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1 A general finite mixture model

To explicate the connection between marginalized zero-inflated count models (e.g., MZIP,
MZINB) and marginalized finite mixture models (e.g., MPois-Pois, MNB-Pois), we introduce
a general class of models encompassing them. An m-component mixture distribution can be
defined as

Pr(Yi = yi|πi, θi) =
m
∑

j=1

πijfj(yi|θij)

where, unlike in section 3 of the main article, πi = (πi1, πi2..., πim)
′ is a vector of mixing

probabilities that may vary across observations with 0 ≤ πij ≤ 1 and
∑m

j=1 πij = 1. Consider
the special case of m = 2 and a Poisson-Poisson mixture with probability mass function

f(yi|πi, µ1i, µ2i) = πifP1(yi|µ1i) + (1− πi)fP2(yi|µ2i),

where πi is a mixing probability, and fP1 and fP2 are Poisson mass functions with corre-
sponding mean parameters µ1i and µ2i. The model in its general form is:

log(νi) = x′

iβ (1)

log(µ1i) = z′iξ

logit(πi) = w′

iγ

where xi, zi, and wi are possibly different vectors of covariates, β, ξ, and γ are vectors
of regression coefficients and νi = πiµ1i + (1 − πi)µ2i. In many applications, likelihood
estimation may be intractable and Bayesian methods would provide a feasible estimation
approach. The purpose of this discussion is to relate model (1) to the models investigated
in the main article. In particular, when wi = 1 model (1) reduces to the MPP model given
in equation (7), or by extension to the MNB-Pois in the case of the NB-Poisson mixture.
Conversely, when z′iξ → −∞ for all i, then µ1i → 0 and model (1) essentially reduces to the
MZIP model (or MZINB in the case of the NB base distribution). This is because a Poisson
distribution with mean µ1i = 0 is the same as a degenerate distribution that only takes 0
values.

2 Simulations: MZIP and MZINB generated counts

Simulation studies were performed to examine the properties of marginalized two-part count
regression models for counts generated from MZIP and MZINB distributions. To assess
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the performances of the marginalized count regression models (MZIP, MZINB, MPois-Pois,
MNB-Pois) in fitting zero-inflated data, we carried out simulations by generating counts
from MZINB and MZIP distributions. For these simulations and those reported in the
main article, starting values for MPois-Pois and MNB-Pois were determined by using the
EM-algorithm described in the section to follow.

To evaluate the performances of MPois-Pois and MNB-Pois models for zero-inflated
counts, we generated data from MZINB and MZIP models and fitted MZIP, MZINB as
well as the proposed marginalized models to the data. Counts were generated from the
MZINB model using (2), where νi is the marginal mean for subject i, πi is the excess
zero probability, α is the dispersion parameter, x1i ∼ Poisson(2)/3 , x2i ∼ exp(1), x3i ∼
Benoulli(0.4), β0 = 1.5, β1 = 0.5, β2 = −0.5, β3 = 0.5, γ0 = −2, γ1 = −1, γ2 = 1 , γ3 = −1
and τ = 0.

log(νi) = β0 + β1x1i + β2x2i + β3x3i (2)

logit(πi) = γ0 + γ1x1i + γ2x2i + γ3x3i

log(α) = −τ

Similarly, counts were generated from the MZIP model in equation (3) using the same
covariates as in equation (2) and with β0 = 2, β1 = −0.5, β2 = −0.5, β3 = 0.5, γ0 = −1,
γ1 = −0.5, γ2 = 0.5 and γ3 = −0.5.

log(νi) = β0 + β1x1i + β2x2i + β3x3i

logit(πi) = γ0 + γ1x1i + γ2x2i + γ3x3i

For each simulated data, MPois-Pois, MNB-Pois, MZIP and MZINB models were fitted with
10000 replications.

When the true model is MZIP, MZIP converged 99.8% of the time whereas MZINB
converged from almost 90% of the time; on the other hand, MPois-Pois and MNB-Pois
models suffer from poor convergence rates (Table 1). Tables 2 shows that estimates of β1,
β2 and β3 from MPois-Pois and MNB-Pois models have high biases compared to MZIP and
MZINB. In addition, MPois-Pois and MNB-Pois models inflate the Type I error rate for β1

(Table 3) and underestimate coverages of 95 % confidence intervals (Table 4) when fitted to
data generated from the MZIP model.

