Supplemental Information

Assessment of tumor-infiltrating TCRV γ 9V δ 2 $\gamma\delta$ lymphocyte abundance by deconvolution of human cancers microarrays

Authors:

Marie Tosolini, Frédéric Pont, Mary Poupot, Franois Vergez, Marie-Laure Nicolau-Travers, David Vermijlen, Jean-Emmanuel Sarry, Francesco Dieli, & Jean-Jacques Fournié

Supplemental Figures

Supplemental Figure 1: Gene coverage of LM7 and LM22 by various microarray platforms LM7 and LM22 are represented as genes (lines), cell subsets (columns) and expression levels (shown by a color gradient scale, blue: expression levels < 200, yellow : 200-1000, red: >1000). Black lines: missing genes. Of the 375 genes from LM7, the HGU133A platform lacks 117 genes, Illumina HT-12 lacks 50 genes, Affymetrix ST1.0 lacks 95 genes and Affymetrix ST2.0 lacks 85 genes. Of the 547 genes from LM22, the HGU133 Plus2.0 platform lacks 82 genes, Illumina HT-12 lacks 43 genes, Affymetrix ST1.0 lacks 111 genes and Affymetrix ST2.0 lacks 71 genes.

Supplemental Figure 2: Deviation introduced by different microarray platforms

Cell subsets were enumerated with CIBERSORT-LM7 and LM22 in all reference samples (Supplemental Table 1 for LM7, listed in¹ for LM22) and these reference rates were compared to those produced when removing the LM7 and LM22 genes missing from the other platforms. Shown are deviations from results with the learning platform (Affymetrix HGU-133A for LM22, Affymetrix HGU133Plus 2.0 for LM7) by the specified platform, for each LM7 cell subset. Red bar: group means. Note the figure does not reflect the platform quality but stability of its results across platforms.

leukocyte abundance (SES)

Supplemental Figure 3: Metrics for leukocyte abundance in samples The CIBERSORT reference matrix LM7 was used to define 7 cell subset-specific gene sets by filtering out those LM7 genes which expression was <1000 in the The CHERSTOR Telefelice matrix LW7 was ded to term by the subservence sets by intering out index LW7 genes which expression was < food in the respective cell subset. This produced 7 gene sets: B; T CD4: , T CD8: , T $\gamma\delta$; NK; Mo-Ma-DC Granulocytes . For each sample from the specified data set, the sample enrichment scores (SES) of these 7 gene sets were computed as described elsewhere.² These 7 SES were adjusted to equivalent weights for each cell subset and summed. In parallel, each transcriptome from the specified data sets was rank-ordered (increasing order of expression level) and each gene rank was divided by the total number of ranks. CD45 is the leucocyte-defining marker expressed by all LM7 lineages, hence the rank of the CD45-encoding gene PTPRC was a surrogate gene marker of leucocyte abundance. Each sample from the specified dataset was analyzed for leukocyte abundance (based on SES) and for CD45 remeasing hence the rank of the CD45-encoding gene PTPRC was a surrogate gene marker of leucocyte abundance. Each sample from the specified dataset was analyzed for leukocyte abundance (based on SES) and for CD45 remeasing hence the rank of the CD45-encoding gene PTPRC was a surrogate gene marker of leucocyte abundance. gene expression levels.

Supplemental Tables

				-			- /	
		B cells	T CD4	T CD8	T $\gamma \delta$	NK	MoMaDC	granulocytes
	B cells	88,97%	4,51%	0,56%	3,07%	0,69%	0,84%	1,37%
	T CD4	0,85%	84,06%	7,01%	2,74%	3,83%	0,54%	0,97%
	T CD8	0,90%	13,56%	77,22%	3,04%	3,36%	0,60%	1,32%
Sample appotation	T $\gamma\delta$	0,49%	1,20%	2,73%	91,69%	2,39%	1,19%	0,32%
Sample annotation	NK	0,57%	3,00%	7,53%	4,59%	80,38%	2,68%	1,25%
	MoMaDC	5,31%	0,24%	1,32%	1,19%	0,55%	86,98%	4,41%
	granulocytes	0,65%	0,70%	0,38%	1,50%	0,37%	8,72%	87,68%

CIBERSORT-LM7 fraction (%)

CIBERSORT-LM22 fraction (%) $\frac{T \gamma \delta}{0,75\%}$ B cells T CD4 T CD8 NK MoMaDC granulocytes 0,44% 1,45% B cells 92,38% 2,86% 1,08% 1,04% 1,84% T CD4 1,25% 81,84% 0,26% 8,23% 5,44% 1,14% 1,32% 3,12% 32,51% 2,03% T CD8 0,89% 46,10% 12,67% 4,49% 31,10% 2,53% 31,60% 5,53% $T \gamma \delta$ 2,60% 23,52% Sample annotation NK 1,44% 14,75% 3,76% 4,66% 68,70% 2,14% 4,55% 1,02% MoMaDC 4,42% 5,68% 0,37% 2,04% 80,87% 5,59% granulocytes 0,98% 3,72% 0,23% 0,93% 2,90% 2,98% 88,27%

Supplemental table 1: Comparison of LM7 and LM22 for leucocyte composition of reference samples The (n=265) reference samples used for CIBERSORT learning were analyzed by CIBERSORT-LM7 and CIBERSORT-LM22. Table shows their respective results for each lineage according to the sample annotation specified in each GSM file. The fractions were normalized to 100% of total leucocyte content. The rates of correct identifications of most lineages are significantly improved with CIBERSORT-LM7.

GSE number	Number of samples	Cell type	First author	reference
GSE11430	10	monocytes, macrophages	Maouche S	3
GSE12195	10	B cells	Compagno M	4
GSE13738	8	CD4 T cells	Bangs SC	5
GSE14879	36	NK, CD8, CD4 T cells	Eckerle S	6
GSE22282	3	DC	Bosco MC	7
GSE27291	12	$\gamma\delta$ T cells	Pont F	8
GSE28490	32	DC, eosinophils, monocytes, neutrophils, CD8 T cells	Allantaz F	9
GSE28491	18	eosinophils, monocytes, neutrophils, CD8 T cells	Allantaz F	9
GSE28726	15	CD4 T cells	Constantinides MG	10
GSE30536	11	macrophages	Sirois M	11
GSE42088	3	DC	Favila MA	12
GSE43769	12	CD4 T cells	Cousins DJ	
GSE45535	4	B cells, monocytes	Morehouse CA	
GSE56314	12	B cells	Dybkr K	13
GSE56464	8	B cells	Mei HE	14
GSE61697	24	CD4 T cells	Takeshita M	15
GSE65010	12	CD4 T cells	Walter GJ	16
GSE66384	7	CD4 T cells	Amé-Thomas P	17
GSE71566	6	CD4 T cells	Kanduri K	18
GSE72642	7	monocytes, NK, CD8 T cells	Du X	19
GSE8059	3	NK, CD8 T cells	Dybkaer K	20
GSE83920	3	mast cells	Leerkes M	
NA	9	NK	Poupot M	unpublished data from our lab

Supplemental table 2: List of reference studies

Gene	B cells	T CD4	T CD8	$\mathbf{T} \gamma \delta$	NK	MoMaDC	granulocytes
ABCB1	212.07	37.14	64.54	516.28	190.63	27.32	19.20
ABCB4	212.15	37.15	64.56	516.82	190.70	27.32	19.21
ADRB2	107.31	26.83	129.07	614.81	975.45	73.89	75.59
AIM2	725.77	126.46	35.17	105.86	39.67	77.17	20.27
ALOX5	720.88	18.64	97.85	14.94	43.99	1828.00	3686.10
ANKRD55	10.89	105.60	17.56	15.25	13.94	16.76	34.61
ANPEP	15.88	14.65	15.43	12.05	18.80	429.67	419.37
APOBEC3A	9.09	10.49	11.82	10.79	15.53	449.15	440.20
AOP9	18.78	17.86	24.33	23.48	29.13	671.83	875.33
ARRDC4	17.10	19.54	25.35	16.09	51.28	347.85	254.19
AYTL1	14.96	20.88	23.82	27.34	23.69	102.93	324.43
B3GNT5	9.22	16.43	13.55	17.66	14.40	190.69	803.19
BANK1	3060.15	26.23	25.01	36.09	32.74	46.49	36.16
BCL11A	1439.09	38.74	61.85	43.51	51.98	165.30	173.86
BCL11B	16.31	1398.82	1789.13	1336.53	650.40	24.67	52.69
BCL2A1	398.71	136.47	138.36	88.46	215.86	1276.95	6703.52
BCNP1	1146.03	29.02	50.98	28.22	25.80	29.83	53.87
BCOR	247.07	135.08	199.00	758.20	178.57	67.94	56.17
BLNK	436.36	15.17	30.19	15.06	20.03	27.12	20.38
BPGM	65.21	70.04	28.74	372.19	353.71	73.99	44.75
BRDG1	1049.45	40.13	16.68	19.19	159.65	19.97	49.67
BTBD11	12.49	89.63	124.57	392.85	26.08	45.08	44.56
BTBD5	220.48	167.44	74.41	1025.77	154.30	110.28	59.88
BTK	1208.27	23.19	43.34	29.31	44.48	320.10	236.49
C16ORF30	29.90	277.29	587.98	146.72	125.04	32.58	35.00
C5AR1	8.27	9.98	9.20	8.23	13.34	324.93	476.22
C5ORF29	740.73	7.40	8.33	7.77	9.02	199.50	338.20
C6ORF105	16.04	219.24	21.29	10.94	13.21	16.02	14.22
C6ORF190	14.52	195.76	214.06	189.44	23.89	13.50	52.86
CACNA2D3	9.02	8.64	8.96	8.60	9.59	208.66	8.08
CAMK4	23.86	111.90	60.75	44.69	21.23	19.28	27.85
CAPG	390.67	93.02	69.40	48.54	115.91	1187.96	240.55
CCDC64	80.93	323.39	395.60	145.44	128.85	47.19	56.49
CCL4	65.42	54.61	708.83	2306.39	6074.61	92.97	2394.10
CCL5	52.85	311.33	4397.70	4043.25	4397.70	116.11	95.79
CCR3	21.05	23.13	28.08	24.41	25.60	21.72	877.58
CCR5	110.81	153.11	411.77	3349.60	580.22	648.82	110.25
CCR6	1142.65	24.75	26.64	31.47	17.60	9.44	8.58
CCR7	251.43	765.02	1299.25	444.04	189.79	31.51	17.88
CD14	22.53	19.65	16.01	17.09	20.46	2567.76	222.95
CD160	16.25	14.72	187.37	83.31	414.27	14.17	11.11
CD163	23.34	23.79	32.66	23.86	25.36	1094.75	56.80
CD180	804.01	54.11	67.07	52.24	70.05	202.43	151.99
CD19	762.42	12.77	16.58	13.60	14.66	18.54	12.91
CD1C	1654.02	51.01	61.99	57.41	55.53	320.09	69.00
CD2	24.14	2083.27	2029.52	1670.19	1567.94	41.54	25.24
CD200	93.47	67.63	17.74	20.52	16.21	12.05	13.73
CD22	1316.25	23.53	29.44	25.73	26.14	34.36	20.22
CD226	24.12	151.76	23.73	126.56	370.23	15.30	10.32
CD244	37.56	31.78	164.89	92.01	847.30	151.05	56.77
CD247	36.71	870.48	1632.35	1906.60	2540.90	53.92	52.23
CD28	9.42	665.68	386.24	200.79	12.91	11.76	10.33
CD300A	136.60	51.44	344.61	519.86	2283.85	1153.54	1636.99
CD300LF	12.78	15.25	20.11	21.78	31.65	985.88	748.99
CD3D	104.30	3769.34	4327.44	2500.19	380.90	93.64	73.30
CD3E	34.23	438.19	133.95	233.17	84.25	34.18	42.51
CD3G	31.39	1085.63	1225.53	577.62	89.93	37.93	28.18
CD40LG	45.71	277.66	63.68	71.50	53.55	44.75	98.34
CD5	49.95	534.41	329.61	388.13	42.24	44.68	62.56
CD6	184.55	1435.53	2341.06	2011.64	331.01	125.53	151.14
CD69	948.70	1461.99	1149.83	2950.16	1392.53	17.36	540.07
CD72	666.89	36.19	25.11	26.41	62.96	43.88	16.21
CD79A	4206.50	73.16	96.00	98.43	65.70	83.49	127.19
CD79B	1206.08	91.09	74.50	38.97	87.81	47.77	35.82
CD8A	21.51	23.20	3810.17	216.22	561.28	31.41	23.20
CD8B	38.48	52.25	1512.13	55.90	74.82	46.13	70.51

