was applied without first optimizing an objective function. For
illustrative purposes, the ratio of the feasible flux ranges of uFBA and FBA are shown
(Supplementary Fig. 8). In the RBC and platelet case, we found that certain reactions had larger
flux ranges using uFBA. For the other cases, most of the reaction had equal or lower flux ranges
in the uFBA formulation.

8. RBC >C MFA citrate labeling experimental validation

In order to determine whether uFBA or FBA provided more accurate flux predictions for RBC
utilization of TCA intermediates, we conducted an isotopic metabolic flux analysis (MFA). For
blood banking, whole blood is initially placed in citrate-phosphate-dextrose (CPD) solution.
Next, the whole blood is separated into its individual blood component, such as RBCs in satellite



bags. During cell separation, RBCs are placed in saline-adenine-glucose-mannitol (SAGM)
solution, which does not contain citrate. We replaced the anticoagulant citrate in the initial CPD
bag with *C fully labeled citrate (i.e., all 6 carbons labeled, 80% m+6). Metabolomics
measurements of isotopically labeled metabolites began nearly 24 hours after the donation,
processing, and placement in SAGM, meaning some of the label had already propagated into
intracellular metabolites. We were able to isotopically track 96 metabolites, which had a high
overlap with the metabolites measured in the original study.® Of these tracked metabolites, we
saw reliable signals of *3C labeling in eight metabolites (Supplementary Table 5). Reliable
signals were those for which (1) the labeled signal was a high percentage of total signal for that
metabolite or (2) the labeled signal had a clear increase or decrease.

uFBA and FBA provided very different predictions for how RBC citrate metabolism occurs
during cold storage, as uFBA takes into account the intracellular metabolic changes (Fig. 3a). To
quantitatively assess which method provided more accurate flux estimates, we completed **C
MFA. As intracellular metabolite levels are changing throughout the labeling experiment and the
labeling patterns are unstable, traditional “reverse” *C MFA calculations are not applicable.
Instead, we completed a “forward” MFA simulation (see Methods). We found that uFBA fluxes
were quantitatively more accurate in predicting the isotopic labeling pattern for all intracellular
metabolites that we found to be labeled and that we had absolute quantitation (Fig. 3b and
Supplementary Fig. 10). Labeled metabolites that were not absolute quantified (and thus not
included in MFA) are shown in Supplementary Fig. 11.

9. uFBA differences in the RBC Rapoport-Luebering shunt

Other intracellular pools were also observed to significantly affect the metabolic flux state of the
RBC. The most significant of these pools, 2-3-diphosphoglycerate (2,3-DPG), is located in the
Rapoport-Luebering shunt in glycolysis, through which 1,3-bisphosphoglycerate (1,3-BPG) is
converted to 2,3-DPG through the diphosphoglyceromutase (DPGM) reaction. This pathway is
important for regulating oxygen binding to hemoglobin. The FBA model predicts that DPGM
occurs in the forward direction (1,3-BGP to 2,3-DPG) and that 2,3-DPG proceeds to 3-
phosphoglycerate. However, the uFBA model predicts that DPGM occurs in the reverse
direction, which is surprising as the reaction is thought to be irreversible and has a large Keg.
This prediction is due to (1) the measured depletion of 2,3-DPG, but more importantly to (2) the
measured buildup of ATP in State 1. Based on the model, the only way the RBC can produce the
measured ATP buildup rate would be to run DPGM in reverse (see Supplementary Fig. 12).
This reaction may be driven by the need to buffer protons generated by glycolysis. The RBC bag
becomes acidic over time (pH < 6.3 by day 42) and the estimated production rate of H" in state 1
by glycolysis is roughly the same rate as the 2,3-DPG depletion rate in State 1. The DPGM
reaction in the Rapoport-Luebering shunt may be driven by the need to buffer protons generated
by glycolysis. The RBC bag becomes acidic over time (pH < 6.3 by day 42) and the estimated
production rate of H™ in state 1 by glycolysis is roughly the same rate as the 2,3-DPG depletion
rate in State 1. The uFBA predicted solution discussed in the main text is also consistent with the
latest, approved media formulation for RBCs (AS-7). AS-7 is an alkaline solution which has



been shown to maintain 2,3-DPG levels for longer than traditional media formulations,* such as
the SAGM media used in the metabolomics data study.