With respect to the poor convergence results reported in Table 1, we note that the
true MZIP model contained 8 parameters, whereas the MZINB, MPois-Pois and MNB-Pois
models had 9, 9 and 10 parameters, respectively. The especially poor convergence rates for
MNB-Pois is likely related to the difficulty of estimating two additional parameters from data
that frequently contain insufficient information for doing so. However, MPois-Pois also had
much poorer convergence rates when compared to MZINB, even though they had the same
number of parameters. Included among the ”non-converged” results are results with non-
positive-definite Hessian matrices but that had otherwise converged to produce parameter
estimates, while being unable to estimate some of the standard errors.
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While the MZIP and the MZINB models have high convergence rates when the true
model is MZINB, the rates range from 84.8% - 97.0% for the MPois-Pois and from 79.7%
- 96.0% for the MNB-Pois models (Table 5). Table 6 shows that all the four marginalized
models generally provide estimates with low bias for β1, β2 and β3 when fitted to data
generated from MZINB, and estimates from the MNB-Pois model have lower bias compared
to those from MPois-Pois and MZIP models. The estimated Type I error rates for β1 are
close to the nominal value when the true model is fitted, but the MNB-Pois model also
performs well when sample size increases (Table 7). On the other hand, the estimated Type
I error rates from MPois-Pois and MZIP models are highly inflated. Table 8 shows that
coverages of 95% confidence intervals for β1, β2 and β3 are below 70% when MPois-Pois and
MZIP models are fitted. For larger sample sizes, the MNB-Pois model provides coverages
close to 95% for β1 and β3, but estimates for β2 corresponding to the skewed (exponential)
covariate are substantially lower than 95% for all sample sizes.

3 Finding Starting Values of Parameters

With carefully chosen starting parameter values, regression coefficients in MPois-Pois and
MNB-Pois models can be estimated by the use of quasi-Newton optimization. Starting values
for parameters in the models for π, µ1i, and αmay be obtained from standard two-component
Poisson-Poisson and negative binomial-Poisson models.

Two alternative approaches are suggested for finding starting values. Following Ra-
maswamy et al. (1994) and Leisch (2004), an EM algorithm is described immediately below
to find starting values for parameters ρ, ξ and τ in MNB-Pois models. A similar approach
can be applied for MPois-Pois models. The EM approach was used in the simulations. An
approach for finding starting values based on the use of SAS software is described further
below.

3.1 Finding Starting Values with the EM-Algorithm

Consider a random variable Yi that takes a value yi according to the standard two-component
NB-Pois mixture model in equation (3):

f(yi|πi, µ1i, µ2i, α) = πfP (yi|µ1i) + (1− π)fNB(yi|µ2i, α). (3)

Latent class regression coefficients can be specified for parameters π, µ1i, µ2i and α as

log(µ1i) = z′iγ (4)

log(µ2i) = x′

iζ

π = π

log(α) = −τ,

where ζ is a vector of parameters and all the other parameters and variables are as described
for the MPois-Pois and MNB-Pois models in equations 7 and 8 of the main article. In line
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with standard mixture models, the logit link is not used to model π in equation (4); once π
is estimated, a starting value for ρ in the marginal mean model can be obtained by setting
ρ = logit(π).

As a complete data likelihood function is needed to implement EM algorithm, we
define an indicator variable Ui corresponding to the ith subject as

Ui =

{

1, if subject i belongs to subpopulation 1
0, if subject i belongs to subpopulation 2

Thus, Ui has a Bernoulli distribution with parameter π.

Pr(Ui = ui|π) = πui(1− π)1−ui, ui = 0, 1.