			- cor	tinued from	previous pa	oe.	
Gene	B cells	T CD4	T CD8	Τ γδ	NK	MoMaDC	granulocytes
CD93	13.67	19.01	24.09	25.35	94.70	2082.88	207.23
CD96	65.83	401.97	784.37	272.69	808.16	20.12	26.32
CDR2	47.27	549.95	591.81	361.37	137.80	105.41	30.61
CHRM3	10.69	138.96	127.05	21.98	51.28	10.73	14.05
CLC	22.43	16.28	29.03	15.29	35.03	23.77	718.28
CLEC12A	11.57	10.15	14.36	10.69	22.53	339.54	599.31
CLEC2D	575.83	857.36	361.77	263.14	325.39	56.62	39.84
CLEC4A	76.32	37.19	32.21	62.70	33.65	1707.31	107.65
CLEC/A	14.71	22.60	34.71	24.72	32.28	2620.69	605.89
CLLUI	130.32	9.96	10.71	8.89	9.33	8.94	9.15
CM1M2	9.97	13.30	14.29	13.75	13.25	14.67	303.27
CPNE5	1404.85	27.00	40.20	40.43	40.09	30.42	28.95
CPVI	12.32	12.30	12.12	35.71	16.06	2122.84	10.86
CR1	740.58	32.00	42.00	26.26	29.04	/3.09	248.23
CR2	511.08	10.92	32.00	14 48	11 18	11 55	20.72
CREM	83.28	214.57	144.63	4115.03	659.42	129.84	126.21
CRTAM	9.81	23.63	907.39	94.90	461.92	171.21	10.28
CSF2RB	411.22	65.01	49.75	80.52	177.18	1349.78	4327.44
CST7	29.88	382.43	1844.11	1220.08	3210.07	60.31	669.86
CTLA4	13.19	1117.57	63.89	102.76	14.34	11.35	10.26
CTSW	64.02	146.84	358.48	743.72	4702.82	62.09	87.65
CXCR3	84.85	139.08	298.66	1314.40	135.49	39.77	34.22
CXCR6	43.76	162.29	368.84	1296.69	75.63	27.26	35.35
CYBB	1093.45	24.44	31.00	30.29	38.88	2113.04	478.93
DAPK1	28.45	22.26	58.46	43.68	138.02	1121.41	900.14
DEFA1	27.39	21.69	64.45	15.36	569.07	38.51	918.26
DEFA3	27.39	21.68	64.43	15.36	568.28	38.51	915.84
DENND2D	530.01	877.81	2130.27	413.80	1207.26	210.75	49.42
DMXL2	13.69	26.35	18.02	19.63	51.69	1494.51	549.67
DOK3	1204.76	20.91	34.10	21.83	35.80	764.56	1170.69
DSCRIL2	10.50	43.78	21.43	18.38	12.20	16.41	10.24
EAF2 EDC%	990.40	04.97	151.54	1206.74	/1.30	290.00	197.98
EDG8 FLOVL6	23.29	20.07	12 20	18 00	366.78	25.01	0.74
ELOVE0	33.20	68.86	67.03	138.45	112.88	1578.20	62.02
EMR2	10.50	11 73	13.22	11 28	15 59	285.80	1217 33
EMR3	25.99	18.31	18.52	16.87	16.95	47.53	604.45
ENPP5	6.29	5.86	8.00	6.40	92.45	5.99	5.69
EOMES	18.47	69.97	1201.29	790.67	1869.33	28.16	25.58
F13A1	20.34	22.49	41.05	42.32	30.86	996.80	69.25
FAM125B	44.93	69.51	384.48	499.81	93.42	159.92	74.73
FAM30A	578.51	45.94	63.40	35.15	54.96	45.13	73.66
FAM46C	1104.98	664.63	316.51	5751.26	563.33	27.88	177.15
FASLG	21.91	29.88	53.01	152.56	667.82	19.94	20.41
FBP1	37.01	42.26	71.76	39.53	83.74	552.81	71.98
FCER1G	29.32	37.70	102.39	53.17	2405.93	3421.76	1252.18
FCGBP	39.70	60.81	361.14	146.22	133.81	34.75	34.49
FCGR2A	55.75	15.37	18.76	17.06	36.98	822.90	1332.45
FCGR2B	568.20	10.01	19.17	23.13	35.64	129.30	240.90
FCGR3A	16.32	11.47	13.41	22.31	18/102	87.05	187.07
FCOK5D	22.65	21.20	27.62	21.54	27.02	1707.21	187.70
FCRI 1	508.07	12 48	18.45	10.30	12 64	12 22	34.85
FCRL2	712.80	27.17	57.38	22.51	31.05	26.62	313 56
FCRL3	1034.58	80.07	1201.17	115.95	1763.79	37.36	53.32
FCRL5	1284.81	53.35	90.76	52.11	54.41	52.51	99.73
FCRLA	1174.39	30.30	36.52	51.11	37.46	57.58	39.17
FFAR2	14.67	16.06	14.92	17.61	16.04	21.70	1056.95
FGD4	19.59	10.22	11.73	11.20	15.73	334.05	325.40
FGF7	8.04	9.50	10.32	9.16	9.25	9.00	308.67
FGL2	84.17	41.57	26.18	26.84	132.34	2355.58	1209.10
FGR	163.23	43.41	253.45	97.93	1327.95	2907.33	2186.79
FLJ22662	25.02	22.45	32.20	24.70	21.71	3484.77	291.63
FLJ22814	249.89	13.25	16.22	11.13	14.71	12.77	10.36