An additional mechanism for the depletion of 2,3-DPG in RBCs during storage has been
proposed.” This mechanism involves the activity of another enzyme, MIPP1, which cleaves the
other phosphate off 2,3-DPG and produces 2-PG. This proposed mechanism for depletion of 2,3-
DPG was computationally tested with uFBA by adding the reaction into the RBC model. MCMC
sampling predicted that the flux through the proposed MIPP1 reaction is 20-fold lower than the
flux through DPGM (see Supplementary Table 6). This reaction was also not predominantly
used because ATP cannot be generated from this mechanism.

10. Generating hypotheses for observed changes in the S. cerevisiae
metabolome

Metabolomics data for two isogenic strains of S. cerevisiae that are able to consume xylose was
procured from Bergdahl et al.' The two strains used different means of converting xylose to
xylulose. The XI strain used xylose isomerase to directly convert xylose to xylulose. The XR
strain used xylose reductase to convert xylose to xylitol and then a xylitol dehydrogenase to
convert xylitol to xylulose. In the process, the XR strain utilizes NADPH for the reductase and
generates NADH for the dehydrogenase. The two strains were grown in the same mixed
glucose/xylose conditions, but had slightly different metabolic pathway usages.

There were many reactions that were significantly different between uFBA and FBA (Fig. 2a),
which led to significantly different flux vectors as indicated by Spearman correlations (Fig. 2b).
A very large difference between FBA and uFBA was the use of glucose. In State 1, where large
amounts of extracellular glucose were available, uFBA utilized much more glucose for oxidative
pentose phosphate pathway (PPP) as compared to FBA (Supplementary Table 8). The uFBA
flux split is much more in line with *C metabolic flux analysis splits for PPP in yeast during
glucose fermentative growth.®

We used the uFBA model to derive hypotheses for several of the observations that Bergdahl and
colleagues made for their metabolomics data. Model hypotheses are systematic and standardized.
They often agreed with assessments by the authors, but sometimes did not, as discussed in the
main text. Particularly, Bergdahl et al. postulated that the decrease in 6-phosphogluconate is due
to a reduced flux through the non-oxidative PPP. uFBA instead predicts this is due to a
significant decrease in oxidative PPP activity in State 2 after external glucose depletion for the
Xl strain (Supplementary Table 8). uFBA does not predict as much a drop in oxidative PPP in
the XR strain in State 2, allowing maintenance of a lower level of 6PG. These results are
consistent with recent **C MFA studies on yeast X and XR strains measuring oxidative PPP flux
grown on glucose and xylose™®. These **C labeled experiments represented similar but not
identical experimental conditions. Metabolomics data used for uFBA came from mixed
glucose/xylose cultures, where cells predominantly used glucose in state 1 and only used xylose



in state 3. Labeling experiments were done in glucose only or xylose only cultures. Thus, the
flux predictions would not be expected to perfectly match experimental data because the models
were informed with different data. In particular, the XR strain maintains oxidative PPP, even
when glucose is depleted. FBA is unable to recapitulate these results.

Second, the authors postulated the accumulation of PEP in State 3 for the XI strain to be due to
decrease pyruvate kinase (PYK) activity. uFBA flux predictions were consistent with this
assertion as PYK flux significantly dropped in State 3 of the XI strain but not the XR strain.
Third, the metabolomics data indicated that in State 3 the XI strain has a drop in acetyl-CoA
levels, while the XR strain maintains acetyl-CoA levels. According to uFBA, this is due to a
significant decrease in mitochondrial pyruvate dehydrogenase for the XI strain, while XR
maintains pyruvate dehydrogenase levels to generate acetyl-CoA.