The random variable (Yi, Ui) contains an observed outcome Yi and a missing variable
Ui, and the contribution of (Yi, Ui) to the complete data likelihood is given by,

Lic(π,γ, ζ, τ |ui, yi,xi, zi) = Pr(Yi = yi|γ, ζ, τ,xi, zi;Ui = ui)Pr(Ui = ui|π) (5)

=
[

πfP (yi|γ, zi)
]ui

[

(1− π)fNB(yi|ζ, τ,xi)
]1−ui

The likelihood function Lc from n independent counts is the product of each likelihood
in equation (5). That is,

Lc(π,γ, ζ, τ |u,y,x, z) =
n
∏

i=0

[

πfP (yi|γ, zi)
]ui

[

(1− π)fNB(yi|ζ, τ,xi)
]1−ui

.

The corresponding log-likelihood is given by

`c(π,γ, ζ, τ |u,y,x, z) =
n
∑

i=0

[ui logit(π) + log(1− π)] +
n
∑

i=0

ui log(fP (yi|γ, zi))

+
n
∑

i=0

[(1− ui)log(fNB(yi|ζ, τ,xi))]

Given initial parameter values θ(0) = (π(0),γ(0), ζ(0), τ (0)), the E step of EM computes the
expected value of `c conditional on the observed variables and θ(0).

E(`c(π,γ, ζ, τ |u,y,x, z)|θ
(0),y,x, z)) =

n
∑

i=0

[E(ui|θ
(0), yi,xi, zi) logit(π) + log(1− π)]

+
n
∑

i=0

E(ui|θ
(0), yi,xi, zi) log(fP (yi|γ, zi))

+
n
∑

i=0

[log(fNB(yi|ζ, τ,xi))(1−E(ui|θ
(0), yi,xi, zi))]
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It can be shown that

E(ui|θ
(0), yi,x, z) =

π(0)fP (yi|γ, zi)

π(0)fP (yi|γ, zi) + (1− π(0))fNB(yi|ζ, τ,xi)

≡ P
(0)
i

Thus, the M step maximizes,

E(`c(π,β, ζ, τ |u,y,x, z)|θ
(0),y,x, z)) =

n
∑

i=0

[P
(0)
i logit(π) (6)

+ log(1− π)] +
n
∑

i=0

P
(0)
i log(fP (yi|γ, zi))

+
n
∑

i=0

[log(fNB(yi|ζ, τ,xi))(1− P
(0)
i )]

= `π + `γ + `(ζ,τ)

To obtain the next estimates in the M step, the three components `π, `γ and `(ζ,τ)
of the expected log-likelihood in equation (6), can be optimized separately. Maximizing `π
with respect to π gives

π(1) =
n
∑

i=0

P
(0)
i

n
.

The remaining two components of the expected log-likelihood (i.e., `γ and `(ζ,τ))
correspond to weighted log-likelihoods of generalized linear models and estimation can be
performed separately to obtain the next set of parameters γ(1), ζ(1) and τ (1). Utilizing the
parameters (π(1),β(1),ζ(1), τ (1)) estimated in the first step, EM again computes and optimizes
the expected log-likelihood and continues iterations between the two steps until convergence.
The NB-Poisson mixture model estimates of π,γ and τ at convergence are then employed as
starting values for parameters ρ = logit(π), ξ and τ respectively, in the MNB-Pois model.

3.2 Finding Starting Values using SAS software

If the analyst is using SAS software, PROCs Genmod and FMM may be used to obtain
starting values in use of Proc NLMIXED for fitting MPois-Pois and MNB-Pois models. SAS
Proc FMM fits standard finite mixture models whereas both Proc FMM and Proc Genmod
can be used to fit traditional ZIP and ZINB models. The following table summarizes the
source of starting values that we suggest for fitting marginalized count models. These are not
the only choices and some trial and error may be necessary. For example, the previous section
uses the standard NB-Poisson mixture model to obtain starting values for ρ = logit(π), ξ
and τ.