			- con	tinued from	previous pa	ge	
Gene	B cells	T CD4	T CD8	$\mathbf{T} \gamma \delta$	NK	MoMaDC	granulocytes
FLJ25967	417.31	420.38	522.79	2367.74	207.13	70.74	245.02
FLJ42562	219.91	17.19	14.32	30.78	20.46	14.65	10.43
FLJ44635	9.11	14.84	18.00	18.44	58.26	71.59	487.35
FPR1	34.69	40.60	62.93	54.20	60.28	646.19	4761.88
GALNAC4S-6ST	650.91	18.44	17.96	20.74	27.59	1296.69	1537.10
GCA	478.00	82.89	26.89	59.51	58.00	746.75	2499.17
GGTA1	20.56	19.06	31.26	23.44	23.49	541.12	32.31
GIMAPI	14.44	629.39	1217.01	551.16	498.77	171.09	7.29
GIMAP6	15.86	626.71	1279.59	459.68	1856.69	125.14	27.37
GIMAP/	9.55	1303.89	2092.95	092.48	1458.20	180.45	/.01
GNG2 CNUV	2/1.03	936.07	1346.76	4622.74	2969.15	/91./1	1138.40
CDD 100D	36.13	J4.80	955.91	12.62	9010.34 22.24	43.02	30.85
GPR132	82.33	66.09	64.04	12.03	62.36	57.99	120.68
GPR171	11 44	571.33	1307 55	2370.45	710.73	10.26	120.08
GPR07	11.44	36.12	50.40	47.64	100.73	38.78	716.13
GZMA	16 29	239.75	1925.89	880.92	6074.61	21.50	11.41
GZMR	18.00	29.47	1071 31	4764 47	7088 56	38.11	15.82
GZMH	22.08	36.81	2588.25	710.44	2378.04	33.20	19.02
GZMK	21.41	111.25	1936.64	1797.89	301.92	26.83	22.99
НСК	88.94	26.29	22.53	27.35	45.93	1803.65	1811.00
HIP1	23.60	21.47	23.22	25.59	69.63	81.78	332.78
HLA-DMB	1337.29	61.73	202.73	126.55	265.98	1626.75	141.38
HLA-DOB	2102.11	44.61	61.29	67.78	76.18	58.21	65.13
HLA-DQA1	5914.52	35.30	108.02	86.27	330.61	2038.15	14.50
HLA-DQA2	5636.81	35.30	107.99	86.25	330.41	2020.08	14.50
HLA-DRB4	459.17	40.29	55.72	45.73	45.58	2511.40	60.49
ICOS	25.16	741.28	183.59	390.37	62.85	21.86	22.96
IFI30	2534.95	111.47	191.96	234.55	280.07	8219.82	2149.04
IFNG	23.01	58.10	93.46	317.34	668.84	16.90	15.69
IGHD	1163.73	43.18	50.99	36.87	46.30	41.32	80.54
IGSF6	11.78	13.39	12.93	9.65	16.03	1611.53	198.50
IL18RAP	27.29	117.83	265.79	2102.11	3157.17	36.93	773.46
IL2RA	30.66	250.06	22.11	104.14	89.08	18.49	23.14
IL2RB	93.23	1770.01	1769.51	2382.87	4155.82	55.33	119.14
IL32	36.53	1369.03	207.55	291.98	1913.51	29.86	20.81
IL7R	43.20	3014.31	2973.84	2970.72	325.39	103.17	77.57
IL8RB	11.88	11.19	11.83	12.19	147.48	36.19	585.41
ITGAM	59.54	61.86	191.34	6/0.15	1458.26	2259.00	1190.37
ITGAX	39.46	32.15	32.28	32.75	128.34	4/2.94	963.59
	14.44	1984.40	1849.33	1331.07	1814.08	26.27	16.20
KCNE3	0 07	20.37	37.70	12.04	12.60	1227.11	160.47
KUNJ2	0.07 686.06	21.05	20.82	12.04	25.02	25.07	26.04
KIAA0125 KIAA0746	2077 11	400.43	290.72	537.63	3/0 16	406.08	41 30
KIAA0740 KIAA0748	149.81	421.68	154.67	93.00	168.88	37.58	31.25
KIAA1212	39.66	28.89	23.96	12.12	19.01	864 48	36.11
KIAA1324	32,99	133.03	64.18	60.32	43.79	26.53	89.73
KIAA1913	22.04	33.52	16.46	180.56	39.43	10.98	9.46
KIR2DL1	44.63	46.21	87.03	93.66	590.20	42.12	73.50
KIR2DL2	37.57	31.43	62.13	98.56	620.09	32.18	45.04
KIR2DL4	31.37	34.31	45.13	60.07	432.00	35.15	61.58
KIR2DL5A	35.22	27.13	48.89	67.95	510.62	27.41	36.16
KIR2DS2	14.04	12.09	27.68	61.68	539.73	10.68	13.98
KIR2DS5	50.07	46.53	98.66	101.23	766.12	45.76	85.62
KIR3DL1	29.11	28.68	43.48	135.14	678.38	24.29	22.47
KIR3DL2	32.23	33.66	37.35	97.65	510.62	30.14	31.98
KIR3DL3	27.99	25.40	39.79	71.00	506.16	26.54	39.80
KIT	19.81	21.22	44.39	55.66	260.63	23.65	373.76
KLRB1	24.11	354.78	1856.26	2590.73	2969.15	46.27	26.65
KLRC1	9.27	8.90	108.84	2941.33	1814.08	9.12	14.32
KLRC2	9.27	8.89	108.81	2898.76	1800.90	9.12	14.32
KLRC3	7.35	7.62	54.36	102.02	758.59	8.43	8.61
KLRC4	264.69	39.08	1223.75	565.08	1959.78	26.64	47.26
KLRDI	22.16	26.94	409.83	518.18	2481.89	26.19	27.72

 – continued from previous page 										
Gene	B cells	T CD4	T CD8	$\mathbf{T} \gamma \delta$	NK	MoMaDC	granulocytes			
KLRF1	13.88	14.69	61.28	138.26	2775.54	30.57	11.82			
KLRK1	80.44	46.04	2931.04	1775.10	3673.52	51.82	60.57			
КМО	390.29	14.79	23.22	18.40	21.19	254.11	39.16			
KSP37	15.52	20.18	827.94	1203.46	2432.84	19.47	11.22			
LAT	92.69	2167.56	1731.45	1545.47	730.06	140.90	46.58			
LCK	174.21	3060.72	3851.44	1809.37	2083.27	32.95	34.72			
LEF1	18.48	1249.05	1904.68	155.33	150.88	38.44	171.47			
LENG10	9.85	125.61	151.09	712.23	76.46	21.50	60.62			
LEPREL1	31.36	47.33	56.34	922.39	48.14	66.85	67.68			
LOC144571	13.09	29.75	270.02	147.54	167.20	24.92	28.71			
LOC202134	19.74	50.14	379.81	23.11	20.62	23.46	26.00			
LOC283027	8.69	8.58	10.76	8.81	10.47	9.44	635.97			
LOC284262	351.34	14.73	34.52	72.77	191.87	35.85	16.34			
LOC285382	7.35	7.24	7.92	7.06	7.58	8.27	120.20			
LOC339562	738.59	68.55	139.92	77.22	70.97	77.94	231.90			
LOC360030	7.09	21.45	9.04	94.91	7.34	11.74	11.95			
LOC391427	789.16	34.18	58.17	33.57	46.80	39.73	95.65			
LOC400509	115.49	11.01	9.75	18.10	15.57	12.41	8.05			
LOC401131	10.63	11.78	16.37	13.49	13.20	13.51	297.18			
LOC439949	30.80	1012.09	894.57	290.16	909.69	24.18	22.72			
LOC440607	14.02	15.51	17.02	13.30	19.03	615.67	145.97			
LOC642083	13.04	186.58	2496.90	5323.30	2329.29	27.83	34.61			
LOC642103	12.25	10.18	11.31	8.89	37.23	16.80	756.22			
LOC643675	31.93	56.78	2006.72	36.07	82.65	58.08	/6/.68			
L0C643930	96.42	49.09	158.70	1860.11	2103.82	338.57	22.12			
LOC645022	//.//	112.54	359.66	312.30	39.63	27.57	22.12			
LOC64/134	41/.88	48.40	07.80	44.21	02.43	52.87	63.06			
LOC647460	1855.05	12.24	4197.05	1001.81	2887.52	41.48	11.05			
LOC640805	162.69	15.24	25.29	11./1	24.60	12.07	11.65			
LOC650046	6222.05	22.00	23.38	17.94 96.20	24.09	10./1	10.70			
LOC030940	418 20	18 42	67.99	<u> </u>	62.44	2030.13	62.08			
LOC652404	410.20 602.11	46.42	128.10	44.22 50.74	71.22	70.58	167.19			
LOC032494	602.02	76.02	120.10	50.74	71.23	70.58	107.18			
LOC032031	715.30	24.00	28.50	21.23	23.85	24.94	34.06			
LOC652758	14.02	15.51	17.02	13.30	19.04	616 58	146.02			
LOC653117	12.21	17.55	33.30	13.50	14.50	15.88	904 59			
LOC653506	44.43	55.22	91.06	1216.86	281.87	351 77	560.37			
LOC653600	27.38	21.68	64.42	15 35	567.59	38.50	913.60			
LOC653725	110.78	153.06	411.42	3289.81	579.51	647.88	110.22			
LOC653757	31.36	34.31	45.12	60.05	431.66	35.15	61.55			
LOC90925	1385.84	24.92	22.69	20.94	27.40	22.01	22.21			
LPAAT-THETA	13.59	44.47	26.81	163.85	22.50	642.62	357.10			
LRRK2	152.33	10.18	11.98	9.67	11.93	306.86	232.53			
LRRN3	18.84	75.83	159.74	34.40	26.72	18.60	16.99			
LY86	1195.48	37.26	64.89	53.41	49.45	1885.94	85.14			
LY9	341.84	309.87	965.53	218.83	135.24	111.68	48.00			
LY96	572.15	93.54	23.18	10.05	16.39	1188.35	1340.33			
MAG	1115.37	35.00	51.74	38.40	44.57	49.92	73.29			
MANSC1	11.10	10.79	9.17	7.25	7.74	20.68	291.35			
MARCH1	172.25	7.96	9.07	8.33	8.26	345.17	61.73			
MEFV	14.99	27.80	25.41	21.60	17.88	34.72	689.77			
METRNL	44.44	55.24	91.09	1221.95	282.00	351.99	560.98			
MGAM	12.25	10.18	11.30	8.89	37.23	16.80	754.75			
MGC24103	9.12	9.00	19.73	9.84	131.64	9.86	17.04			
MGC61571	100.45	143.99	434.38	173.76	1303.06	189.78	9.81			
MNDA	92.31	11.06	17.98	12.52	15.95	3132.15	2294.15			
MPEG1	1008.43	14.28	15.26	20.08	26.04	3851.44	188.22			
MS4A1	5796.90	19.12	32.78	21.06	27.03	21.02	40.73			
MS4A6A	67.23	31.09	38.20	51.86	35.28	1952.48	210.45			
MS4A7	283.94	25.81	28.61	39.26	46.37	590.17	42.68			
MTAC2D1	21.03	412.27	290.20	579.26	77.52	16.08	18.13			
MXD1	101.89	128.64	104.32	326.27	250.98	473.18	3293.00			
MYBL1	12.84	67.57	438.57	309.81	3210.07	14.36	14.83			
NAPSB	654.45	19.72	21.80	32.42	19.16	667.29	14.60			