11. Gene essentiality of Escherichia coli

Outside of looking at flux states using MCMC sampling, FVA, and optimization of objective
functions, we tested the differences in gene essentiality between uFBA and FBA. As uFBA adds
artificial sinks for intracellular metabolites that are decreasing, erroneous gene essentiality
predictions are possible. However, as discussed in the main text, we found that gene essentiality
between the two models was very similar except for 11 metabolic genes, which are shown in
Supplementary Table 9. The 11 genes were enriched with a set of genes that show conflicting
experimental results across multiple studies.>'' Four of the genes were essential in LB
medium,™® showing that uFBA made erroneous predictions. Of the remaining seven genes, six
had conflicting experimental results in the three studies.

12. Documentation for uFBA COBRA method

uFBA was implemented in Matlab R2014b and integrated with the COBRA Toolbox 2.0.** The
method is freely available online at: (http://opencobra.github.io/cobratoolbox). Here, we give a
more in-depth description of the inputs and outputs of the function to build the uFBA model
based on measured rates of change in a particular metabolic state. The primary function for
uFBA is called “buildUFBAmModel.m”.

Required inputs Description
model A COBRA model structure containing (at minimum) the following fields: S, b, Ib, ub,
mets, rxns
A cell array containing the model IDs of the measured metabolites that will have bounds
metNames set by the algorithm. These metabolites should correspond to model.mets. Note:

measured metabolites that were not significantly changed over time should also be
included.

A vector (length(metNames) x 1) that contains the mean rate of change (the slope from

changeSlopes linear regression) for each metabolite in metsMeasured.




changelntervals

A vector (length(metNames) x 1) that contains the difference between the mean slope of
change and the upper bound of the 95% confidence interval for each slope in
changeSlopes.

ignoreSlopes

A binary vector (length(metNames) x 1) that instructs which changeSlopes to be ignored
(ignore if 1). Metabolites were ignored if the values of the slopes were not significant
based on linear regression (i.e., if slope value +/- the interval crossed zero).

objRxn

The objective reaction (corresponding to model.rxns) for the new uFBA model.

Optional inputs

Description

metNoSink

A cell array of metabolites (corresponding to model.mets) that should not have a sink
added, typically for metabolites where the concentration is known to be zero. Default is
an empty cell array.

metNoSinkUp

A cell array of metabolites that should not have a sink added in the up direction (which
would allow metabolite accumulation). Default is an empty cell array.

metNoSinkDown

A cell array of metabolites that should not have a sink added in the down direction
(which would allow metabolite depletion). Default is an empty cell array.

conflictingMets

A cell array of intracellular metabolites (corresponding to model.mets) where the
intracellular rates conflict with extracellular rates and the model cannot compensate
through biosynthesis of the metabolite or use of the flux in other pathways. Typically,
only necessary for very simple cell types (e.g. RBCs). The intracellular rate is adjusted to
the extracellular to allow the model to simulate. Default is an empty cell array.

solvingStrategy

One of ['casel','case?’,'cased’,'cased’,'case5’] which correspond to the 5 node relaxation
techniques discussed in the main text. Default value is the first LP technique, ‘case2'.

lambda

A multiplicative relaxation away from the minimum allowed deviation from the steady
state model. Default value is 1.5.

numlterations

The number of iterations for the integer cut optimization method. Default value is 100.

The time limit for the solver during the numlterations optimization loop. Default value is

timel.imit 30 seconds.
A weighting factor for preferential selectin of extracellular sinks over intracellular during

eWeight node relaxation. Default value is 1e4. If no weighting is preferred, eWeight should be set
to a value of 1.

Outputs Description

model The final uFBA model.
metMeasu_rements Metabolites that had measurements applied.
Applied

relaxedNodes

A cell array which contains three columns: (1) which metabolites were relaxed from
steady-state; (2) the direction of the relaxation (accumulation/depletion); and (3) the
upper bound of the sink reaction.

