SUPPLEMENTARY FIGURES AND TABLES

Four genes essential for recombination define GInts, a new type of mobile genomic island widespread in bacteria

Leire Bardaji,¹ Myriam Echeverría,¹ Pablo Rodríguez-Palenzuela,² Pedro M. Martínez-García,^{2,3} Jesús Murillo^{1*}

- ¹ Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, 31006 Pamplona, Spain
- ² Centro de Biotecnología y Genómica de Plantas, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, E-28223 Pozuelo de Alarcón, Madrid, Spain
- ³ Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, 29010 Málaga, Spain

*For correspondence: Jesús Murillo, E-mail: jesus.murillo@unavarra.es

Supplementary Figure S1. Conservation of key amino acid residues in GinA, GinB and GinC proteins and their mutated sequences.

Supplementary Figure S2. Glnts are exchanged horizontally among pseudomonads.

Supplementary Figure S3. GInts acquire the cargo DNA mainly from closely related bacteria.

Supplementary Table S1. Characteristics of representative GInts highly related to that from *Ps* pv. phaseolicola 1448A (Pht-PAI).

Supplementary Table S2. Circularisation of GInts and sequence of the resulting *attB* and *attI* sites in selected strains.

Supplementary Table S3. Examples of GInts found in different taxonomical groups of bacteria.

Supplementary Table S4. Examples of significant clusters of genes found in the cargo DNA of diverse GInts.

Supplementary Table S5. Bacterial strains and plasmids used in this study.

Supplementary Table S6. Primers used in this study.

GinA GinA'	181 240 RTRLLEIMHPDSAENPFSDEAIRLRNYIILLLGIDMGLRRSEMLLIKTSDIHWHSRQLAV RTRLLEIMHPDSAENPFSDEAIRLRNYIILLLGIDMGLRRSEMLLIKTSDIHWHSRQLAV	
GinA GinA'	241 300 VNLEDESLDPRTMAPQFKTHERMLVMTDDLYDAITEYESKYRHRKPRSGTSQARRHPFLL VNLEDESLDPRTMAPQFKTHERMLVMTDDLYDAITEYESKYRHRKPRSGTSQARRHPFLL	
GinA GinA'	301 360 VAHKRNEGGPLTIKAVDGVLSRVREIAPELAHVHTHILRHDAVYTML-ESMREELAALTP VAHKRNEGGPLTIKAVDGVLSRVREIAPELAHVHTHILRHDAVSTRCWKACVRNWQRLHR	
GinA GinA'	420 EDRTTQIQKTLTWMFGWSPDSNMPGHYGAKFWKEEADKAIQKR-AKRFTAIRQKAGTTQG RIAPLKFKRHSHGCSAGVPTRTCPATTARNSGRKRQTRRYRKGPSDSRPSVRRPARHKEV	

GinB GinB'	181 240 IHEQFCHGHLGFEQYLYLRMLMIYGQRGTQVRMMVFGDFTKGDQGCKVRFHWAKQNDDEA IHEQFCHGHLGFEQYLYLRMLMIYGQRGTQVRMMVFGDFTKGDQGCKVRFHWAKQNDDEA
GinB GinB'	241 300 GWRAKAETFSLDEGLYNTVQAYKAMVLAQLWQTYPDGADWNAAIENVPVFRKKLDGETGA GWRAKAETFSLDEGLYNTVQAYKAMVLAQLWQTYPDGADWNAAIENVPVFRKKLDGETGG
GinB GinB'	301 360 RDRVNPPVLLDTPLQKALEDAPQPTFHIGSSTIKRWLECIERMKGFPVSPRTHQPLKVTR IG*
GinB	361 420 GHRFRHTLGTDLSNAGLDEWTMARALMHKNTQAVRKYRAVSPELLALIDAKMSDHLALVV

61 120 C ALGSTKAAPKAMQAPFTEFAKAILVYRRVYLQKKAMTDWLRAMIALEFALFELTGTRDVT C' ALGSTKAAPKAMOAPETEFAKATI VYRRVYLOKKAMTDWLRAMTALELTRPVRVDRHAGC	GinC GinC'
121 180 C RVSAAVCNKACEHLNRHWTKGNTAYQHGLALEALITLMRAKKLLKSDFRWTSPLTLMPLG C' DAGVRRCL*	GinC GinC'
481 C NLKKTSLFARYGYPGVKVNTHAFRHELNTRMHQAGLSQLLIDAFSGRTTRGSVYNHETIE	GinC

Supplementary Figure S1. Conservation of key amino acid residues in GinA, GinB and GinC proteins and their mutated sequences. Pairwise alignment of GinA, GinB and GinC proteins from *P. stutzeri* DSM4166 with the deduced products of the corresponding mutant genes (from strains UPN821, UPN823, and UPN825), indicated with an apostrophe; for clarity, only part of the alignments are shown. Amino acid residues before the out-of-frame mutations appear in red. Residues boxed in grey correspond to those conserved in at least 90 % of the homologues from the Psi-Blast analysis carried out by Phyre2 (1000 sequences were aligned). Numbers indicate amino acid positions. An asterisk indicate the end of the protein.