			- con	tinued from	previous pa	ge	
Gene	B cells	T CD4	T CD8	$\mathbf{T} \gamma \delta$	NK	MoMaDC	granulocytes
NCF1	618.29	57.47	61.04	40.25	46.49	628.89	2027.10
NCF2	63.11	36.59	29.60	13.23	40.17	3322.76	4542.67
NDFIP2	18.46	149.30	42.95	465.47	403.11	10.77	93.26
NKG7	36.32	63.59	1478.18	2606.00	5519.19	79.84	29.03
NOD3	481.56	868.46	1576.16	1511.26	1751.13	23.70	22.07
NPL	19.97	33.05	40.36	52.35	49.94	548.01	421.18
NR4A3	36.33	33.17	28.77	1132.07	68.18	66.13	88.99
UASL DODV12	40.89	64.85	116.44	0.00	255.07	81.70	247.47
P2K115	10.91	10.22	12.21	9.90	12.22	122.50	593.99
P2K114	220.04	19.23	15.38	94.83	42.38	24.00	525.59
PACAP	10.01	49.95	28.06	43.09	14.97	43.13	<u> </u>
PADI4	10.91	240.92	38.90	15.75	14.57	37.38	56.72
PRYA	45.06	208 30	232.81	501.13	75.42	28.16	20.50
DCSK5	45.00	298.30	148.43	17.02	108.08	161.63	20.50
PDF4B	871.34	618.22	618.81	3231.54	205.00	233.78	1029.84
PDF4D	51.02	488.27	326.19	1126.19	564 79	43.65	169.85
PDGFD	36.34	16.95	101.45	110.03	410.37	17.30	29.59
PGAP1	11.00	124.01	72 19	287.27	44 61	24.30	37.51
PLA2G7	8.25	8.66	9.05	8.24	10.30	183.62	8.08
PLAUR	46.41	42.72	46.03	74 44	54.45	600.25	1253 57
PLCG2	2354.68	42.47	183.87	144.54	687.01	613.49	591.31
PLCXD2	42.12	98.87	168.14	423.88	249.32	13.25	12.17
PLEKHK1	5.94	23.92	7.34	46.29	7.13	6.11	5.85
PLXDC2	10.96	10.11	10.76	9.32	22.16	321.22	81.46
PNOC	472.02	20.64	21.38	17.85	23.23	29.05	17.18
POU2AF1	5115.30	164.40	88.42	11.83	22.39	18.52	18.04
PRF1	47.41	517.35	2542.05	7146.19	9010.54	85.24	92.48
PRKCH	33.03	2588.25	2948.14	3108.66	3014.31	154.99	75.33
PRKCQ	18.95	538.09	473.93	679.22	984.36	33.72	42.16
PRKX	338.05	527.97	461.64	2378.04	830.36	340.18	184.85
PRKY	338.25	528.54	462.10	2405.93	832.10	340.38	184.91
PRO1268	47.13	50.52	48.46	39.07	34.55	48.07	1369.92
PROK2	7.39	9.69	11.76	23.00	8.53	11.70	256.77
PRSS33	41.21	35.63	38.39	44.43	37.76	43.74	203.04
PTGDR	13.29	14.05	41.26	17.78	331.21	13.40	59.06
PTGS2	10.49	10.53	9.28	10.33	13.94	49.45	1217.23
PYGL	14.75	13.43	16.29	12.68	20.69	248.17	632.97
PYHIN1	18.31	192.19	261.25	225.73	1138.35	18.25	10.02
QPCT	77.49	13.11	13.15	71.23	14.49	524.43	238.06
RAB27B	16.47	28.55	34.75	106.07	476.48	30.40	22.11
RAB30	788.45	85.04	53.48	134.95	49.79	40.36	87.92
RALGPS2	1/01.79	36.00	69.64	58.76	44.34	86.12	300.83
RASGEFIA	202.64	28.63	163.88	49.36	160.74	53.24	39.05
RASUKPI RASCDD2	373.04	27.24	1393.32	60.00	21.20	27.02	23.03
PCS13	64.35	7.06	7.15	0.38	7.74	6.67	6.37
RGS18	7.00	9.86	13.22	13 33	25.46	475.12	1092.06
RNASE6	1121.34	23.47	23.90	17.85	36.03	2445.12	327.09
RORA	26.63	489.00	669.37	2624.65	468.89	29.67	26.12
\$100A12	10.45	11.51	19.76	10.91	11.59	153.83	469.27
SAMD3	18.99	121.52	355.44	331.76	1800.90	16.69	16.57
SART2	170.38	18.60	20.57	82.84	26.88	690.95	123.69
SCML4	41.41	114.73	514.49	120.70	78.57	22.30	21.99
SH2D1B	12.63	14.97	21.90	49.73	2604.32	21.43	36.95
SIGLEC10	600.98	64.16	88.39	35.15	53.32	582.59	1350.89
SIRPG	20.78	287.61	289.99	28.46	18.54	17.46	16.02
SKAP1	109.08	606.00	530.15	222.36	701.97	35.23	35.98
SLAMF1	550.77	301.77	103.18	263.12	21.21	20.57	18.22
SLAMF7	253.12	21.01	347.49	647.91	2237.20	886.00	24.67
SLC15A2	439.83	24.87	19.70	19.71	23.73	60.61	30.02
SLC7A7	183.85	38.11	45.66	30.20	56.04	2703.18	98.66
SLCO4C1	12.04	15.36	14.63	48.14	426.22	33.69	110.87
SOCS1	111.11	114.86	97.73	758.80	206.88	27.46	45.64
SPIB	265.50	29.75	43.31	37.35	38.66	37.41	36.81

			– con	tinued from	previous pa	ge	
Gene	B cells	T CD4	T CD8	$T \gamma \delta$	NK	MoMaDC	granulocytes
SPINLW1	10.03	10.28	10.49	8.59	9.22	8.75	267.75
ST3GAL6	13.38	8.94	8.94	9.03	9.02	166.10	166.11
STAT4	39.56	558.90	1102.95	1721.77	1856.69	74.47	58.45
STYK1	7.44	8.34	23.01	46.52	97.96	7.70	7.73
SYK	1263.83	35.67	68.61	42.59	502.43	1993.03	697.56
SYTL2	18.68	142.53	564.72	1117.84	869.19	39.61	114.95
SYTL3	73.28	335.97	442.08	1776.01	679.48	216.47	244.23
TARP	13.04	186.52	2469.67	5131.25	2306.52	27.83	34.60
TBC1D4	18.39	662.57	510.91	35.77	32.93	174.37	46.02
TBC1D8	30.81	36.03	30.10	38.78	43.53	555.81	91.97
TCL1A	413.03	31.45	27.36	37.74	33.29	37.86	23.49
TFEC	11.03	6.13	7.25	9.44	8.67	414.01	8.14
TLR10	215.83	14.86	21.47	15.51	16.01	27.12	40.08
TLR8	10.82	9.89	9.56	8.74	13.78	1039.76	203.20
TM6SF1	11.30	17.36	16.13	35.38	399.18	356.29	494.32
TMEM154	491.02	186.97	146.41	125.53	71.81	646.27	3135.11
TNFAIP2	32.84	27.68	43.49	32.63	54.03	495.27	938.69
TNFRSF17	395.81	10.52	11.14	10.71	10.94	11.29	9.68
TNFSF12-TNFSF13	85.59	46.45	70.62	41.03	69.68	1183.32	168.74
TNFSF13	85.56	46.44	70.61	41.02	69.67	1178.65	168.61
TNFSF13B	51.93	79.06	83.67	27.90	177.00	2356.22	543.97
TRA@	501.10	2149.04	1000.88	224.92	202.86	96.14	137.21
TRAC	337.54	2381.98	2317.90	586.75	322.34	48.09	30.17
TRAT1	9.99	833.96	268.75	278.16	21.05	11.96	11.31
TRAV20	515.87	3484.77	1095.28	189.23	163.58	88.17	103.23
TRBC1	546.61	5227.27	5131.25	2415.60	3263.25	68.57	48.56
TRBV19	545.97	5019.27	4907.29	2389.05	3210.07	68.55	48.55
TRBV21-1	1883.48	5519.19	4475.27	1621.90	2969.15	41.50	11.04
TRBV3-1	1870.36	5323.30	4324.82	1611.40	2927.13	41.49	11.03
TRBV5-4	1898.76	5754.42	4643.54	1631.57	3014.31	41.51	11.04
TRD@	26.59	55.53	143.02	7146.19	6371.28	30.51	18.69
TRDV2	515.27	3414.55	1091.46	189.15	163.52	88.15	103.20
TRGC2	13.05	186.64	2526.41	5519.19	2354.68	27.84	34.61
TRGV2	13.05	186.80	2588.25	6074.61	2405.93	27.85	34.63
TRGV9	13.05	186.74	2556.55	5754.42	2378.04	27.84	34.62
TSHZ2	33.03	100.56	18.84	15.88	15.11	15.27	16.75
TXK	13.54	158.68	174.99	109.69	875.53	13.53	16.46
TYROBP	52.39	35.57	96.81	145.31	2604.32	5421.25	5323.30
UBASH3A	29.70	316.56	511.62	160.25	38.58	17.19	13.80
UPP1	40.71	306.72	277.36	1637.88	449.54	478.81	354.95
USP6NL	230.42	17.89	15.72	13.12	19.21	63.82	14.18
VPREB3	216.88	21.97	24.96	21.26	23.63	22.50	19.36
XCL1	31.51	28.28	203.87	109.50	6074.61	16.68	15.42
XCL2	35.22	32.83	336.66	175.12	6371.28	24.38	26.84
ZAP70	37.63	481.05	775.80	179.54	613.07	26.00	15.87
ZC3H12D	589.58	753.96	232.69	69.83	33.48	113.01	9.54
ZNF101	158.06	523.65	504.85	151.24	139.99	66.40	22.85
ZNF528	34.01	38.65	29.42	25.07	27.94	46.12	904.49
ZNF595	30.56	18.25	27.04	10.54	25.34	24.57	862.71

Supplemental table 3: LM7 matrix. Genes specifically expressed (i.e. log2(expression) > 9) by a specific subtype are colored as follows: B cells , CD4 , CD8 , $\gamma \delta$, NK , MoMaDC and granulocytes .

GSE number	Number of samples	Cell type	First author	reference
GSE11103	41	monocytes, B cells	Abbas AR	21
GSE13906	4	$\gamma\delta$ T cells	Zhang Y	22
GSE15743	4	NK	Stegmann KA	23
GSE16020	20	granulocytes	Vinh DC	24
GSE20300	24	monocytes, eosinophils, neutrophils	Shen-Orr SS	25
GSE49877	36	CD4, CD8 T cells	Raine T	26
GSE53166	113	DC	Lee MN	27
GSE65133	20	B cells, CD4, CD8, $\gamma\delta$ T cells, NK, monocytes	Newman AM	28
GSE65134	7	CD4 T cells	Newman AM	28
GSE65135	28	B cells, CD4, CD8 T cells	Newman AM	28
GSE6740	40	CD4, CD8 T cells	Hyrcza MD	29
GSE7307	677	normal (non cancer) tissues	Roth R	
E-MEXP-2055	6	fetal $\gamma \delta$ T cells	Vermijlen D	30