An example MATLAB workflow is also provided for the RBC data in order to demonstrate how
to use the algorithm. The RBC data and model used for all analyses in this study are loaded into




MATLAB. As explained in the Methods section, PCA of the Z-scores of the raw data are taken
and plotted, reproducing Supplemental Fig. 2. Linear regression is then performed on the data
over the time intervals of the three metabolic states determined by PCA. Next, the data is input
into the uFBA COBRA model building algorithm, producing a model for each state. Finally,
candidate flux states through the network are determined through MCMC sampling, and the
average flux through malate dehydrogenase (MDH) and ATP citrate lyase (ACITL) in Fig. 3 are
calculated.
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Supplementary Figure 1: Percentage of atoms in measured small metabolites across
intracellular and extracellular compartments for each test system. Abbreviations: RBC,
red blood cell; PLT, platelet; SC, S. cerevisiae; ECO, E. coli.



Supplementary Figure 2
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Supplementary Figure 2: Principal component analysis discretizes time-course
metabolite profiles into linearized metabolic states for piecewise analysis of dynamics.
PCA identifies three states for RBC, two states for platelet, and three states for each
strain of S. cerevisiae. Some examples of small metabolite profiles are shown that best
exemplify changing behavior across metabolic states. The E. coli data is not shown
because only one state was used. Abbreviations: RBC, red blood cell; PLT, platelet; SC,
S. cerevisiae.
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Supplementary Figure 3: Number of nodes deviating from steady-state for RBC in all three
states by each of the optimization approaches (Cases). In addition, the magnitude of relaxation
for the nodes is also shown. The magnitude of relaxation is defined as the sum of the absolute
value of the rates of change for the metabolites deviating from steady-state.
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Supplementary Figure 4: Sensitivity analysis for the two parameters of metabolite relaxation algorithm for uFBA models of RBC states 1-3. The
percentage of significantly different reactions based on MCMC sampling flux states is shown between models derived using the different parameters.
The two parameters altered were: case, optimization approach; and lambda, magnitude of relaxation. Histograms show the distribution of percentage
differences across all pairwise comparisons. Abbreviations: C1, Case 1; C2, Case 2; C3, Case 3; C4, Case 4; C5, Case 5; L1, lambda = 1; L2, lambda
= 1.5; L3, lambda = 5; L4, lambda = 10; L5, lambda = 100.
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Supplementary Figure 5
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Supplementary Figure 5: Differences between uFBA and FBA flux predictions when varying parameters for metabolite node relaxation for RBC
metabolic states 1-3. Optimization approaches (cases) are shown on the y axes and lambda values are shown on the x axes.
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Supplementary Figure 6: Percentage of different reactions by model subsystem. The heatmap range shows the percent of different reactions
between the uFBA and FBA models for the given organism and metabolic state, with white representing the global mean of different reactions across
all states. Abbreviations: RBC, red blood cell; PLT, platelet; SC, S. cerevisiae; ECO, E. coli.
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Supplementary Figure 7: Histograms of the Spearman correlation for each test case and metabolic state. The
Spearman correlation between uFBA and FBA sampled fluxes (red) is lower than the Spearman correlation
within a random shuffling of the reactions of both models separately. Abbreviations: RBC, red blood cell; PLT,
platelet; SC, S. cerevisiae; ECO, E. coli; S1, metabolic state 1; S2, metabolic state 2; S3, metabolic state 3.
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Supplementary Figure 8: Comparison of solution spaces for each system and metabolic state based on the
ratio of flux ranges calculated by flux variability analysis. Grey lines denote an equal size flux range. Reactions
with an infinite or zero flux range ratio are included, but no value is shown. White space denotes how many of
those reactions occur. (i.e., there was allowable flux in one model but not in the other). Reactions that were
unable to carry flux in both models are not shown. Abbreviations: RBC, red blood cell; PLT, platelet; SC, S.
cerevisiae; ECO, E. coli.



Supplementary Figure 9
extracellular

Supplementary Figure 9: Pathway map for RBC citrate metabolism and the *C labeled metabolites in
RBCs after introduction of *3C labeled citrate (m+6).
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Supplementary Figure 10: MFA simulation and labeling for intracellular citrate. The residual sum of squares
(RSS) is shown for both the uFBA and FBA model predicted labeling patterns.
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Supplementary Figure 11: Isotopic labeling of RBC metabolites that were not absolutely quantified in
the original study (aspartate, cisc-aconitate, or actylcarnitine) or metabolites that had multiple detected
labeling patterns (malate and citrate). Unlabeled percentages are equal to ~100 minus the sum of the
total labeled amounts shown here for the specific labeling patterns.