Supplementary Figure S2. Glnts are exchanged horizontally among pseudomonads. Phylogenetic analyses were done with selected GInts whose gin operons showed an overall nucleotide identity higher than 70 % to that from the Pht-PAI of P. syringae pv. phaseolicola 1448A (see Table S1). Maximum likelihood trees were constructed with concatenated partial or complete sequences of rpoD, gyrB, acnB, gap1 and gltA (a) and the complete nucleotide sequence of ginA (b), based on the General Time Reversible model. Trees constructed separately using the sequences from ginB, ginC, and ginD showed a topology similar to that of ginA and are not shown for simplicity. Trees are drawn to scale, with branch lengths measured in the number of substitutions per site. Numbers in branches indicate per cent bootstrap values with 500 replicates. Abbreviations: Mal, Marinobacter algicola; Pan, Pseudomonas syringae pv. actinidiae; Pca, P. cannabina pv. alisalensis; Pde, P. denitrificans; Pfr, P. fragi, Pph, P. syringae pv. phaseolicola; Ppi, P. syringae pv. pisi; Pst, P. stutzeri; Pto, P. syringae pv. tomato.

Supplementary Figure S3. Glnts acquire the cargo DNA mainly from closely related bacteria. The CDSs from the cargo DNA of Glnts from strains of *Pseudomonas* (Table S1) was analysed using blastp. Bars are proportional to the number of proteins whose closest homologue was found in other *Pseudomonas* species (dark grey) or in bacteria from other genera (light grey), with total number of proteins for each category shown within or above bars. Abbreviations: Pca, *Pseudomonas cannabina* pv. alisalensis; Pde, *P. denitrificans*; Pfr, *P. fragi*; Pmo, *P. moraviensis*; Pph, *P. syringae* pv. phaseolicola; Pst, *P. stutzeri*; Pto, *P. syringae* pv. tomato. P sp., *Pseudomonas* sp. Chol1.

Species	Strain	Acc. no.	<i>gin</i> operon	Cargo DNA	Size (kb)	% id. ^ь	Status ^c
Pseudomonas syringa	e						
pv. phaseolicolad	1448A	CP000058	PSPPH_4294/ PSPPH_4297	PSPPH_4298/ PSPPH_4324	38.0	-	complete
	CYL314	LT671994	CYL314_016/ CYL314_019	CYL314_020/ CYL314_028	15.6	70.7	complete
pv. tomato	DC3000	AE016853	PSPTO_4603/ PSPTO_4606	PSPTO_4607/ PSPTO_4630	34.8	86.7	Complete
pv. pisi	1704B	GL384900	PSYPI_04159/ PSYPI_04144	PSYPI_04139/ unk ^e	unk	97.5	Incomplete
Pseudomonas sp.							
	Chol1	AMSL01000014	C211_02301/ C211_02316	C211_02321/ C211_02486	43.5	86.0	complete
<i>P. cannabina</i> pv. alisal	ensis						
	ES4326	NZ_GL385049	PMA4326_RS23690/ PMA4326_RS23705	PMA4326_RS23710/ PMA4326_RS23775	≥18.9	88.0	incomplete
P. chloritidismutans							
	AW-1	AOFQ01000065	F753_21675/ F753_21690	F753_21695/ F753_21815	≥31.8	86.9	incomplete
P. denitrificans		0.000					
	ATCC 13867	CP004143	H681_04555 /	H681_04535 /	47.8	88.2	complete
P frani			H061_04340	H001_04370			
i . nagi	B25	NZ_JH604622	O5A_RS0101405/ O5A_RS0101390	O5A_RS0101385/ O5A_RS0101225	≥34.9	86.0	incomplete
	NRRL B-727	LT629783	SAMN05216594_3852/ SAMN05216594_3849	SAMN05216594_3848/ SAMN05216594_3815	35.2	86.1	complete
P. moraviensis							
	R28-S	CM002330	PMO01_23370/ PMO01_23385	PMO01_23390/ PMO01_23530	35.6	63.7	complete
P. stutzeri			_	—			
	DSM 4166	CP002622	PSTAA_0885/ PSTAA_0887	PSTAA_0888/ PSTAA_0900	23.8	87.0	complete

Supplementary Table S1. Characteristics of representative GInts highly related to that from *Ps* pv. phaseolicola 1448A (Pht-PAI).^a

