CSE1L interaction with MSH6 promotes osteosarcoma progression and predicts poor

patient survival

Dong-dong Cheng^{1#}, He-chun Lin^{2#}, Shi-jie Li¹, Ming Yao², Qing-cheng Yang^{1*},

Cun-yi Fan¹*

 Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.

2. State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute,

Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032,

China.

Methods:

Cell apoptosis assay

Forty-eight hours after transfection, the fluorescein isothiocyanate Annexin V Apoptosis Detection kit I (BD Pharmingen, San Diego, CA, USA) was used. Briefly, the cells were collected and centrifuged at $2000 \times g$ for 5 min. Then the cells resuspended in 500 µl binding buffer, supplemented with 5 µl Annexin V and 5 µl propidium iodide (PI), for 15 min of dark treatment at the room temperature. The flow cytometry (FC500 MPL, Beckman Coulter, Brea, CA, USA) was used to analyze the samples.

In Vitro Migration and Invasion Assays

Cell migration and invasion assays were performed in a 24-well plate with 8-mm pore size chamber inserts (Corning, New York, NY, USA). For migration assays, after transfection with either si-NC or si-CSE1L, cells (5×10^4 cells/well) were transferred into the upper chamber of an uncoated membrane. For invasion assays, after transfection, cells (1×10^5 cells/well) were transferred into the upper chamber of a Matrigel-coated membrane. Cells were diluted using serum-free culture medium. In both assays, cells seeded into the upper chamber were suspended in 200 µl Dulbecco's modified Eagle's Medium (DMEM) without fetal bovine serum (FBS). The lower chambers contained 800 µL of DMEM with 10% FBS. Cells were incubated at 37 °C in 5% CO₂ for 12 h and 16 h for the migration and invasion assays, respectively. The membrane inserts were removed, and non-invading cells were removed from the upper surface of the membrane. Cells that had migrated to the bottom of the chamber were fixed with 100% methanol for 30 min and stained with 0.1% crystal violet for 30 min. Finally, cells from a minimum of 10 random fields were imaged and counted using a CKX41 inverted microscope (Olympus, Tokyo, Japan). All assays were independently performed three times.

Supplementary Figures and supplementary Figure legends:

Supplementary Figure S1: The expression of these 9 upregulated proteins was measured using qRT-PCR in 20 human tissue sample pairs in which each pair consisted of an osteosarcoma sample and a corresponding non-tumor tissue sample.

Supplementary Figure S2: Cell apoptosis assays were used to detect the cell

apoptosis after transfection with si-CSE1L in MNNG/HOS and U2OS cell lines. Statistical analysis was performed using Student's *t* test (n = 3). * *P*<0.05.

Supplementary Figure S3: Transwell assays were used to detect the migration and invasion capability of each cell line after transfection with si-CSE1L. The upper panels show representative photos (magnification: $100\times$) of invasive cells, and the lower panel shows histograms of the results. Statistical analysis was performed using Student's *t* test (n = 3).

Supplementary Figure S4: CSE1L affected MSH6 protein stability via the proteasome pathway. Representative blots displaying protein expression of MSH6 treated with MG132 (100 μ mol/L) or DMSO as a control for 12 h after transfection with si-NC or si-CSE1L. β -actin was used as an internal control.

Supplementary Figure S5: (A) (B) The mRNA and protein expressions of MSH6 in osteosarcoma cells and osteoblastic cells were detected by qRT-PCR and western blotting. (B) The mRNA expression of MSH6 was detected after transfection with si-MSH6 in MNNG/HOS and U2OS cells. * P<0.05 by Student's *t* test.

Supplementary Figure S6: Kaplan-Meier survival analyses were performed using

microarray data (http://www. kmplot.com) in breast cancer, lung cancer, gastric cancer and ovarian cancer patients.