Supplementary Figure 12
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Supplementary Figure 12: The large intracellular 2,3-DPG and ATP concentrations affect flux through
the Rapoport-Luebering (RL) shunt in glycolysis of RBCs. 2,3-DPG is depleting at a high rate (0.25
mM/day) in the first state, which uFBA predicts will proceed backward through the DPGM reaction to
1,3-BPG where it continues through PGK. This results in additional production of ATP, which
corresponds with the spike in intracellular ATP observed at the end of the first state (day 10). The FBA
model does not account for either the increasing ATP or the depleting 2,3-DPG and thus predicts flow
through the RL shunt in the forward direction, toward 3-PG. Time spans 0-45 days for the inset
concentration plots. Abbreviations: DPGM, diphosphoglyceromutase; PGK, phosphoglyerate kinase;
DPGase, diphosphoglycerate  kinase; 1,3-BPG, 1,3-bisphosphoglycerate; 2,3-DPG, 2,3-
diphosphoglycerate; 3-PG, 3-phosphoglycerate.



Supplementary Tables

Supplementary Table 1: Characteristics of metabolomics data for each test system.

Ratio of % of Yo
# of time Average # of % of model n metabolites
Cell type points ﬁ.Of t cell tOttil \éomme metabolites metabolites m(:te;bo‘ljltes that deviate
measured replicates volume cel?s 2323) in model measured a :tZ?e Y from steady-
state
Human RBC 14 20 90 fL 60% 216 43.1% 2.78% 40.3%
Human
e 8 8 10fL | 0.50% 738 14.6% 0.81% 13.8%
S. cerevisiae —
o 11 4 50fL | 0.25% 1228 3.91% 0.65% 3.26%
S. cerevisiae —
Gt 11 4 50fL | 0.25% 1228 3.91% 0.65% 3.26%
E. coli 3 3 1fL 0.02% 1805 5.87% 3.27% 2.60%




Supplementary Table 2: List of model input parameters, see uFBA method documentation.
Abbreviations: BiGG IDs for metabolite names; RBC, red blood cell; PLT, platelet; SC, S. cerevisiae;
ECO, E. coli.

Cell type metNoSink metNoSinkDown | metNoSinkUp
abt[c], arab-L[c], arab-L[e], cmp][c],
ctpl[c], cdplc], gallp[c], gal[c], gal[e]l
galt[c], gaméplc], gam[c], gam[3],
RBC glualale], nac[c], nac[e], orot5p|[c],
orot[c], orot[e], rib-D[c], rib-D[e],
udplc], utp[c], umplc], xylt[c], xylt[e],
xylu-D[c], xylu-D[e], xylu-L[c]
abt[c], acac[m], arab_L[c], arab_L[e],
cmplc], ctp[c], cdpc], fald[m],
gallplc], gal[c], galle], galt[c],
gamé6p[c], gam[c], gam[e], gluala[e], ade[e] N/A
gmple], h2o02[e], nac[c], nac[e],
o2sle], orot5[c], orot[c], orot[e],
pram[c], rib_D[c], rib_DI[e], xylt[c],
xylt[e], xylu_D[c], xylu_D[e], xylu_L[c]

adn[e], akg[e],

gonle] N/A

PLT

SC-XR 02[c], 02[e], 02[m], 02[r], 02[x] N/A N/A

SC-XI 02[c], 02[e], 02[m], 02[r], 02[x] N/A N/A

ECO N/A no2[e], no3[e] N/A




Supplementary Table 3: statistics for comparison of metabolite node relaxation algorithm with qualitative
validation data. TP/FN/FP/TN and TPR values are given for when a positive prediction refers to a metabolite
remaining at steady-state. Overall accuracy is given for the average of accuracy of all three categories of
positive predictions.