	RCH2	CP003071	Psest_3432/ Psest_3429	Psest_3428/ Psest_3405	29.2	86.0	complete
Hahella ganghwensis	DSM 17046	AQXX01000141	F566_27925/ F566_27910	F566_27905/ F566_27860	17.3	63.9	complete
Marinobacter algicola	DG893	ABCP01000041	MDG893_13179/ MDG893_13164	MDG893_13159/ MDG893_13054	≥27	79.0	incomplete
Teredinibacter turnerea	77902	NZ_KB900633	YUK_04735/ YUK_04750	YUK_04755/ YUK_04930	52.6	51.7	complete

^a We include here GInts whose entire *gin* operon shows nucleotide identities higher than 50 % with that of *P. syringae* pv. phaseolicola 1448A. The *gin* operon from strain CYL314 contains a large internal deletion affecting *ginB* and *ginC* and resulting in a lower identity score.

^b Percentage of nucleotide identity between the *gin* operon from this element and that from *P. syringae* pv. phaseolicola 1448A in pairwise global comparisons using the Needle tool from EMBOSS (Needleman-Wunsch algorithm; http://www.ebi.ac.uk/Tools/emboss/).

^c Complete indicates that we were able to identify a continuous assembly including the 3' end of the GInt, which was generally detected by genome comparisons with closely related bacteria. Incomplete GInts are the result of incomplete assemblies or difficulties in unambiguously identifying the poorly conserved 3' end.

^d The Pht-PAI is present as a nearly identical copy in all strains of *P. syringae* pv. phaseolicola and *P. syringae* pv. actinidiae that produce phaseolotoxin. The genomes of these strains are not mentioned here for clarity.

^e unk, unknown

Strains	attl / attBª	attL and attR of GInts ^b	Reconstructed attl ^c	Reconstructed attB ^c
<i>Pseudomonas syringae</i> pv. phaseolicola 1448A	YES / NO	L tgtagaCGT <mark>A-AGAGCCtgt</mark> R <mark>gatatcCGT</mark> ATTGAGCCatg	<mark>gat</mark> agaCGT <mark>AAGAGCCtgt</mark>	
pv. pisi 1704B	YES / YES	L tgtagaCGT <mark>A-AGAGCCtgt</mark> R <mark>gatatcCGT</mark> ATTGAGCCatg	<mark>gat</mark> agaCGT <mark>AAGAGCCtgt</mark>	tgt <mark>atcCGT</mark> ATTGAGCCatg or tgt <mark>CCGT</mark> ATTGAGCCatg or tgtATTGAGCCatg
pv. tomato DC3000	YES / YES	L tgtagaCGT <mark>A-AGAGCCtgt</mark> R <mark>gataccGAT</mark> ATTGAGCCatg	<mark>gat</mark> agaCGT <mark>AAGAGCCtgt</mark>	tgtagaCGTATTGAGCCatg
<i>P. cannabina</i> pv. alisalensis ES4326	YES / YES	L tgtagaCGT <mark>A-AGAGCCtgt</mark> R <mark>gatggcTCT</mark> ATTGAGCCatg	<mark>gat</mark> agaCGT <mark>AAGAGCCtgt</mark>	tgt <mark>ggcTCT</mark> ATTGAGCCatg
P. fragi B25	YES / NO	L tgaaaaCGT <mark>A-AGAGCCtgt</mark> R <mark>gataagCGT</mark> ATTGAGCCatg	<mark>gat</mark> aaaCGT <mark>AAGAGCCtgt</mark>	
P. stutzeri DSM4166	YES / NO	L tgtagaCGT <mark>A-AGAGCCggt</mark> R <mark>gattgaTGA</mark> ATTGAGCCatg	<mark>gat</mark> agaCGT <mark>AAGAGCCggt</mark> or gattgaTGAAAGAGCCggt	
P. putida KT2440::pGInt0	YES / YES	L tgtagaCGT <mark>A-AGAGCCggt</mark> R <mark>gattgaTGA</mark> ATTGAGCCaaa	<mark>gatagaCGTAAGAGCCggt</mark> or gattgaTGAAAGAGCCggt	tgtagaCGTATTGAGCCaaa

Supplementary Table S2. Circularisation of GInts and sequence of the resulting *attB* and *attI* sites in selected strains.

^a YES and NO indicate whether or not the circular intermediate (*attl*) and the scar (*attB*) were detected by PCR.

^b L and R indicate the putative left and right borders of the GInt, respectively. Dashes indicate gaps introduced to maximize the alignment

^c Sequences shaded in orange and grey originate from the GInt and the bacterium, respectively. Dashes indicate gaps introduced to maximize the alignment.