Supplemental table 4: List of validation studies

cancer	B cells	T CD4	T CD8	$\mathbf{T} \gamma \delta$	NK	MoMaDC	granulocytes
B-ALL	32.88	4.42	17.40	9.16	3.14	17.32	17.54
BL	62.67	7.76	10.44	0.38	2.02	11.67	1.92
CLL	95.07	14.11	10.73	3.44	4.55	14.23	10.87
DLBCL	76.12	11.69	15.21	0.94	4.67	29.77	2.73
FL	92.40	32.81	12.88	0.22	2.30	9.75	1.52
MCL	115.21	10.01	9.07	1.29	0.88	6.56	2.30
SMZL	128.39	16.86	9.60	0.13	1.95	6.16	1.90
THRBL	29.41	48.12	26.97	0.14	14.10	45.91	3.20
T-ALL	4.33	58.32	17.66	6.45	2.29	11.98	11.41
ALCL	27.30	27.09	15.26	2.89	6.61	35.00	2.17
AITL	36.65	62.17	17.97	0.81	5.40	22.48	2.27
PTCL-NOS	31.06	50.35	20.61	2.36	10.29	32.08	1.25
PTCL NK	19.19	21.95	9.88	1.22	43.27	30.32	4.96
CML	1.26	1.16	11.00	13.83	2.11	36.86	56.59
Lung Squamous Cell	25.80	10.29	7.84	2.83	1.32	46.13	4.16
Lung Non Small Cell	28.73	9.24	6.35	3.59	0.95	45.38	0.78
Lung Adenocarcinoma	18.27	8.93	5.39	2.47	0.61	42.17	0.80
Pancreas	15.18	12.34	4.39	2.35	0.52	45.56	2.49
Prostate	5.99	6.40	5.84	9.58	0.34	17.19	1.65
Breast Inflammatory	17.23	12.68	6.82	2.49	0.92	32.35	0.05
Breast Ductal	10.56	8.53	5.90	1.80	0.54	33.94	0.31
Breast Lobular Carcinoma	7.04	7.45	6.93	1.91	0.41	33.67	0.39
Stomach	10.71	9.51	5.78	1.42	1.56	30.13	0.52
Kidney Pap & Cc	5.92	5.23	6.92	1.19	0.79	37.21	0.59
Colorectal	10.94	8.00	3.17	2.17	0.32	30.08	3.59
Bladder	7.51	7.45	4.24	1.88	0.93	28.95	3.23
Liver	6.30	7.26	3.57	1.49	0.52	32.83	1.18
Esophagus	12.92	4.21	2.94	5.90	0.07	21.64	3.18
Uterus	8.81	7.35	3.97	1.68	0.86	24.24	2.88
Thyroid	10.30	5.87	3.88	1.86	0.20	25.56	0.39
Head & Neck	7.79	4.95	5.19	3.97	0.51	21.34	0.68
Melanoma Primary	5.66	12.32	2.49	1.20	1.82	19.76	1.14
Melanoma Metastasis	5.99	4.83	1.93	0.71	0.77	17.57	1.40
Sarcoma	3.37	2.65	2.28	1.63	0.41	21.89	0.67
Ovary	4.37	2.36	1.66	0.98	0.34	18.06	0.86
Endometrium	3.85	4.14	1.78	1.35	0.51	16.30	0.89
Cervix	4.37	1.85	2.98	4.22	0.22	11.34	0.57
Kidney Chromophobe	2.51	0.87	3.87	1.65	0.16	13.58	0.01
Kidney Oncocytoma	1.35	0.18	2.04	0.83	0.01	5.56	0.00
Sarcoma Ewing	0.86	2.42	0.48	0.35	0.19	10.19	1.14
Pilocytic Astrocytoma	0.63	0.27	0.20	2.17	0.00	18.11	0.91
Glioblastoma	0.57	0.60	0.20	1.29	0.02	12.27	0.67
Low Grade Glioma	0.61	0.27	0.22	1.38	0.01	7.18	0.42
PNET	0.41	0.66	0.22	0.77	0.02	6.12	0.39
Ependymoma	0.26	0.60	0.00	0.55	0.02	6.00	0.18
Medulloblastoma	0.09	1.63	0.03	0.38	0.00	2.07	0.03
AML subtype	B cells	T CD4	T CD8	Τ γδ	NK	MoMaDC	granulocytes

AML subtype	B cells	T CD4	T CD8	$ \mathbf{T} \gamma \delta$	NK	MoMaDC	granulocytes
RAEB	7.56	48.19	25.66	2.81	8.09	48.47	38.35
RAEB-t	5.27	24.66	10.28	7.15	3.19	59.85	18.91
M0	12.72	18.51	8.92	7.42	2.63	33.28	8.33
M1	9.31	8.97	8.17	9.23	1.09	19.88	10.34
M2	10.53	10.95	11.08	8.90	1.94	28.49	19.68
M3	6.17	6.00	11.56	17.43	0.46	11.44	16.84
M4	4.41	4.11	5.87	4.14	0.75	71.06	12.95
M5	4.75	4.29	5.32	3.33	0.86	68.16	8.96
M6	9.64	20.26	10.94	8.94	3.97	28.98	19.05
M7	14.31	33.26	17.01	7.61	12.35	39.48	12.11

Supplemental table 5: Abundance of leukocytes infiltrating cancers. Data are group means for each malignancy

GSE number	Number of samples	Cancer type	First author	reference
E-TABM-783	35	AITL, PTCL	Leval L	31

 – continued from previous page 						
GSE number	Number of samples	Cancer type	First author	reference		
E-TABM-791	8	PTCL, PTCL-NK	Huang Y	32		
GSE10139	108	CCL	Friedman DR	33		
GSE10358	304	AML	Tomasson MH	34		
GSE10524	80	DLBCL	Booman M	35		
GSE10846	420	DLBCL	Lenz G	36		
GSE11151	67	kidney	Yusenko MV	37		
GSE11318	406	DLBCL	Lenz G	38		
GSE11877	207	ALL	Kang H	39		
GSE12195	136	DLBCL, FL	Compagno M	4		
GSE12417	405	AML	Metzeler KH	40		
GSE12453	67	BL, DLBCL, FL, HL, THRBL	Brune V	41		
GSE12734	14	CLL	Stamatopoulos B	42		
GSE13041	27	GBM	Lee Y	43		
GSE13159	2011	ALL, AML, B-ALL, CLL, CML, MDS, T-ALL	Kohlmann A	44		
GSE13996	73	HL, THRBL	Chetaille B	45		
GSE14468	526	AML	Wouters BJ	46		
GSE14973	14	CLL	Stamatopoulos B	47		
GSE15471	78	pancreas	Badea L	48		
GSE15490	50	CLL	Shehata M	49		
GSE15605	74	melanoma	Raskin L	50		
GSE15913	40	CLL	Giannopoulos K	51		
GSE16024	26	FL, MCL	Hamoudi R			
GSE16455	55	CCL, FL, HCL, MCL, SMZL	Fernàndez V	52		
GSE17189	17	BL, DLBCL	Deffenbacher KE	53		
GSE17920	130	HL	Steidl C	54		
GSE17951	154	prostate	Wang Y	55		
GSE46602	50	prostate	Mortensen MM	56		
GSE19067	44	PTCL, PTCL-NK	Iqbal J	57		
GSE19069	147	AITL, ALCL, PTCL	Iqbal J	58		
GSE19982	30	kidney	Tan MH	59		
GSE21029	62	CLL	Herishanu Y	60		
		ALCL, bladder, Breast, colorectal, DLBCL, endometrium, esophagus, FL,				
GSE2109	2158	head & neck, kidney, liver, lung, melanoma, ovary, pancreas, prostate,	Curley E			
		sarcoma, stomach, thyroid, uterus				
GSE21452	64	MCL	Hartmann EM	61		
GSE21554	69	FL, MCL, SMZL	Watkins AJ	62		
GSE22762	195	CLL	Herold T	63		
GSE23720	370	breast	Bekhouche I	64		
GSE25571	109	CLL	Herold T	65		
GSE26673	16	BL	Piccaluga PP T	66		
GSE26713	109	CLL	Herold T	65		
GSE25571	117	T-ALL	Homminga I	67		
GSE27858	56	CLL	Dürig J	68		
GSE28654	112	CLL	Trojani A	69		
GSE29605	22	CLL	Davidson-Mocada JK			
GSE31048	221	CLL	Wang L	70		
GSE32701	40	esophagus	Aoyagi K	71		
GSE33075	27	CML	Benito R	-72		
GSE33135	24	CLL	Baptista MJ	73		
GSE34171	510	DLBCL	Monti S	/4		
GSE34620	117	ewing sarcoma	Postel-Vinay S	/5		
GSE35935	62	CLL	Bonina S	77		
GSE36000	38	MCL	Navarro A	/0		
GSE37168	13	CLL	Landau DA	70		
GSE38816	18	FL	Green MR	/8		
GSE39133	34	HL	Steidl C	/9		
GSE42038	79	T-ALL	Horstmann MA	00		
GSE44971	58	pilocytic astrocytoma	Lambert SR	00		
GSE46170	38	T-ALL	Hatirnaz Ng O	01		
GSE4732	303	BL, DLBCL	Dave SS	01		
GSE4845	45	melanoma	Hoek KS	02		
GSE50161	130	ependymoma, GBM, MB, pilocytic astrocytoma	Griesinger AM	0.0		
GSE50570	6	pancreas	Secq V			

– continued from previous page							
GSE number	Number of samples	Cancer type	First author	reference			
GSE53117	10	DLBCL	Chapman J	84			
GSE53786	5	DLBCL	Scott DW	85			
GSE53820	81	DLBCL, FL	Brodtkorb M,	86			
GSE55267	69	FL	Guo S	87			
GSE57303	70	stomach	Qian Z	88			
GSE58445	193	PTCL	Iqbal J	89			
GSE6338	60	AITL, ALCL, PTCL	Piccaluga PP	90			
GSE64086	12	BL	Ferreiro JF	91			
GSE64905	11	BL	Lee S				
GSE65135	26	DLBCL, FL	Newman AM	28			
GSE65823	31	ALCL, PTCL	Scarfò I	92			
GSE6791	84	Cervix, head & neck	Pyeon D	93			
GSE68848	580	GBM, low grade glioma	Fine H				
GSE69049	93	BL, DLBCL	Barrans SL				
GSE69051	250	BL, DLBCL	Barrans SL				
GSE73038	182	GBM, MB, PNET	Sturm D	94			
GSE7307	677	breast, cervix, melanoma, prostate	Roth R				
GSE7553	87	melanoma	Riker AI	95			
GSE7788	21	NLPHL, THRBL	Van Loo P	96			
GSE8271	34	kidney	Koeman JM	97			