L True False False True True
Optimization g . i . .. Overall
T State | positives | negatives | positives | negatives positive A
(TP) (FN) (FP) (TN) rate (TPR)

Case 1 1 21 0 15 3 1.00 0.680

2 24 2 12 1 0.923 0.709

Case 2 1 20 1 14 4 0.952 0.677

2 23 3 12 1 0.885 0.686

Case 3 1 16 5 7 11 0.762 0.691

2 17 9 9 4 0.654 0.588

Case 4 1 11 10 7 11 0.524 0.565

2 23 3 11 2 0.885 0.706

Case 5 1 12 9 6 12 0.571 0.579

2 18 8 5 8 0.692 0.644




Supplementary Table 4: FBA objectives for each test system. Each model was optimized to calculate the maximum flux through the given objective

reaction.
RBC PLT SC-XR SC-XI ECO
State 1 State 1 State 1 State 1 State 1
Objective | uFBA | FBA | Objective | uFBA FBA | Objective | uFBA FBA | Objective | uFBA FBA | Objective | uFBA FBA
NaKt 0.594 | 1.023 | ATPS4m | 10.687 | 0.042 Biomass 0.269 0.431 Biomass 0.311 | 0.308 Biomass 0.857 0.850
DM_nadh | 0.125 | 0.419 | DM_nadh | 0.377 | 10.228 ATPM 12.621 | 24.723 ATPM 15.366 | 16.228 ATPM 105.878 | 104.173
GTHP 0.390 | 0.000 DM_nadh | 135.342 | 46.948 | DM_nadh | 87.103 | 27.277 | DM_nadh | 45.657 | 44.899
DM_xuS5p | 10.312 | 10.547 | DM _xuS5p | 6.263 | 6.120
State 2 State 2 State 2 State 2
Objective | uFBA | FBA | Objective | uFBA FBA | Objective | uFBA FBA | Objective | uFBA FBA
NaKt 0.111 | 0.914 | ATPS4m | 7.604 | 2.257 | Biomass 0.054 | 0.190 | Biomass | 0.033 | 0.055
DM_nadh | 0.022 | 0.616 | DM_nadh | 0.165 | 3.614 ATPM 1.851 11.361 ATPM 0.430 | 2.078
GTHP 0.762 | 0.000 DM_nadh | 45.218 | 18.540 | DM_nadh | 10.826 | 6.270
DM _xu5p | 1.851 | 4.545 | DM_xu5p | 0.235 | 0.779
State 3 State 3 State 3
Objective | uFBA | FBA Objective | uFBA FBA | Objective | uFBA FBA
NaKt 0.512 | 0.452 Biomass 0.081 0.085 Biomass 0.023 | 0.071
DM_nadh | 0.068 | 0.331 ATPM 5.102 5.562 ATPM 1.478 | 4.932
GTHP 0.078 | 0.000 DM_nadh | 22.476 | 5.283 | DM_nadh | 19.011 | 8.160
DM _xuSp | 2.084 | 1.830 | DM _xuSp | 1.691 | 2.228




Supplementary Table 5: List of *C labeled metabolites.

Metabolite Location eI BIEL

(# Carbons total)
Acetylcarnitine Intracellular 2(9)
Aspartate Intracellular 4 (4)
Citrate Intracellular, extracellular 6 (6)
Glutamate Intracellular 5(5)
Lactate Intracellular 3(3)
Malate Intracellular, extracellular 4 (4)




Supplementary Table 6: Flux through RL shunt reactions with additional MIPP1 reaction.

Reaction Reaction stoichiometry Flux (mM/day)
DPGM 2,3-DPG + H = 1,3-BPG 0.2040
DPGase 2,3-DPG + H,0 = 3-PG + phosphate 0.0118

MIPP1 2,3-DPG + H,0 = 2-PG + phosphate 0.0125




Supplementary Table 7: Predicted and experimental oxygen uptake rate, electron
transport chain usage, and ATP production in the platelet.

Oxveen uotake ETC ATP % ATP
Method State ratig(mM'; day) generation production from
v (mM/day) ETC
cBA 1 0.0154 0.0105 0.23%
2 0.616 2.07 64.1%
1 2.98 9.80 90.2%
uFBA 2 2.16 7.07 88.8%
. 13,14 1 2.34 +/- 0.403 87.5%
Eaeeimental 2 2.14 +/- 0.340 114 86.1%




Supplementary Table 8: Comparison of glycolysis and oxidative pentose phosphate

pathway fluxes in S. cerevisiae.