Class / Order/ Strain Inserted in ginA, Locus_tag Size of attL-attR^C Accession no. gene/product^b GInt (kb) **PHYLUM Bacteroidetes** Flavobacteria/ Flavobacteriales/ Chryseobacterium artocarpi UTM-3 NZ MAYH01000023.1 ssb BBI01 07255 ND ND **PHYLUM Firmicutes** Clostridia/ Clostridiales/ ATP-dependent ROSEINA2194_ Roseburia inulinivorans DSM 16841 ACFY01000093 ND ND DNA helicase 02362 Erysipelotrichia/ Erysipelotrichales/ Eubacterium cylindroides T2-87 NC 021019 Rad3-related EC1 RS04255 ND ND DNA helicase **PHYLUM Verrucomicrobia Opitutae/ Opitutales/** CP001032 Oter 2289 9.7 L:GTGCCGTTCT ssb Opitutus terrae PB90 R:GTGCCGTTCT **PHYLUM Proteobacteria** Alphaproteobacteria/ Rhizobiales/ Methylobacterium populi BJ001 CP001029 O-acyl Mpop 3234 8.3 L:GCCGGAAAACGGAT transferase R:GCCGGAGAACGGAT **Betaproteobacteria/ Burkholderiales/** Ralstonia solanacearum PSI07 FP885906 ssb RPSI07 2980 35.0 L:CCGTTCTAAT R:CCGTTTTGAAT

Supplementary Table S3. Examples of GInts found in different taxonomical groups of bacteria.^a

Gammaproteobacteria/ Alteromonadales/

Shewanella baltica BA175	CP002767	ssb	Sbal175_0650	75.8	L:CCGTTTTAATT R:CCTTTTTAATT
Gammaproteobacteria/ Pseudomonadales/					
Pseudomonas aeruginosa PA_D16	CP012581	ribonucleoside- diphosphate	GInt_1; A6695_20385	40.3	L:TGCCAGTGAGCCCG R:TGCCAGTGATCGCG
		reductase subunit alpha	GInt_2; A6695_21830	35.3	L:TGCCAGTGAGCCC R:TGCCA-TGATCGC
<i>P. syringae</i> pv. syringae UMAF0158	CP005970	ssb	PSYRMG_13425	19.7	
P. syringae pv. myricae AZ84488	LGLA0100042	ssb	AC510_0694	30.7	
Gammaproteobacteria/ Vibrionales/					
Vibrio parahaemolyticus RIMD 2210633	BA000031	DNA-binding protein HU-2	VP2910	15.7	L:TGATTCTTTCAG R:TGCTTCTTTCAG

^a In all cases the *gin* operon was found to be associated to region of cargo DNA, of variable size, whose presence was deduced by comparison with the genome of the closest relative without GInt. Sizes of GInts are in kb. ND: not determined; the ends of the GInt could not be determined because its DNA is not assembled into a continuous contig, because the ends are degenerate, with deletions or insertions of other mobile elements, or because the ends could not be accurately defined by comparison with an appropriate genome lacking the GInt.

^b All *ssb* genes are homologous.

^c Deduced Left (L) and right (R) direct imperfect repeats bordering the GInts, but not confirmed experimentally.

				Homologue	
Strain	Number of genes	Gene cluster	Possible function or products	Syntenic region	Organism
Pseudomonas sp. Ch	ol1				
	6	C211_02326/ C211_02351	Biofilm formation	PSTAA_2727/ PSTAA_2720	P. stutzeri DSM 4166
	9	C211_02391/ C211_02431	Mercury resistance	PSPA7_0089/ PSPA7_0097	P. aeruginosa PA7
	6	C211_02461/ C211_02486	DNA restriction and modification	PSTAA_0888/ PSTAA_0894	P. stutzeri DSM 4166
P. aeruginosa PA_D1	6				
	7	A6695_20500/ A6695_20530	Tetracycline and aminoglycoside resistance	coordinates 28414 to 33695 accession nº KM649682	Stenotrophomonas maltophilia GZP-Sm1, Sm1-MDRGI genomic island
	3	A6695_20495/ A6695_20485	Chloramphenicol and aminoglycoside resistance	ETN48_p0093/ ETN48_p0095	Escherichia coli O102-ST405 plasmid pETN48
	5	A6695_20475/ A6695_20455	Trimethoprim and quaternary compounds resistance	AM278_28040/ AM278_28060	<i>Klebsiella pneumoniae</i> UCLAOXA232KP plasmid
P. denitrificans ATCC	13867				
	6	H681_04460/ H681_04435	Transporter systems	PP_3954/ PP_3959	P. putida KT2440
P. fragi NRRL B-727					
	8	SAMN05216594_3835/ SAMN05216594_3842	Copper resistance	PVE_R1G6098/ PVE_R1G6092	P. veronii 1YdBTEX2
P. moraviensis R28-S	6				
	6	PMO01_23485/ PMO01_23510	Phosphite transport	PA2G_01873/ PA2G_01878	P. aeruginosa 2192
P. stutzeri DSM 4166					
	7	PSTAA_0888/ PSTAA_0894	Nickel transport	Psest_0941/ Psest_0936	P. stutzeri RCH2

Supplementary Table S4. Examples of significant clusters of genes found in the cargo DNA of diverse GInts.