Supplemental table 6: List of cancers studies

Supplemental References

References

- A. J. Gentles, A. M. Newman, C. L. Liu, S. V. Bratman, W. Feng, D. Kim, V. S. Nair, Y. Xu, A. Khuong, C. D. Hoang *et al.*, The prognostic landscape of genes and infiltrating immune cells across human cancers, Nature medicine 2015; 21:938–945.
- [2] M. Tosolini, C. Algans, F. Pont, B. Ycart, and J.-J. Fournié, Large scale microarray profiling reveals four stages of immune escape in non-hodgkin lymphomas, OncoImmunology 2016; 5:e1188246.
- [3] S. Maouche, O. Poirier, T. Godefroy, R. Olaso, I. Gut, J.-P. Collet, G. Montalescot, and F. Cambien, Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells, BMC genomics 2008; 9:1.
- [4] M. Compagno, W. K. Lim, A. Grunn, S. V. Nandula, M. Brahmachary, Q. Shen, F. Bertoni, M. Ponzoni, M. Scandurra, A. Califano et al., Mutations of multiple genes cause deregulation of nκb in diffuse large b-cell lymphoma, Nature 2009; 459:717–721.
- [5] S. C. Bangs, D. Baban, H. J. Cattan, C. K.-F. Li, A. J. McMichael, and X.-N. Xu, Human cd4+ memory t cells are preferential targets for bystander activation and apoptosis, The Journal of Immunology 2009; 182:1962–1971.
- [6] S. Eckerle, V. Brune, C. Döring, E. Tiacci, V. Bohle, C. Sundström, R. Kodet, M. Paulli, B. Falini, W. Klapper *et al.*, Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to hodgkin lymphoma, Leukemia 2009; 23:2129–2138.
- [7] M. C. Bosco, D. Pierobon, F. Blengio, F. Raggi, C. Vanni, M. Gattorno, A. Eva, F. Novelli, P. Cappello, M. Giovarelli *et al.*, Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of trem-1 as a novel hypoxic marker in vitro and in vivo, Blood 2011; 117:2625–2639.
- [8] F. Pont, J. Familiades, S. Déjean, S. Fruchon, D. Cendron, M. Poupot, R. Poupot, F. L'Faqihi-Olive, N. Prade, B. Ycart *et al.*, The gene expression profile of phosphoantigen-specific human $\gamma\delta$ t lymphocytes is a blend of $\alpha\beta$ t-cell and nk-cell signatures, European journal of immunology 2012; 42:228–240.
- [9] F. Allantaz, D. T. Cheng, T. Bergauer, P. Ravindran, M. F. Rossier, M. Ebeling, L. Badi, B. Reis, H. Bitter, M. D'Asaro *et al.*, Expression profiling of human immune cell subsets identifies mirna-mrna regulatory relationships correlated with cell type specific expression, PloS one 2012; 7:e29979.
- [10] M. G. Constantinides, D. Picard, A. K. Savage, and A. Bendelac, A naive-like population of human cd1d-restricted t cells expressing intermediate levels of promyelocytic leukemia zinc finger, The Journal of Immunology 2011; 187:309–315.
- [11] M. Sirois, L. Robitaille, R. Allary, M. Shah, C. H. Woelk, J. Estaquier, and J. Corbeil, Traf6 and irf7 control hiv replication in macrophages, PloS one 2011; 6:e28125.
- [12] M. A. Favila, N. S. Geraci, E. Zeng, B. Harker, D. Condon, R. N. Cotton, A. Jayakumar, V. Tripathi, and M. A. McDowell, Human dendritic cells exhibit a pronounced type i ifn signature following leishmania major infection that is required for il-12 induction, The Journal of Immunology 2014; 192:5863–5872.
- [13] K. Dybkær, M. Bøgsted, S. Falgreen, J. S. Bødker, M. K. Kjeldsen, A. Schmitz, A. E. Bilgrau, Z. Y. Xu-Monette, L. Li, K. S. Bergkvist et al., Diffuse large b-cell lymphoma classification system that associates normal b-cell subset phenotypes with prognosis, Journal of Clinical Oncology 2015; 33:1379–1388.
- [14] H. E. Mei, I. Wirries, D. Frölich, M. Brisslert, C. Giesecke, J. R. Grün, T. Alexander, S. Schmidt, K. Luda, A. A. Kühl et al., A unique population of igg-expressing plasma cells lacking cd19 is enriched in human bone marrow, Blood 2015; 125:1739–1748.
- [15] M. Takeshita, K. Suzuki, Y. Kassai, M. Takiguchi, Y. Nakayama, Y. Otomo, R. Morita, T. Miyazaki, A. Yoshimura, and T. Takeuchi, Polarization diversity of human cd4+ stem cell memory t cells, Clinical Immunology 2015; 159:107–117.
- [16] G. J. Walter, V. Fleskens, K. S. Frederiksen, M. Rajasekhar, B. Menon, J. G. Gerwien, H. G. Evans, and L. S. Taams, Phenotypic, functional, and gene expression profiling of peripheral cd45ra+ and cd45ro+ cd4+ cd25+ cd127low treg cells in patients with chronic rheumatoid arthritis, Arthritis & Rheumatology 2016; 68:103–116.
- [17] P. Amé-Thomas, S. Hoeller, C. Artchounin, J. Misiak, M. S. Braza, R. Jean, J. Le Priol, C. Monvoisin, N. Martin, P. Gaulard *et al.*, Cd10 delineates a subset of human il-4 producing follicular helper t cells involved in the survival of follicular lymphoma b cells, Blood 2015; 125:2381–2385.
- [18] K. Kanduri, S. Tripathi, A. Larjo, H. Mannerström, U. Ullah, R. Lund, R. D. Hawkins, B. Ren, H. Lähdesmäki, and R. Lahesmaa, Identification of global regulators of t-helper cell lineage specification, Genome medicine 2015; 7:1.
- [19] X. Du, Y. Tang, H. Xu, L. Lit, W. Walker, P. Ashwood, J. P. Gregg, and F. R. Sharp, Genomic profiles for human peripheral blood t cells, b cells, natural killer cells, monocytes, and polymorphonuclear cells: comparisons to ischemic stroke, migraine, and tourette syndrome, Genomics 2006; 87:693–703.
- [20] K. Dybkaer, J. Iqbal, G. Zhou, H. Geng, L. Xiao, A. Schmitz, F. d'Amore, and W. C. Chan, Genome wide transcriptional analysis of resting and il2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways, BMC genomics 2007; 8:1.
- [21] A. R. Abbas, K. Wolslegel, D. Seshasayee, Z. Modrusan, and H. F. Clark, Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus, PloS one 2009; 4:e6098.
- [22] Y. Zhang, J. H. Ohyashiki, N. Shimizu, and K. Ohyashiki, Aberrant expression of nk cell receptors in epstein-barr virus-positive $\gamma \delta$ t-cell lymphoproliferative disorders, Hematology 2013; .
- [23] K. A. Stegmann, N. K. Björkström, H. Veber, S. Ciesek, P. Riese, J. Wiegand, J. Hadem, P. V. Suneetha, J. Jaroszewicz, C. Wang et al., Interferon-α-induced trail on natural killer cells is associated with control of hepatitis c virus infection, Gastroenterology 2010; 138:1885–1897.
- [24] D. C. Vinh, S. Y. Patel, G. Uzel, V. L. Anderson, A. F. Freeman, K. N. Olivier, C. Spalding, S. Hughes, S. Pittaluga, M. Raffeld *et al.*, Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia, Blood 2010; 115:1519–1529.