Method e Hexokinase flux G6PDH flux % of glucose
(mmol/gDW/h) (mmol/gDW/h) shuttled to PPP
1 6.3067 1.0069 15.966%
c uFBA 2 0.97273 0.058757 6.0404%
s 3 0.032322 0.53959 -
L od
£ 1 6.1542 0.40367 6.5486%
FBA 2 0.96022 0.051064 5.3179%
3 0.080397 0.17895 -
1 9.2686 1.0133 10.932%
c uFBA 2 0.59132 0.27492 46.492%
'E 3 0.24106 0.85177 -
=]
é 1 12.854 0.11955 0.93004%
FBA 2 2.8191 0.070963 2.5172%
3 0.19376 0.067916 35.052%




Supplementary Table 9: Comparison of predicted flux state to measured flux state for S.
cerevisiae strain XR under glucose growth (State 1). Flux values are normalized to 100
units for glucose uptake (HEX1).

Reaction Measured® | Measured STD® uFBA FBA
HEX1 100.0000 0.0000 0.0349 0.0296
PGI 73.1818 16.1000 178.1791 121.2232
PFK 81.5909 4.8955 64.3092 67.8593
FBA 81.5909 4.8955 63.2282 66.6181
TPI 81.5909 4.8955 95.4335 109.9102
PGK 167.0455 5.0114 242.5295 263.2137
PGM 161.5909 4.8477 241.0144 260.7549
PYK 185.2273 1.8523 238.4090 257.9616
G6PDH2 19.7727 45477 10.9320 0.9300
GND 19.7727 45477 10.9355 0.9300
RPE 8.4091 1.9341 12.8204 23.6504
RPI 11.5909 2.5500 23.7492 24.5804
TKT1 4.3182 0.9932 23.2652 21.8701
TKT2 3.8636 0.8886 21.4153 19.9001
TALA 4.3182 0.9932 39.0313 44.6174
PC 34.3182 6.1773 33.8459 51.0278
PPCK 24.0909 6.2636 1.0946 1.1467
PYRt2m 10.2273 3.0682 60.5392 409.9270
PDHm 15.9091 3.8182 7.8786 3.9529
CSm 46.3636 3.2455 1.8255 3.2267
ICDHxm 46.3636 3.2455 1.8255 3.2267
AKGDbm 45.4545 3.6364 0.4031 0.5733
SUCOASmM 45.4545 3.6364 0.0036 2.8521
SUCD1m 45.4545 3.6364 0.0036 2.8521
PYRDC 128.4091 3.8523 12.3039 12.2219
ALDD2y 18.1818 3.6364 204.8390 186.2334




Supplementary Table 10: Comparison of predicted flux state to measured flux state for
S. cerevisiae strain XR under xylose growth (State 3). Flux values are normalized to 100
units for xylose uptake (XYLR).

Reaction Measured® | Measured STD® uFBA FBA
HEX1 0.0000 0.0000 0.0349 0.0296
XYLR 100.0000 0.0000 100.0000 100.0000
PGI 53.8462 14.5385 0.0218 4.9936
PFK 46.1538 4.1538 0.1377 0.1557
FBA 46.1538 4.1538 0.1321 0.1508
TPI 46.1538 4.1538 0.2697 0.3017
PGK 146.1538 5.8462 0.6250 0.6513
PGM 138.4615 5.5385 0.6151 0.6451
PYK 169.2308 52.4615 0.6044 0.6199

G6PDH2 53.8462 14.5385 0.1259 0.0095
GND 53.8462 14.5385 0.1259 0.0095
RPE 0.0000 0.0000 0.0310 0.0643
RPI 53.8462 4.8462 0.0948 0.0738
TKT1 53.8462 4.8462 0.0930 0.0550
TKT2 53.8462 4.8462 0.0849 0.0400
TALA 53.8462 4.8462 0.0446 0.1017
PC 138.4615 36.0000 0.1412 0.1004
PPCK 30.7692 1.2308 0.0056 0.0047