Pseudomonas syringae

Bardaji et al.

pv. phaseolicola 144	8A				
	22	PSPPH_4299/ PSPPH_4319	Phaseolotoxin production	-	<i>P. syringae</i> pv. syringae CFBP3388
pv. tomato DC3000					
	17	PSPTO_4608/ PSPTO_4624	Bacterial fittness	Psyr_1475/ Psyr_1491	<i>P. syringae</i> pv. syringae B728a
Shewanella baltica BA1	75				
	4	Sbal175_0670/ Sbal175_0673	Insecticidal toxin complex	Sbal678_0614/ Sbal678_0617	Shewanella baltica OS678
Teredinibacter turnerae	T7902				
	3	YUK_04845/ YUK_04855	Carbohydrate transport	F566_08265/ F566_08275	H. ganghwensis DSM 17046
	3	YUK_04920/ YUK_04930	DNA restriction and modification	B013_19835/ B013_19825	T. turnerae T0609

Supplementary Table St	. Bacterial strains	and plasmids	used in this study. ^a
------------------------	---------------------	--------------	----------------------------------

Strain or plasmid	Host or place of isolation; description; synonyms	Source or reference
Bacteria		
Escherichia coli		
NEB10-beta	Host for genetic manipulations.	New England Biolabs
Pseudomonas cannabina		
pv. alisalensis ES4326	<i>Raphanus sativus</i> ; pathogen of crucifers; CFBP 1637, NCPPB 1820	CFBP
P. fluorescens SBW25	<i>Beta vulgaris</i> ; plant growth-promoting rhizobacterium.	1
P. fragi B25	Type strain; synonyms are NRRL B-25, CFBP 4556, ATCC 4973	CFBP
P. putida KT2440		M. Espinosa
P. stutzeri		
DSM 4166 ^b	Rhizosphere of Sorghum mutans; Sp ^r .	DSMZ
UPN816 ^b	DSM 4166 containing an Sm ^r /Sp ^r cassette inserted in the GInt, within PSTAA_0898, to evaluate the transfer of the GInt.	This work
UPN821	DSM 4166 with an AccI site in <i>ginA</i> filled- in, resulting in a frameshift mutation changing the 76 C-terminal amino acids.	This work
UPN823	DSM 4166 with the unique SacI site in <i>ginB</i> blunted, resulting in a premature stop codon in residue 300.	This work
UPN825	DSM 4166 with the unique EcoRI site in <i>ginC</i> filled-in, resulting in a premature stop codon in residue 129.	This work
UPN828	DSM 4166 with <i>ginD</i> disrupted by insertion of the Gm ^r cassette in the unique Stul site.	This work
P. syringae		
pv. phaseolicola		
CYL314	Phaseolus vulgaris; pathogen of bean.	2
1448A	Phaseolus vulgaris; pathogen of bean.	3
UPN779	Strain 1448A with a Sm ^r /Sp ^r cassette inserted in the Nrul site immediately after PSPPH_4320 in the Pht-PAI.	This work
pv. pisi 1704B	<i>Pisum sativum</i> ; pathogen of pea; CFBP 2709.	CFBP
pv. syringae		
B728a	<i>Phaseolus vulgaris</i> ; pathogen of bean, Cu ^r , Rif ^r , Sm ^r .	G.W. Sundin ⁴
UMAF0158	<i>Mangifera indica</i> ; pathogen of mango and tomato.	5

	UPN853	UMAF0158 with a chromosomal insertion of IS- Ω - <i>Km/hah</i> .	This work
	pv. tomato DC3000	Solanum lycopersicon; pathogen of tomato	6,7
Pla	smids		
	pGInt0	Artificial construct containing the GInt from <i>P. stutzeri</i> DSM 4166, without the cargo DNA and in closed conformation, cloned in pUC57, Km ^r .	This work
	pGInt0.1	Plasmid recovered from <i>P. putida</i> KT2440::pGInt0; it is pGInt0, but contains three nt changes in its <i>attI</i> , making it more efficient for integration into diverse pseudomonads.	This work
	pGInt0A	pGInt0 digested with NcoI enzyme and religated resulting in a deletion of 657 nucleotides in <i>ginA</i> .	This work
	pGInt0B	pGInt0 with the unique AvrII site filled-in, resulting in a frame shift mutation in <i>ginB</i> .	This work
	pGInt0C	pGInt0 with the unique SexAI site filled- in, resulting in a frame shift mutation in <i>ginC</i> .	This work
	pGInt0D	pGInt0 with the Gm ^r cassette from pJQ200SK inserted in the unique Stul site of <i>ginD</i> .	This work
	ρΗΡ45Ω	Source of the Sm ^r /Sp ^r cassette.	8
	pJN105	<i>araC-P</i> BAD cassette cloned in pBBR1MCS-5.	9
	pJN105:: <i>ginA</i>	ginA cloned in pJN105.	This work
	pJN105:: <i>ginB</i>	<i>ginB</i> cloned in pJN105.	This work
	pJN105:: <i>ginC</i>	ginC cloned in pJN105.	This work
	pJN106	PBAD::lacZ derivative of pJN105, Kmr.	9
	pJQ200SK	Source of the Gm ^r cassette.	10
	pK18mobsacB	Suicide mobilizable vector for marker- exchange mutagenesis in <i>Pseudomonas</i> ; <i>sacB</i> , <i>oriT</i> , Km ^r .	11
	pSCR001	IS-Ω- <i>Km/hah</i> plasmid, Mob+, Km ^r .	12