Supplementary Figure S7: Full-length gels for Figure 1

Supplementary Figure S8: Full-length gels for Figure 2

Supplementary Figure S9: Full-length gels for Figure 3

Supplementary Figure S10: Full-length gels for Figure 4

	MNNG	U2OS MNNG
si-NC	+	Hol +
si-CSE1L	+	+ + WS
pcDNA-MSH6	+	+ + +
MSH6		
β-actin		

Supplementary Table S1 The primer sequences for qRT-PCR				
Gene name		Sequence (5'->3')		
GSN	Forward	ATGGAGACTTCTTCACGGGC		
	Reverse	CACTCATTGCCCAGCCAGTA		
ANXA1	Forward	AATCAGAAGCCCAAGTCTCCA		
	Reverse	GGATGACTTCACAGTTTGAACAT		
PROSC	Forward	CACCAGCGGAGAAGAGAGTAA		
	Reverse	TCCTATGGTCATCAGCCCCA		
	Forward	ACAACACCGACGAGTCCATC		
IDH2	Reverse	GCCCATCGTAGGCTTTCAGT		
CSE1L	Forward	GCAGCTCATGCTCTTGAACG		
	Reverse	GCCAGGAAGTGTGAGAGCTT		
A 12 A D 1 2	Forward	GCTGGACAGGAAACGGAGAA		
AKAP12	Reverse	CACTGCGGTTGACTCTGACT		
	Forward	ACTGGTGCAACTTCCTCCTT		
HUWEI	Reverse	TTGTCCTGGGCTGCAATCTC		
	Forward	TGAAGCACCAAACCAGGAGA		
PCNA	Reverse	GTGCAAATTCACCAGAAGGCA		
	Forward	AGACCTGAGAAGGTGATTGGC		
HADHA	Reverse	GCGCAAGACACCTGGTAGTA		
	Forward	GCTGCTGTGCCGGGTG		
ACOTT	Reverse	CCCAGGTTCTGGCGGC		
MTUED1	Forward	ATGACCTCAAGCTCCCAGTTG		
MIHFDI	Reverse	GCTTTGTGTTGAGCTTCGGG		
UTN1	Forward	GTGAGCAGATGGAGGCAGAG		
KINI	Reverse	AGTTCTGCAGACTGCTTGCT		
	Forward	GGATGCTCCGTGCAACTG		
181A3	Reverse	GTGTGTGGGGTTGGACCTTCT		
PGK1	Forward	TGTAGGCCCAGAAGTGGAGA		
	Reverse	CTGGCTCGGCTTTAACCTTG		

Supplementary Figure S11: Full-length gels for Figure 5

HSPB1	Forward	CGCGGAAATACACGCTGC
	Reverse	CGGATTTTGCAGCTTCTGGG
MPST	Forward	CCGAGACGGCATTGAACCT
	Reverse	CTGAGATGACATCCTCGGGC
DARS	Forward	TCTCGCGATCTTTCTGGAGC
	Reverse	CCAAAACTCGATTTCCGCCG
MCM5	Forward	TCACCAAGCAGAAATACCCG
	Reverse	CGACTCACTTGAGGCGGTAG
LMNA	Forward	GCAGCATCATACAAGAGATGGG
	Reverse	CCTCCAGTGACTGCACAGAG
MACF1	Forward	AGACAAGTGGCTCAGTGCAA
	Reverse	GTTCTACCTCGTGCTCGGC
CDK14	Forward	GCTCGCCTCCCTAGACCT
	Reverse	TCTTCAAAGCAATGCGACTGA
BICD2	Forward	GCCACCAGGTGTGACGAGTA
BICD2	Reverse	TGTGACTTACGCTCGGTGTG
ΡΑΜΡΊ	Forward	CTGTCCTGAATCCCCACGAG
KAMF2	Reverse	CAGGGTGCTATAAGGCCTGC
ZNIE 845	Forward	GGATGGCTCTTTCTCAGGGTC
2111043	Reverse	CCAGGGAGACCAGGTTCCTA
GNG7	Forward	GAGTGTCGGCCCCGC
UNU/	Reverse	AGCTTGCTGTACACCCTGTG
KPCC1	Forward	GCGGGGGGACAGTAGTTGTAG
KREET	Reverse	AACTGGTGAGCTCATAATGCAA
CASP7	Forward	GTGGGAACGATGGCAGATGA
CASI /	Reverse	TTCCGTTTCGAACGCCCATA
CHPNA1	Forward	TCTCCTCCTGCTCTTTAGCCT
CHRINAI	Reverse	CCCATTGCTGTTTCAGACGC
SPGN	Forward	ACTTCACGAGCTTGGCTCAG
SKGN	Reverse	TCTCCGCGTAGGATAACCTTG
CD82	Forward	GGCTGCTGAAGCAGGAGAT
CD82	Reverse	CAGCACTTCACCTGAGCCTG
HPCAL1	Forward	CTGTGTTCGGGGGCTGTCTGT

	Reverse	GCGGCGACTACACCAGAG
RAET1E	Forward	GACCTCAGTTGTTCCAGGGT
	Reverse	CTGTTGTACATGATCTCCAAGGC
PGF	Forward	TGTTCAGCCCATCCTGTGTC
	Reverse	AGCATCGCCGCACCTTTC
CSF2	Forward	CCCTCCAACCCCGGAAACTT
	Reverse	GCCATGCCTGTATCAGGGTC
STRA6	Forward	ACACTTCTCAGGGCCAACTG
	Reverse	CTGGCCCTTCTCCTCCAATC
DLL1	Forward	CCTGTTCTAATGGTGCCAAGTG
	Reverse	CACTCGCACACATAGCGGTG
MSH6	Forward	GGGATACAGCCTTTGACC
	Reverse	GTTTACAGCCCTTCTTGG
β-actin	Forward	TTGTTACAGGAAGTCCCTTGCC
	Reverse	ATGCTATCACCTCCCCTGTGTG

Supplementary Table S2 The primary antibody for Western blotting

Protein name	Dilution ratio	Reagent brand
HUWE1	1:500	Bioworld Technology
CSE1L	1:500	Proteintech
GSN	1:1000	Cell Signaling Technology
HADHA	1:200	Santa Cruz
PGK1	1:500	Proteintech
TSTA3	1:500	Proteintech
PROSC	1:1000	GeneTex
PCNA	1:1000	Proteintech
HSPB1	1:500	Proteintech
AKAP12	1:500	Proteintech
IDH2	1:1000	Epitomics
ANXA1	1:500	Proteintech
MSH6	1:200	Abcam
β-actin	1:20000	Sigma-Aldrich