For MPois-Pois and MNB-Pois models, recall that equation (7)

µ2i =
νi − πµ1i

1− π
. (7)
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Model Source of Starting Parameter Values

Model β ξ and ρ γ τ
MZIP Neg. Bin. na ZIP na
MZINB Neg. Bin. na ZINB ZINB
MPois-Pois MZINB Pois-Pois na na
MNB-Pois MPois-Pois NB-Pois na NB-Pois
ρ = logit(π) is the mixing parameter; na= not applicable

is substituted into the standard finite mixture likelihood. Computational errors resulting in
non-convergence may result if the computed µ2i is negative. To lessen the chances of this
occurrence, we suggest use of starting values of π less than 0.5, which will be the case for
one of the model parts from the standard Pois-Pois model. Additionally, the starting values
for ξ are chosen from the corresponding model part from Pois-Pois.
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Appendix. SAS Code

/* file: Lanark-Allmodels.sas

paper: Marginalized Mixture Models for Count Data from Multiple Source Populations

authors: Habtamu K. Benecha, Brian Neelon, Kimon Divaris and John S. Preisser

what: analysis of caries clinical trial for data described in Stephen et al. 1994

Fit marginalized mean models reported in Table 7 of article */

options ps=54 ls=80;

libname dat ’c:’;

data all;

set dat.LanarkTwoYear;

if dmfsinc2b = . then delete /* DMFS increment at two years */;

run;
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* Poisson regression;

proc genmod data=all;

title ’Poisson Regression: two year DMFS increment’;

model dmfsinc2b = bc calc naf naftmp/ d=poisson;

run;

* Neg. Bin. Regression;

proc genmod data=all;

title ’Negative Binomial Regression: two year DMFS increment’;

model dmfsinc2b = bc calc naf naftmp/ link=log dist=negbin;

run;

* Traditional ZIP model;

proc genmod;

title "traditional ZIP model from GENMOD";

model dmfsinc2b = bc calc naf naftmp/ link=log dist=ZIP;

zeromodel bc calc naf naftmp;

run;

* Traditional ZINB model;

proc genmod;

title "traditional ZINB model from GENMOD";

model dmfsinc2b = bc calc naf naftmp/ link=log dist=ZINB;

zeromodel bc calc naf naftmp;

run;

* marginalized ZIP model;

title "marginalized ZIP model from NLMIXED";

proc nlmixed data= all gconv=1E-12;

parms a0=-1.15 a1=-1.26 a2=0.06 a3=0.05 a4=-0.03 /* use ZIP infl model estimates */

b0=1.22 b1=0.76 b2=-0.20 b3=-0.07 b4=-0.06; /* use Poisson regr estimates */

linpinfl = a0 + a1*bc + a2*calc + a3*naf + a4*naftmp;

infprob = 1/(1+exp(-linpinfl)); /* inflation probability for excess zeros */

nu = exp(b0 + b1*bc + b2*calc + b3*naf + b4*naftmp); /* nu is the marginal mean */

lambda = nu/(1-infprob); /* transform from marg. mean to susceptible class mean */

if dmfsinc2b=0 then prob = infprob + (1-infprob)*exp(-lambda);

if dmfsinc2b=0 then loglike = log(prob);

else loglike = log((1-infprob)) + dmfsinc2b*log(lambda) - lambda - lgamma(dmfsinc2b+1);

model dmfsinc2b ~ general(loglike);

run;

7



* marginalized ZiNB;

title "marginalized ZINB model from NLMIXED";

proc nlmixed data= all gconv=1E-12;

parms a0=-2.07 a1=-2.45 a2=-0.24 a3=0.24 a4=0.21 phi=0.63 /* use ZINB infl est */

b0= 1.20 b1= 0.76 b2=-0.19 b3=-0.06 b4=-0.03; /* use NB regr estimates */

linpinfl = a0 + a1*bc + a2*calc + a3*naf + a4*naftmp;

psi = 1/(1+exp(-linpinfl));

nu = exp(b0 + b1*bc + b2*calc + b3*naf + b4*naftmp);

mu = nu/(1-psi);

alpha = 1/phi;

theta = 1/(1+(mu/alpha));

if dmfsinc2b=0 then loglike =log(psi + (1-psi)*(theta**alpha));

else loglike = log(1-psi) + lgamma(dmfsinc2b+alpha) - lgamma(alpha)

+ dmfsinc2b*log(1-theta)+alpha*log(theta) - lgamma(dmfsinc2b+1);

model dmfsinc2b ~ general(loglike);

run;