^a CFBP, Collection Française de Bactéries Phytopathogènes, France; Cu^r, copper resistance; DSMZ, German Collection of Microorganisms and Cell Cultures, Germany; Gm^r, gentamicin resistance; Km^r, kanamycin resistance; NCPPB, National Collection of Plant Pathogenic Bacteria, UK; Rif^r, rifampicin resistance; Sm^r, streptomycin resistance; Sp^r, spectinomycin resistance.

^b *P. stutzeri* DSM 4166 is resistant to no more than 50 μg spectinomycin/ml, whereas UPN816 is resistant to 200 μg spectinomycin/ml.

Supplementary Table S6. Primers used in this study.

From	Primer name	Sequence	Fragment ^a	Ref ^b	
pJQ20	0SK				
Dfu SP	Gm_pJQ200_F Gm_pJQ200_R	GCAAAAGAAAATGCCGATG CCTTGCCGTAGAAGAACAGC	Gm ^R cassette		
FIU SE	GIntO_R_SBw	CACCACAGCAGGTAGGAAGTC	with fasout_stz_4, amplification of the		
	Fasbor_LL3_SB	CAGGTAGCCGATGTTCAGGT	with GIntO_R_SBw amplification of <i>attB</i>		
Ppu KT2440					
	GIntO_R_put	GAACGCAATGACGACGGATG	with fasout_stz_4, amplification of the insertion of pGInt0		
	Fasbor_RR3_put	CGGATTCTTCAGGCTCTGTG	with Ptz-RNA-F1 amplification of <i>attB</i>		
Pph 14	448A				
	fas_intClon_F ^c fas_intClon_R	ACTAGTCTCACCTATGGCAACCCAAT TTGATGTCCAGTTCGACCAA	Pht-PAI		
	fasout_1	ATGTCCAAGGTTTGCTTGCT	Round 1 attl		
	fasout_2	TAGCTGAAGGTTCTGCGTGA			
	fasout_3	GCTGTTCGAGGTGAGAAATG	Round 2 attl		
	fasout_4	CTGGTACGAACTGACCATCG			
	fasbor_LL2	ATTCTTGCGACTGCATTTCT	attB	13	
	fasbor_RR	CTGTCACCGACAATGTCACC	Round 1 <i>attB</i> with fasbor_LL2	13	
	fasbor_RR2	TGTTCCTGACTGCTGGACTG	Round 2 <i>attB</i> with fasbor_LL2	13	
Ppi 1704B					
	fasout_pisi_2	ACCCAAAATCAGCAAAAGC	attl with fasout_1		
	fasout_pisi_4	AAGATGCTGTACAGGCTCGAAAG	attl with fasout_3		
	FAS23F_pisi	TCAGAAGACTCCGTGCTCG	Internal fragment of		
	FAS25F2	TCAAGGCGGAAAAGAGTGTC	Cargo DINA		
	FAS27F	TGGTCATGGACACTCTTTTCC	Internal fragment of		
	FAS27R	GCACTGGATTACCTCCAAGG	cargo DNA		
Pto DC	23000	00701100101017110170070			
	fasout_lo_1	GCTCAAGCACAATAAGATGCTC	Round 1 attl		
	fasout_lo_2				
	fasout_lo_3	ACGAGCACCATICACAATCIG	Round 2 attl		
	fasout_To_4	TTCGGCGGAGAGTGAGATTAC			
Pph CYL314					
	fasout_CYL_1	IGAGGGCGCIGIICIAGAIG	Round 1 attl		
	fasout_CYL_2	GGTTAGCCAGTCCACTCTTG			
	fasout_CYL_3	AACACAGCCAGAIGCICAAG	Round 2 attl		
D4- DC	Tasout_CYL_4	AATGCGGGGACTGAAACATC			
PTr B2	C for a set for a	00101100400004044470	Downed 4 off		
	iasout_irg_1				
	lasout_ing_2		Downal Q and		
	lasout_trg_3	AGUAGUTTTUTAUGAGUAUU	Rouna 2 <i>atti</i>		