PYRt2m 0.0000 0.0000 1.0688 1.6527

OAAt2m 107.6923 4.3077 99.7038 102.5414
PDHm 107.6923 4.3077 0.0408 0.0245
CSm 130.7692 5.2308 0.0122 0.0220

ICDHxm 130.7692 5.2308 0.0028 0.0050

AKGDbm 130.7692 5.2308 0.0000 0.0450

SUCOASmM 130.7692 5.2308 0.0000 0.0450

SUCD1m 130.7692 5.2308 75.8868 73.7246

FUMm 130.7692 5.2308 45.5365 47.1617
MDHm 23.0769 6.6923 49.9257 49.1885
ME2m 107.6923 4.3077 0.0570 0.0347
PYRDC 23.0769 6.9231 0.3409 0.3105
ALDD2y 23.0769 6.9231 0.0063 0.0286




Supplementary Table 11: Comparison of predicted flux state to measured flux state for
S. cerevisiae strain X1 under glucose growth (State 1). Flux values are normalized to 100
units for glucose uptake (HEX1).

M r M r
Reaction | Measured’ ;;:T_;d 9;?/:‘;:7(1 uFBA FBA
HEX1 100.0000 89.1698 111.2083 100.0000 100.0000
Xl 0.0000 0.0000 6.8028 0.0000 0.0000
PGI 92.0682 81.8755 102.4833 36.8263 206.9947
PFK 93.5508 82.9281 104.4626 91.3782 93.6667
FBA 93.5508 82.9281 104.4626 89.5159 92.1374
TPI 71.3862 62.1890 82.0163 158.9041 163.8829
PGK 166.1972 146.4196 187.5760 343.1248 349.8168
PGM 165.6783 146.0044 187.0052 341.7403 348.2240
PYK 164.7887 145.1149 186.1082 339.4876 345.8851
G6PDH2 5.0408 4.2506 6.2691 15.5930 6.4353
G3PD1ir 22.1646 17.9600 25.8428 28.2988 31.8310
G3PT 22.0904 17.9274 25.7999 30.1328 28.7418
PYRDC 157.4500 137.5315 179.8221 325.5402 292.8302
THRAI 1.0378 0.0000 1.5901 0.9950 0.9323
RPI 2.2239 1.9325 2.6064 6.3776 5.0035
TKT1 4.4477 3.6998 5.7183 5.6369 1.6592
TKT2 4.0030 3.9251 4.5975 3.5765 0.2276
TALA 3.2617 2.7650 4.1097 85.2436 92.0471
PC 5.7079 3.7265 8.1394 33.4511 50.2061
PYRt2m 1.4826 0.0000 5.5182 10.3818 119.6122
CSm 1.7050 1.6783 1.7761 1.6730 2.9576
ICDHxm 1.7050 1.6783 1.7761 0.4011 0.4620
SUCOASmM 0.0000 0.0000 0.0193 0.0029 3.4103
ME2m 1.3343 0.0815 6.0089 7.8215 7.9244




Supplementary Table 12: Normalized errors for predicted flux state to measured flux state for S.

cerevisiae.

XR XI
Model
Glucose Xylose Glucose
(State 1) (State 3) (State 1)
uFBA 0.4799 0.9090 0.9675
FBA 0.5616 0.9100 1.0484




Supplementary Table 13: Characteristics of conflicting gene essentiality in E. coli.

Metabolic

Essential

Essential

LB

Pathway Gene (UFBA) (FBA) Essential Orthetal.1 | Orthetal. 2 Baba et al. Patrick et al.
b0109 Y Y Y N Y
b0639 N Y Y
NAD b0750 N Y Y Y N Y
biosynthesis b1740 N v Y
b2574 N Y Y Y N Y
b2615 N Y Y
b0522 N Y Y Y N Y
b0523 N Y Y Y Y
Purine
biosynthesis b1131 N Y Y
b2476 N Y Y Y
b4177 N Y Y Y
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