- [25] S. S. Shen-Orr, R. Tibshirani, P. Khatri, D. L. Bodian, F. Staedtler, N. M. Perry, T. Hastie, M. M. Sarwal, M. M. Davis, and A. J. Butte, Cell type–specific gene expression differences in complex tissues, Nature methods 2010; 7:287–289.
- [26] T. Raine, J. Z. Liu, C. A. Anderson, M. Parkes, and A. Kaser, Generation of primary human intestinal t cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease, Gut 2014; gutjnl–2013.
- [27] M. N. Lee, C. Ye, A.-C. Villani, T. Raj, W. Li, T. M. Eisenhaure, S. H. Imboywa, P. I. Chipendo, F. A. Ran, K. Slowikowski et al., Common genetic variants modulate pathogen-sensing responses in human dendritic cells, Science 2014; 343:1246980.
- [28] A. M. Newman, C. L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, C. D. Hoang, M. Diehn, and A. A. Alizadeh, Robust enumeration of cell subsets from tissue expression profiles, Nature methods 2015; 12:453–457.
- [29] M. D. Hyrcza, C. Kovacs, M. Loutfy, R. Halpenny, L. Heisler, S. Yang, O. Wilkins, M. Ostrowski, and S. D. Der, Distinct transcriptional profiles in ex vivo cd4+ and cd8+ t cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in cd8+ t cells, Journal of virology 2007; 81:3477–3486.
- [30] D. Vermijlen, M. Brouwer, C. Donner, C. Liesnard, M. Tackoen, M. Van Rysselberge, N. Twité, M. Goldman, A. Marchant, and F. Willems, Human cytomegalovirus elicits fetal $\gamma\delta$ t cell responses in utero, The Journal of experimental medicine 2010; 207:807–821.
- [31] L. de Leval, D. S. Rickman, C. Thielen, A. de Reynies, Y.-L. Huang, G. Delsol, L. Lamant, K. Leroy, J. Briere, T. Molina *et al.*, The gene expression profile of nodal peripheral t-cell lymphoma demonstrates a molecular link between angioimmunoblastic t-cell lymphoma (aitl) and follicular helper t (tfh) cells, Blood 2007; 109:4952–4963.
- [32] Y. Huang, A. De Reynies, L. De Leval, B. Ghazi, N. Martin-Garcia, M. Travert, J. Bosq, J. Brière, B. Petit, E. Thomas *et al.*, Gene expression profiling identifies emerging oncogenic pathways operating in extranodal nk/t-cell lymphoma, nasal type, Blood 2010; 115:1226–1237.
- [33] D. R. Friedman, J. B. Weinberg, W. T. Barry, B. K. Goodman, A. D. Volkheimer, K. M. Bond, Y. Chen, N. Jiang, J. O. Moore, J. P. Gockerman *et al.*, A genomic approach to improve prognosis and predict therapeutic response in chronic lymphocytic leukemia, Clinical Cancer Research 2009; 15:6947–6955.
- [34] M. H. Tomasson, Z. Xiang, R. Walgren, Y. Zhao, Y. Kasai, T. Miner, R. E. Ries, O. Lubman, D. H. Fremont, M. D. McLellan *et al.*, Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia, Blood 2008; 111:4797–4808.
- [35] M. Booman, K. Szuhai, A. Rosenwald, E. Hartmann, H. C. Kluin-Nelemans, D. de Jong, E. Schuuring, and P. Kluin, Genomic alterations and gene expression in primary diffuse large b-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways, The Journal of pathology 2008; 216:209–217.
- [36] G. Lenz, G. Wright, S. Dave, W. Xiao, J. Powell, H. Zhao, W. Xu, B. Tan, N. Goldschmidt, J. Iqbal *et al.*, Stromal gene signatures in large-b-cell lymphomas, New England Journal of Medicine 2008; 359:2313–2323.
- [37] M. V. Yusenko, R. P. Kuiper, T. Boethe, B. Ljungberg, A. G. van Kessel, and G. Kovacs, High-resolution dna copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas, BMC cancer 2009; 9:1.
- [38] G. Lenz, G. W. Wright, N. T. Emre, H. Kohlhammer, S. S. Dave, R. E. Davis, S. Carty, L. T. Lam, A. Shaffer, W. Xiao *et al.*, Molecular subtypes of diffuse large b-cell lymphoma arise by distinct genetic pathways, Proceedings of the National Academy of Sciences 2008; 105:13520–13525.
- [39] H. Kang, I.-M. Chen, C. S. Wilson, E. J. Bedrick, R. C. Harvey, S. R. Atlas, M. Devidas, C. G. Mullighan, X. Wang, M. Murphy et al., Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric b-precursor acute lymphoblastic leukemia, Blood 2010; 115:1394–1405.
- [40] K. H. Metzeler, M. Hummel, C. D. Bloomfield, K. Spiekermann, J. Braess, M.-C. Sauerland, A. Heinecke, M. Radmacher, G. Marcucci, S. P. Whitman *et al.*, An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia, Blood 2008; 112:4193–4201.
- [41] V. Brune, E. Tiacci, I. Pfeil, C. Döring, S. Eckerle, C. J. van Noesel, W. Klapper, B. Falini, A. von Heydebreck, D. Metzler *et al.*, Origin and pathogenesis of nodular lymphocyte–predominant hodgkin lymphoma as revealed by global gene expression analysis, The Journal of experimental medicine 2008; 205:2251–2268.
- [42] B. Stamatopoulos, B. Haibe-Kains, C. Equeter, N. Meuleman, A. Sorée, C. De Bruyn, D. Hanosset, D. Bron, P. Martiat, and L. Lagneaux, Gene expression profiling reveals differences in microenvironment interaction between patients with chronic lymphocytic leukemia expressing high versus low zap70 mrna, haematologica 2009; 94:790–799.
- [43] Y. Lee, A. C. Scheck, T. F. Cloughesy, A. Lai, J. Dong, H. K. Farooqi, L. M. Liau, S. Horvath, P. S. Mischel, and S. F. Nelson, Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age, BMC medical genomics 2008; 1:1.
- [44] A. Kohlmann, T. J. Kipps, L. Z. Rassenti, J. R. Downing, S. A. Shurtleff, K. I. Mills, A. F. Gilkes, W.-K. Hofmann, G. Basso, M. C. DellOrto *et al.*, An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the microarray innovations in leukemia study prephase, British journal of haematology 2008; 142:802–807.
- [45] B. Chetaille, F. Bertucci, P. Finetti, B. Esterni, A. Stamatoullas, J. M. Picquenot, M. C. Copin, F. Morschhauser, O. Casasnovas, T. Petrella et al., Molecular profiling of classical hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with ebv infection and outcome, Blood 2009; 113:2765–3775.
- [46] B. J. Wouters, B. Löwenberg, C. A. Erpelinck-Verschueren, W. L. van Putten, P. J. Valk, and R. Delwel, Double cebpa mutations, but not single cebpa mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome, Blood 2009; 113:3088–3091.
- [47] B. Stamatopoulos, N. Meuleman, C. De Bruyn, P. Mineur, P. Martiat, D. Bron, and L. Lagneaux, Antileukemic activity of valproic acid in chronic lymphocytic leukemia b cells defined by microarray analysis, Leukemia 2009; 23:2281–2289.

- [48] L. Badea, V. Herlea, S. O. Dima, T. Dumitrascu, I. Popescu, et al., Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia-the authors reported a combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia, Hepato-gastroenterology 2008; 55:2016.
- [49] M. Shehata, D. Demirtas, S. Schnabl, M. Hilgarth, R. Hubmann, C. Fonatsch, I. Schwarzinger, G. Hopfinger, K. Eigenberger, D. Heintel et al., Sequential gene expression profiling during treatment for identification of predictive markers and novel therapeutic targets in chronic lymphocytic leukemia, Leukemia 2010; 24:2122–2127.
- [50] L. Raskin, D. R. Fullen, T. J. Giordano, D. G. Thomas, M. L. Frohm, K. B. Cha, J. Ahn, B. Mukherjee, T. M. Johnson, and S. B. Gruber, Transcriptome profiling identifies hmga2 as a biomarker of melanoma progression and prognosis, Journal of Investigative Dermatology 2013; 133:2585–2592.
- [51] K. Giannopoulos, A. Dmoszynska, M. Kowal, E. Wkasik-Szczepanek, A. Bojarska-Junak, J. Rolinski, H. Döhner, S. Stilgenbauer, and L. Bullinger, Thalidomide exerts distinct molecular antileukemic effects and combined thalidomide/fludarabine therapy is clinically effective in high-risk chronic lymphocytic leukemia, Leukemia 2009; 23:1771–1778.
- [52] V. Fernàndez, O. Salamero, B. Espinet, F. Solé, C. Royo, A. Navarro, F. Camacho, S. Beà, E. Hartmann, V. Amador et al., Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma, Cancer research 2010; 70:1408–1418.
- [53] K. E. Deffenbacher, J. Iqbal, Z. Liu, K. Fu, and W. C. Chan, Recurrent chromosomal alterations in molecularly classified aids-related lymphomas: an integrated analysis of dna copy number and gene expression, JAIDS Journal of Acquired Immune Deficiency Syndromes 2010; 54:18–26.
- [54] C. Steidl, T. Lee, S. P. Shah, P. Farinha, G. Han, T. Nayar, A. Delaney, S. J. Jones, J. Iqbal, D. D. Weisenburger *et al.*, Tumor-associated macrophages and survival in classic hodgkin's lymphoma, New England Journal of Medicine 2010; 362:875–885.
- [55] Y. Wang, X.-Q. Xia, Z. Jia, A. Sawyers, H. Yao, J. Wang-Rodriquez, D. Mercola, and M. McClelland, In silico estimates of tissue components in surgical samples based on expression profiling data, Cancer research 2010; 70:6448–6455.
- [56] M. M. Mortensen, S. Høyer, A.-S. Lynnerup, T. F. Ørntoft, K. D. Sørensen, M. Borre, and L. Dyrskjøt, Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy, Scientific reports 2015; 5.
- [57] J. Iqbal, D. Weisenburger, A. Chowdhury, M. Y. Tsai, G. Srivastava, T. C. Greiner, C. Kucuk, K. Deffenbacher, J. Vose, L. Smith *et al.*, Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic $\gamma\delta$ t-cell lymphoma and is highly sensitive to a novel aurora kinase a inhibitor in vitro, Leukemia 2011; 25:348–358.
- [58] J. Iqbal, D. D. Weisenburger, T. C. Greiner, J. M. Vose, T. McKeithan, C. Kucuk, H. Geng, K. Deffenbacher, L. Smith, K. Dybkaer et al., Molecular signatures to improve diagnosis in peripheral t-cell lymphoma and prognostication in angioimmunoblastic t-cell lymphoma, Blood 2010; 115:1026–1036.
- [59] M.-H. Tan, C. F. Wong, H. L. Tan, X. J. Yang, J. Ditlev, D. Matsuda, S. K. Khoo, J. Sugimura, T. Fujioka, K. A. Furge *et al.*, Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma, BMC cancer 2010; 10:1.
- [60] Y. Herishanu, P. Pérez-Galán, D. Liu, A. Biancotto, S. Pittaluga, B. Vire, F. Gibellini, N. Njuguna, E. Lee, L. Stennett *et al.*, The lymph node microenvironment promotes b-cell receptor signaling, nf-κb activation, and tumor proliferation in chronic lymphocytic leukemia, Blood 2011; 117:563–574.
- [61] E. M. Hartmann, E. Campo, G. Wright, G. Lenz, I. Salaverria, P. Jares, W. Xiao, R. M. Braziel, L. M. Rimsza, W.-C. Chan *et al.*, Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling, Blood 2010; 116:953–961.
- [62] A. J. Watkins, R. A. Hamoudi, N. Zeng, Q. Yan, Y. Huang, H. Liu, J. Zhang, E. Braggio, R. Fonseca, L. de Leval *et al.*, An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma, PLoS ONE 2012; 7.
- [63] T. Herold, V. Jurinovic, K. Metzeler, A.-L. Boulesteix, M. Bergmann, T. Seiler, M. Mulaw, S. Thoene, A. Dufour, Z. Pasalic *et al.*, An eight-gene expression signature for the prediction of survival and time to treatment in chronic lymphocytic leukemia, Leukemia 2011; 25:1639–1645.
- [64] I. Bekhouche, P. Finetti, J. Adelaïde, A. Ferrari, C. Tarpin, E. Charafe-Jauffret, C. Charpin, G. Houvenaeghel, J. Jacquemier, G. Bidaut et al., High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes, PLoS One 2011; 6:e16950.
- [65] T. Herold, V. Jurinovic, M. Mulaw, T. Seiler, A. Dufour, S. Schneider, P. M. Kakadia, M. Feuring-Buske, J. Braess, K. Spiekermann et al., Expression analysis of genes located in the minimally deleted regions of 13q14 and 11q22-23 in chronic lymphocytic leukemiaunexpected expression pattern of the rho gtpase activator arhgap20, Genes, Chromosomes and Cancer 2011; 50:546–558.
- [66] P. P. Piccaluga, G. De Falco, M. Kustagi, A. Gazzola, C. Agostinelli, C. Tripodo, E. Leucci, A. Onnis, A. Astolfi, M. R. Sapienza *et al.*, Gene expression analysis uncovers similarity and differences among burkitt lymphoma subtypes, Blood 2011; 117:3596–3608.
- [67] I. Homminga, R. Pieters, A. W. Langerak, J. J. de Rooi, A. Stubbs, M. Verstegen, M. Vuerhard, J. Buijs-Gladdines, C. Kooi, P. Klous et al., Integrated transcript and genome analyses reveal nkx2-1 and mef2c as potential oncogenes in t cell acute lymphoblastic leukemia, Cancer cell 2011; 19:484–497.
- [68] J. Dürig, U. Dührsen, L. Klein-Hitpass, J. Worm, J. R. Hansen, H. Ørum, and M. Wissenbach, The novel antisense bcl-2 inhibitor spc2996 causes rapid leukemic cell clearance and immune activation in chronic lymphocytic leukemia, Leukemia 2011; 25:638–647.
- [69] A. Trojani, B. Di Camillo, A. Tedeschi, M. Lodola, S. Montesano, F. Ricci, E. Vismara, A. Greco, S. Veronese, A. Orlacchio *et al.*, Gene expression profiling identifies arsd as a new marker of disease progression and the sphingolipid metabolism as a potential novel metabolism in chronic lymphocytic leukemia., Cancer biomarkers: section A of Disease markers 2010; 11:15–28.
- [70] L. Wang, A. K. Shalek, M. Lawrence, R. Ding, J. T. Gaublomme, N. Pochet, P. Stojanov, C. Sougnez, S. A. Shukla, K. E. Stevenson et al., Somatic mutation as a mechanism of wnt/β-catenin pathway activation in cll, Blood 2014; blood–2014.