	fasout_frg_4	ATAGGCGAGCACATTCAAGC		
	fasbor_frg_1	TCCACAGGCAGCAGATTGAG	Round 1 attB	
	fasbor_frg_2	TCGGCGTAAACCTGATCCAG		
	fasbor_frg_3	GTAATTGATGCTGGCCTGGC	Round 2 attB	
	farbor_frg_4	TCTTCCACCACTTCGCGTAC		
Pca E	S4326			
	fasbor_mac_R2	CTGCATTCGGGTAGCTTTGC	Round 1 <i>attB</i> with fasbor_LL2 Round 2 <i>attB</i> with fasbor_LL2 Internal fragment of cargo DNA	
	fasbor_mac_R4	CTGGAGTTATTCAAGGCGCG		
	Mac_Ass_R1	GTTCTTGCTGCACCTGGTC		
	Mac_Ass_F1	CCTGTTTCACAGCTTCAAAGG		
	Mac_Ass_F2	GCCTCACATTAATTGCGAATG	Internal fragment of	
	Mac_Ass_R2	AACACCTGCAGCCTAAATCG	cargo DNA	
Pst DS	SM4166			
	fasout_stz_1	GGTGAGAAATCAGATCAATGG	Round 1 attl	
	fasout_stz_2	GAATCACCGCTTCCTTGGTC		
	fasout stz 3	TGCTCAAGGTACTTCTTGGTC	Round 2 attl	
	fasout stz 4	TGCTTGAAGTCACCGCGTAG		
	fasbor stz 1	CAGCAGCAGACGACACAGC	Round 1 attB	
	fasbor stz 2	GCTGGACGTTGGCGTAGTC		
	fasbor stz 3	AGCCAGCGCATCGAAATC	Round 2 attB	
	fasbor stz 4	GCGTACTTGTTGGTCAGCAC		
	Ptz-RNA-F1	CCAGGGAAGAACGACAGGG	RT PCR: amplicon 1	
	Ptz-RNA-R1	CCGAGTGCTCCATGGTGATG	Fig. 2	
	Ptz-RNA-FA	TCAACTAGCGGTGGTCAACC	RT PCR: amplicon 2	
	FasInt1 R	TGCTTTCCAGCATCGTGTAG	Fig. 2	
	Ptz-RNA-F2	ACATGGATGTTCGGCTGGAG	RT PCR: amplicon 3	
	Ptz-RNA-R2	GTTGACTGAATGACTGGCCG	Fig. 2	
	Ptz-RNA-FB	TCACGGGCACTTAGGATTCG	RT PCR: amplicon 4	
	Ptz-RNA-Rb	GGCACATTCTCAATGGCTGC	Fig. 2	
	Ptz-RNA-F3	TGTACTCCAATCACCGAGCG	RT PCR: amplicon 5	
	Ptz-RNA-R3	TGAAGCTACAGCCGTCGAAG	Fig. 2	
	Ptz-RNA FC2	TGAGAGCCATGATCGCACTG	RT PCR: amplicon 6	
	Ptz-RNA-RC2	AGAACTCTGATCGCGTCACG	Fig. 2	
	Ptz-RNA-F4	CGATAACGGATGGACGCTGG	RT PCR: amplicon 7	
	FasInt4 R1	TCTGACCATTCCTCAATCAGC	Fig. 2	
	Ptz-RNA-FD	TCGCCAGTCCCTGATGAAAC	RT_PCR: amplicon 8	
	Ptz-RNA-RD	CATATCCGCATTGGCTTGCC	Fig. 2	
	Ptz-RNA-RD2	TTCATGGCTGGATCGGTCTG	RT_PCR; amplicon 9 Fig. 2 with Ptz-RNA-FD	
	RNA-stz-ABC-F	TCAAGATCGGCAACTACGAG	RT_PCR;	
	RNA-stz-ABC-R	GAGGAACCAGCGGTCGTG	ABC transporter	
	RNA-stz-rpoD-R	AGCACGGATCTGGTTCAGAG	Internal fragment of	
	RNA-stz-rpoD-F	GGACGACGACGAAGAAGAAG	ropD	
	RNA-stz-gyrb-R	TTGAAGCTGTCGTTCCACTG	Internal fragment of	
	RNA-stz-gyrb-F	ACGCAGATCCATTTCAAACC	gyrB	
	ginA-F	ACTAGTCAGTCGGTGCCCATGACTAT	Entire ginA gene.	
	ginA-R	ACTAGTGTTGACTGAATGACTGGCCG	Used for cloning	