*** Standard Pois-Pois regression model fitted using Proc FMM *******;

proc fmm data=all /* fitdetails itdetails */ gconv=1E-10;

title "Standard Poisson-Poisson mixture model";

model dmfsinc2b = bc calc naf naftmp/dist=Poisson;

model + bc calc naf naftmp/dist=Poisson;

run;

*********************************************************;

********** MPois-Pois ******;

*********************************************************;

**** Use MZINB betas as starting vals for the b’s *****;

**** and Standard Pois-Pois latent vals for the z’s *****;

*********************************************************;

* use pi=0.32, or rho = logit(0.32)=-0.75;

* use gconv option to avoid gradient greater than 1e-3;

proc nlmixed data=all gconv=1E-12;

title ’Lanarkshire Data: marginalized Poisson-Poisson regression model’;

title2 ’Start vals are MZINB for betas and Pois-Pois for zetas’;

parms b0=1.21 b1=0.76 b2=-0.19 b3=-0.06 b4=-0.03

z0=2.13 z1=0.51 z2=-0.24 z3=-0.15 z4=-0.08 rho=-0.75;

nu =exp(b0 + b1*bc + b2*calc + b3*naf + b4*naftmp);

mu1=exp(z0 + z1*bc + z2*calc + z3*naf + z4*naftmp);

pi = 1.0/(1 + exp(-rho));

mu2 = (nu - pi*mu1)/(1-pi);

part1 = pi*exp(-mu1)*(mu1**dmfsinc2b);
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part2 = (1-pi)*exp(-mu2)*(mu2**dmfsinc2b);

like = (part1 + part2)/gamma(dmfsinc2b+1);

loglik = log(like);

model dmfsinc2b ~ general(loglik);

estimate ’pi mixing’ pi;

run;

*** Standard NB-Pois regression model fitted using Proc FMM ****;

proc fmm data=all gconv=1E-12;

title "Standard NB-Poisson mixture model";

model dmfsinc2b = bc calc naf naftmp /dist=negbin;

model + bc calc naf naftmp/dist=Poisson;

run;

************************************************************************************;

**** Marginalized NB-Poisson mixture model ***;

************************************************************************************;

* use Mpois-Pois starting vals for betas, NB-Pois vals for latent model and tau ***;

************************************************************************************;

proc nlmixed data=all gconv=1E-12;

title "Lanarkshire Data: Marginalized NB-Poisson regression model";

title2 ’Mpois-Pois starting vals for betas’;

title3 "NB-Pois starting vals for zetas, rho (mixing parm) and tau (dispersion)";

parms b0=1.30 b1=0.66 b2=-0.26 b3=-0.14 b4=-0.06 /* tau=log(phi), phi=0.71 */

z0=-1.31 z1=3.5 z2=-0.09 z3=-0.10 z4=-0.44 rho=-1.85 tau =-0.33;

nu =exp(b0 + b1*bc + b2*calc + b3*naf + b4*naftmp); /* marginal mean */

mu1=exp(z0 + z1*bc + z2*calc + z3*naf + z4*naftmp); /* Poi */

pi = 1/(1 + exp(-rho));

mu2 = (nu - pi*mu1)/(1-pi); /* NB mean not being modeled */

alpha = exp(-tau);

theta = 1/(1+(mu2/alpha));

lnpart1 = log(pi) -mu1 + dmfsinc2b*log(mu1); /* Poisson part */

lnpart2 = log(1-pi) + lgamma(dmfsinc2b+alpha) - lgamma(alpha) +

dmfsinc2b*log(1-theta) + alpha*log(theta); /* NB part */

like = (exp(lnpart1) + exp(lnpart2))/gamma(dmfsinc2b+1);

loglike = log(like);

model dmfsinc2b ~ general(loglike);

estimate ’mixing probability’ pi;

estimate ’scale parameter, phi’ 1/alpha;

run;
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Table 1: Percentages of converged marginalized models fitted to data generated from the
MZIP model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 38.6 17.6 99.8 88.2
200 38.9 17.4 99.8 90.0
500 42.0 22.6 99.8 86.8
1000 46.4 23.9 99.8 88.6