- [71] K. Aoyagi, K. Minashi, H. Igaki, Y. Tachimori, T. Nishimura, N. Hokamura, A. Ashida, H. Daiko, A. Ochiai, M. Muto *et al.*, Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research, PLoS One 2011; 6:e18196.
- [72] R. Benito, E. Lumbreras, M. Abáigar, N. C. Gutierrez, M. Delgado, C. Robledo, J. L. García, A. E. Rodríguez-Vicente, M. C. Cañizo, and J. M. H. Rivas, Imatinib therapy of chronic myeloid leukemia restores the expression levels of key genes for dna damage and cell-cycle progression, Pharmacogenetics and genomics 2012; 22:381–388.
- [73] M. J. Baptista, A. Muntañola, E. Calpe, P. Abrisqueta, O. Salamero, E. Fernández, C. Codony, E. Giné, S. G. Kalko, M. Crespo *et al.*, Differential gene expression profile associated to apoptosis induced by dexamethasone in cll cells according to ighv/zap-70 status, Clinical Cancer Research 2012; 18:5924–5933.
- [74] S. Monti, B. Chapuy, K. Takeyama, S. J. Rodig, Y. Hao, K. T. Yeda, H. Inguilizian, C. Mermel, T. Currie, A. Dogan *et al.*, Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large b cell lymphoma, Cancer cell 2012; 22:359–372.
- [75] S. Postel-Vinay, A. S. Véron, F. Tirode, G. Pierron, S. Reynaud, H. Kovar, O. Oberlin, E. Lapouble, S. Ballet, C. Lucchesi et al., Common variants near tardbp and egr2 are associated with susceptibility to ewing sarcoma, Nature genetics 2012; 44:323–327.
- [76] A. Navarro, G. Clot, C. Royo, P. Jares, A. Hadzidimitriou, A. Agathangelidis, V. Bikos, N. Darzentas, T. Papadaki, I. Salaverria *et al.*, Molecular subsets of mantle cell lymphoma defined by the ighv mutational status and sox11 expression have distinct biologic and clinical features, Cancer research 2012; 72:5307–5316.
- [77] D. A. Landau, S. L. Carter, P. Stojanov, A. McKenna, K. Stevenson, M. S. Lawrence, C. Sougnez, C. Stewart, A. Sivachenko, L. Wang et al., Evolution and impact of subclonal mutations in chronic lymphocytic leukemia, Cell 2013; 152:714–726.
- [78] M. R. Green, A. J. Gentles, R. V. Nair, J. M. Irish, S. Kihira, C. L. Liu, I. Kela, E. S. Hopmans, J. H. Myklebust, H. Ji et al., Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma, Blood 2013; 121:1604–1611.
- [79] C. Steidl, A. Diepstra, T. Lee, F. C. Chan, P. Farinha, K. Tan, A. Telenius, L. Barclay, S. P. Shah, J. M. Connors *et al.*, Gene expression profiling of microdissected hodgkin reed-sternberg cells correlates with treatment outcome in classical hodgkin lymphoma, Blood 2012; 120:3530–3540.
- [80] S. R. Lambert, H. Witt, V. Hovestadt, M. Zucknick, M. Kool, D. M. Pearson, A. Korshunov, M. Ryzhova, K. Ichimura, N. Jabado *et al.*, Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma, Acta neuropathologica 2013; 126:291–301.
- [81] S. S. Dave, K. Fu, G. W. Wright, L. T. Lam, P. Kluin, E.-J. Boerma, T. C. Greiner, D. D. Weisenburger, A. Rosenwald, G. Ott *et al.*, Molecular diagnosis of burkitt's lymphoma, New England Journal of Medicine 2006; 354:2431–2442.
- [82] K. S. Hoek, N. C. Schlegel, P. Brafford, A. Sucker, S. Ugurel, R. Kumar, B. L. Weber, K. L. Nathanson, D. J. Phillips, M. Herlyn *et al.*, Metastatic potential of melanomas defined by specific gene expression profiles with no braf signature, Pigment Cell Research 2006; 19:290–302.
- [83] A. M. Griesinger, D. K. Birks, A. M. Donson, V. Amani, L. M. Hoffman, A. Waziri, M. Wang, M. H. Handler, and N. K. Foreman, Characterization of distinct immunophenotypes across pediatric brain tumor types, The Journal of Immunology 2013; 191:4880–4888.
- [84] J. Chapman, A. Gentles, V. Sujoy, F. Vega, C. Dumur, T. Blevins, L. Bernal-Mizrachi, M. Mosunjac, A. Pimentel, D. Zhu et al., Gene expression analysis of plasmablastic lymphoma identifies downregulation of b-cell receptor signaling and additional unique transcriptional programs, Leukemia 2015; .
- [85] D. W. Scott, G. W. Wright, P. M. Williams, C.-J. Lih, W. Walsh, E. S. Jaffe, A. Rosenwald, E. Campo, W. C. Chan, J. M. Connors *et al.*, Determining cell-of-origin subtypes of diffuse large b-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue, Blood 2014; 123:1214–1217.
- [86] M. Brodtkorb, O. C. Lingjærde, K. Huse, G. Trøen, M. Hystad, V. I. Hilden, J. H. Myklebust, E. Leich, A. Rosenwald, J. Delabie et al., Whole-genome integrative analysis reveals expression signatures predicting transformation in follicular lymphoma, Blood 2014; 123:1051–1054.
- [87] S. Guo, J. K. Chan, J. Iqbal, T. McKeithan, K. Fu, B. Meng, Y. Pan, W. Cheuk, D. Luo, R. Wang *et al.*, Ezh2 mutations in follicular lymphoma from different ethnic groups and associated gene expression alterations, Clinical Cancer Research 2014; 20:3078–3086.
- [88] Z. Qian, G. Zhu, L. Tang, M. Wang, L. Zhang, J. Fu, C. Huang, S. Fan, Y. Sun, J. Lv *et al.*, Whole genome gene copy number profiling of gastric cancer identifies pak1 and kras gene amplification as therapy targets, Genes, Chromosomes and Cancer 2014; 53:883–894.
- [89] J. Iqbal, G. Wright, C. Wang, A. Rosenwald, R. D. Gascoyne, D. D. Weisenburger, T. C. Greiner, L. Smith, S. Guo, R. A. Wilcox et al., Gene expression signatures delineate biological and prognostic subgroups in peripheral t-cell lymphoma, Blood 2014; 123:2915–2923.
- [90] P. P. Piccaluga, C. Agostinelli, A. Califano, M. Rossi, K. Basso, S. Zupo, P. Went, U. Klein, P. L. Zinzani, M. Baccarani et al., Gene expression analysis of peripheral t cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets, Journal of Clinical Investigation 2007; 117:823.
- [91] J. F. Ferreiro, J. Morscio, D. Dierickx, L. Marcelis, G. Verhoef, P. Vandenberghe, T. Tousseyn, and I. Wlodarska, Post-transplant molecularly defined burkitt lymphomas are frequently myc-negative and characterized by the 11q-gain/loss pattern, haematologica 2015; 100:e275–e279.
- [92] I. Scarfò, E. Pellegrino, E. Mereu, I. Kwee, L. Agnelli, E. Bergaggio, G. Garaffo, N. Vitale, M. Caputo, R. Machiorlatti *et al.*, Identification of a new subclass of alk-negative alcl expressing aberrant levels of erbb4 transcripts, Blood 2016; 127:221–232.
- [93] D. Pyeon, M. A. Newton, P. F. Lambert, J. A. Den Boon, S. Sengupta, C. J. Marsit, C. D. Woodworth, J. P. Connor, T. H. Haugen, E. M. Smith *et al.*, Fundamental differences in cell cycle deregulation in human papillomavirus–positive and human papillomavirus–negative head/neck and cervical cancers, Cancer research 2007; 67:4605–4619.
- [94] D. Sturm, B. A. Orr, U. H. Toprak, V. Hovestadt, D. T. Jones, D. Capper, M. Sill, I. Buchhalter, P. A. Northcott, I. Leis *et al.*, New brain tumor entities emerge from molecular classification of cns-pnets, Cell 2016; 164:1060–1072.

- [95] A. I. Riker, S. A. Enkemann, O. Fodstad, S. Liu, S. Ren, C. Morris, Y. Xi, P. Howell, B. Metge, R. S. Samant *et al.*, The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis, BMC medical genomics 2008; 1:1.
- [96] P. Van Loo, T. Tousseyn, V. Vanhentenrijk, D. Dierickx, A. Malecka, I. V. Bempt, G. Verhoef, J. Delabie, P. Marynen, P. Matthys et al., T cell/histiocyte rich large b-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response, Haematologica 2009; haematol–2009.
- [97] J. M. Koeman, R. C. Russell, M.-H. Tan, D. Petillo, M. Westphal, K. Koelzer, J. L. Metcalf, Z. Zhang, D. Matsuda, K. J. Dykema *et al.*, Somatic pairing of chromosome 19 in renal oncocytoma is associated with deregulated elgn2-mediated oxygen-sensing response, PLoS Genet 2008; 4:e1000176.