ginB-F ginB-R	ACTAGTACATGGATGTTCGGCTGGAG	Entire <i>ginB</i> gene. Used for cloning	
ginC-F	ACTAGTTGTACTCCAATCACCGAGCG	Entire <i>ginC</i> gene. Used for cloning	
ginC-R	ACTAGTTCTGACCATTCCTCAATCAGC		
ginD-F	ACTAGTCGATAACGGATGGACGCTGG	Entire ginD gene.	
ginD-R	ACTAGTTTCATGGCTGGATCGGTCTG	Used for cloning	
ginA_mutF	GCATCTGGCTGTGTTTGAGG	With Ptz-RNA-Rb for mutagenesis	
ginB_mut_R	TTGGCAAACTCCGTGAAGGG	With Ptz-RNA-F2 for mutagenesis	
ginD_mutR	GCCATTCGCACGATTACGAC	With Ptz-RNA-FC for mutagenesis	

^a *attl* and *attB* refer to the specific amplicons obtained from the circular intermediate and from the empty chromosomal site, respectively, resulting from excision of Glnts. The *attl* of Glnt7 in *P. cannabina* pv. alisalensis ES4326 was detected using primers fasout_pisi_2 and fasout_CYL_3 in the first round, and primers fasout_stz_3 and fasout_pisi_2 for the second round. Abbreviations are: Pfu, *P. fluorescens*; Ppu, *P. putida*; Pph, *P. syringae* pv. phaseolicola; Pca, *P. cannabina* pv. alisalensis; Pfr, *P. fragi*; Pto, *P. syringae* pv. tomato; Ppi, *P. syringae* pv. pisi; Pst, *P. stutzeri*.

^b Unless specifically indicated, all primers were designed in this study.

^c The Spel adaptor of primers is underlined.

References

- De Leij, F., Sutton, E. J., Whipps, J. M., Fenlon, J. S. & Lynch, J. M. Impact of Field Release of Genetically Modified Pseudomonas fluorescens on Indigenous Microbial Populations of Wheat. *Appl. Environ. Microbiol.* **61**, 3443-53 (1995).
- 2. Rico, A. *et al.* Nontoxigenic strains of *P. syringae* pv. *phaseolicola* are a main cause of halo blight of beans in Spain and escape current detection methods. *Phytopathology* **93**, 1553-1559 (2003).
- 3. Joardar, V. *et al.* Whole-genome sequence analysis of *Pseudomonas syringae* pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. *J. Bacteriol.* **187**, 6488-6498 (2005).
- 4. Feil, H. *et al.* Comparison of the complete genome sequences of *Pseudomonas syringae* pv. syringae B728a and pv. tomato DC3000. *Proc. Natl. Acad. Sci.* **102**, 11064-9 (2005).
- Martínez-García, P. M. *et al.* Bioinformatics analysis of the complete genome sequence of the mango tree pathogen *Pseudomonas syringae* pv. syringae UMAF0158 reveals traits relevant to virulence and epiphytic lifestyle. *PLoS ONE* 10, e0136101, doi:10.1371/journal.pone.0136101 (2015).
- Cuppels, D. A. & Ainsworth, T. Molecular and physiological characterization of *Pseudomonas syringae* pv. tomato and *Pseudomonas syringae* pv. maculicola strains that produce the phytotoxin coronatine. *Appl. Environ. Microbiol.* **61**, 3530-3536 (1995).
- Buell, C. R. *et al.* The complete genome sequence of the *Arabidopsis* and tomato pathogen *Pseudomonas syringae* pv. tomato DC3000. *Proc. Natl. Acad. Sci.* 100, 10181-10186, doi:10.1073/pnas.1731982100 (2003).
- 8. Prentki, P. & Krisch, H. M. In vitro insertional mutagenesis with a selectable DNA fragment. *Gene* **29**, 303-313 (1984).

- 9. Newman, J. R. & Fuqua, C. Broad-host-range expression vectors that carry the larabinose-inducible *Escherichia coli araBAD* promoter and the *araC* regulator. *Gene* **227**, 197-203, doi:10.1016/S0378-1119(98)00601-5 (1999).
- 10. Quandt, J. & Hynes, M. F. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. *Gene* **127**, 15-21 (1993).
- Schäfer, A. *et al.* Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* **145**, 69-73, doi:http://dx.doi.org/10.1016/0378-1119(94)90324-7 (1994).
- Giddens, S. R. *et al.* Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. *Proc. Natl. Acad. Sci.* **104**, 18247-18252, doi:10.1073/pnas.0706739104 (2007).
- Murillo, J. *et al.* Variation in conservation of the cluster for biosynthesis of the phytotoxin phaseolotoxin in *Pseudomonas syringae* suggests at least two events of horizontal acquisition. *Res. Microbiol.* 162, 253-261, doi:10.1016/j.resmic.2010.10.011 (2011).