Table 2: Percent relative median biases of estimates of β1, β2 and β3 from marginalized
mixture models fitted to data generated from the MZIP model with 10,000 replications.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 15.36 -34.29 0.05 0.08

100 β2 -18.25 7.39 0.18 0.05
β3 -20.26 3.58 0.13 0.08

β1 -15.30 -19.20 -0.08 -0.10
200 β2 -21.40 0.02 0.04 0.0

β3 -21.34 -1.24 0.56 0.44

β1 17.61 -10.25 0.17 0.25
500 β2 -22.93 -4.39 -0.04 -0.08

β3 -21.55 -4.73 0.02 0.06

β1 18.12 -4.53 0.07 0.09
1000 β2 -23.13 -4.55 0.14 0.18

β3 -22.72 -6.30 0.02 0.01
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Table 3: Type I error for the estimate of β1 from marginalized models fitted to data generated
from the MZIP model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 0.192 0.396 0.054 0.052
200 0.316 0.318 0.051 0.049
500 0.710 0.184 0.050 0.049
1000 0.948 0.199 0.051 0.050

Table 4: Coverages of 95% confidence intervals of estimates of β1, β2 and β3 from marginalized
models fitted to data generated from the MZIP model with 10,000 replications.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 88.3 64.6 94.6 94.9

100 β2 73.6 70.3 94.4 94.6
β3 81.6 76.9 95.1 95.3

β1 84.3 68.5 95.0 95.2
200 β2 54.1 74.7 95.0 95.2

β3 67.9 78.9 95.0 95.2

β1 80.9 72.4 95.1 95.2
500 β2 18.7 73.8 95.1 95.2

β3 37.1 76.6 95.3 95.4

β1 89.3 77.3 94.9 95.1
1000 β2 3.5 69.0 95.1 95.2

β3 12.2 76.5 95.0 95.1
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Table 5: Percentages of converged marginalized models fitted to data generated from the
MZINB model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 84.8 79.7 99.7 96.5
200 84.0 90.1 99.7 98.7
500 87.9 94.8 99.7 99.6
1000 97.0 96.0 99.7 99.7

Table 6: Percent relative median biases of estimates of β1, β2 and β3 from marginalized
mixture models fitted to data generated from the MZINB model with 10,000 replications.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 -9.54 -1.42 -2.88 -3.08

100 β2 0.44 9.13 7.85 -0.59
β3 3.03 -0.08 3.68 -0.56

β1 -4.49 -0.38 -1.61 -0.50
200 β2 -4.85 4.33 4.82 -0.75

β3 0.22 -0.04 2.22 -0.76

β1 -3.51 -0.33 -0.28 -0.36
500 β2 -7.22 1.18 2.90 -0.37

β3 -2.67 0.16 1.10 -0.17

β1 -2.87 -0.15 0.28 -0.13
1000 β2 -7.78 0.38 3.01 0.07

β3 -2.05 0.02 1.50 0.15
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Table 7: Type I error for the estimate of β1 from marginalized models fitted to data generated
from the MZINB model with 10,000 replications.

Sample Size MPois-Pois MNB-Pois MZIP MZINB
100 0.397 0.116 0.312 0.064
200 0.380 0.074 0.313 0.054
500 0.349 0.056 0.313 0.052
1000 0.345 0.053 0.326 0.050

Table 8: Coverages of 95% confidence intervals of estimates of β1, β2 and β3 from marginalized
models fitted to data generated from the MZINB model with 10,000 replications.

Sample Size Parameter MPois-Pois MNB-Pois MZIP MZINB
β1 53.4 89.0 58.1 93.6

100 β2 60.7 84.1 70.9 92.8
β3 62.5 91.7 66.0 93.9

β1 54.4 92.5 57.6 94.4
200 β2 61.9 85.2 69.4 93.5

β3 61.6 94.0 65.5 94.7

β1 54.1 94.0 56.9 94.7
500 β2 60.6 85.3 69.1 95.0

β3 61.2 95.1 63.8 95.1

β1 56.3 94.6 55.9 95.1
1000 β2 57.0 83.6 68.4 94.9

β3 62.3 95.1 64.7 94.9
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