Antigen	clone/ID	Host		Dilution		Source	Order nr.
			IF	WB	IP		
Akt	-	rabbit	-	1:1000	-	Cell signalling	9272
Amphiphysin1	Amphy#3	mouse	-	1:1000	-	DeCamilli's lab	-
AP-1 gamma						PD Transduction	
adaptin	88	mouse	-	1:1000	-	BD Transduction	610386
AP-2 alpha adaptin	8	mouse	1:200	1:1000	-	BD Transduction	610502
AP-2 alpha adaptin	AC1M11	mouse	-	1:1000	-	Life Sciences	MA3-061
AP-2 alpha adaptin	AP-6	mouse	1:400	-	-	Haucke's lab	-
AP 2 hote adaptin					10µg/	Santa Cruz	
Ar-2 beta adaptin	-	goat	-	-	sample	Biotechnology	SC6425
						Santa Cruz	SC10762
AP-2 beta adaptin	H-300	rabbit	-	1:1000	-		(lot #
						Biotechnology	E1304)
AP-3 μ3	p47	mouse	-	1:500	-	BD Transduction	discontinued
A P180						Zhang/De Camilli's	
AI 100	LP2D11	mouse	-	1:3333	-	lab	-
BDNF	N-20	rabbit	-	1:200	-	Santa Cruz	sc-546
cleaved Caspase							
(Asp175)3	-	rabbit	-	1:1000	-	Cell Signalling	9661
СНС	TD1	mouse	-	1:500	-	Haucke's Lab	-
c-Myc	9E10	mouse	1:400	-	-	Sigma	M5546
Dynamin1	Dynamin1						
Dynamini	#5	mouse	-	1:500	-	De Camilli lab	-
GFP	-	rabbit	1:10000	-	-	Abcam	ab6556

1 Supplementary Table 1. Antibodies used in this study

GFP	-	rabbit	1:1000	1:1000	-	MBL	598
Grb2	3F2	mouse	1:200	-	-	MBL	MS-20-3
НА	-	rabbit	1:400	-	-	Cayman	162200
His- tag	27E8	mouse	_	1:1000	-	Cell Signaling Technology	23668
HSC70	-	mouse	-	1:5000	-	Affinity bioreagents	-
Hsc70	-	rat	-	1:5000	-	Enzo	SPA-815 (lot# 42)
IgG	-	goat	-	-	10µg/ sample	Sigma-Aldrich	15256
ITSN1	mAC+ linker	rabbit	-	1:1000	-	Shupliakov's lab	-
KCC2	-	rabbit	1:250	-	-	Jentsch's lab	-
LC3b	4E12	mouse	1:100	-	-	MBL	M152-3
							NB600-
LC3b	-	rabbit	1:250	1:500	-	Novus biochemical	1384
mTOR	7C10	rabbit	-	1:1000	-	Cell Signalling	2983
p75NGF	-	rabbit	1:500	-	-	Abcam	ab8874
p150 ^{Glued}	-	goat	1:100	-	-	Abcam	ab11806
p150 ^{Glued}	1	mouse	-	1:1000	-	BD Transduction	610474 (lot# 07312)
pmTOR Ser2448	D9C2	rabbit	-	1:1000	-		5536
pRaptor Ser792	-	rabbit	-	1:1000	-	Cell Signalling	2083
pS6 Ser235/236	-	rabbit	-	1:1000	-	Cell Signalling	4856
pTrkB816	-	rabbit	1:500	-	-	Abcam	75173
p75NGF	-	rabbit	1:500	1:1000		Abcam	8874
p62	-	Guinea- pig	1:250	-	-	Progen	GP62-C
Rab7	-	goat	1:250	-	-	GeneTex	discontinued
S6	-		-	1:1000	-	Cell Signalling	2217

Stonin2	2424.5	rabbit	-	1:800	-	Haucke's Lab	-
Synaptophysin	7.2	mouse	-	1:2000	-	Synaptic Systems	101011
Synaptotagmin 1	41.1	mouse	-	1:500	-	Jahn's lab	-
TrkB	extracell.	rabbit	1:100-	1:500-	-	Alomone I abs	ANT-019
TIKD	domain	140010	1:200	1:1000		Alomone Laos	AN1-017
Tubulin	B-5-1-2	mouse		1:5000	-	Sigma	T5168
Tubb3	-	rabbit	1:2000	-	-	Covance	PRB-435P

4 Supplementary Table 2. Primers used in qPCR.

Gene description	forward primer	reverse primer
BDNF	TCATACTTCGGTTGCATGAAGG	AGACCTCTCGAACCTGCCC
GAPDH	AACTTTGGCATTGTGGAAGG	ACACATTGGGGGGTAGGAACA

⁸ **Supplementary Fig. 1. Dynamics of mRFP-AP-2\mu transport in dendrites.** (a) Representative image of a neuron, expressing mRFP-AP-2 μ construct. White rectangular boxes indicate the images represented in Fig.1. Scale bar, 20 μ m. (b) Percentage of retrograde (0.71±0.01%) and anterograde AP-2 μ -mRFP puncta in dendrites (2.60±1.17%, n=3 independent experiments). n.s.,

13	non significant. (c) The relative number of eGFP-LC3b puncta colocalizing with AP-2 μ RFP in
14	axons of cultured neurons (69.8±4.4% from total LC3b-eGFP puncta, n=3 independent
15	experiments). (d) Non-random colocalization of AP-2µ-mRFP and eGFP-LC3b puncta in
16	neurons. Pearson's correlation coefficient of Rp=0.65±0.08 indicates the high degree of
17	colocalization between AP-2µ-mRFP and eGFP-LC3b puncta. To exclude the possibility of
18	random colocalization we repeated the analysis after shifting the green (eGFP-LC3b) channel
19	over a distance of 10 pixels relative to the red (AP-2µ-mRFP) channel. The Rp calculated from
20	shifted images (red bar) was significantly lower (Rp=0.13±0.06) compared to non-shifted images
21	(p<.000). (e,f) Representative images (e) and bar diagram (f), revealing the colocalization of
22	eGFP-LC3b with ATG12-mCherry in axons of control cultured neurons (Rp: 0.67±0.02). Rp was
23	calculated for 28 regions of interest (ROI, 5.1 x 4.3 μ m) from n=3 independent experiments.
24	Scale bar in (e), 5 µm. (g) Confinement of stationary AP-2µ-mRFP puncta to synapses revealed
25	by the presynaptic active zone marker Munc-13-1-eYFP. Scale bar, 5µm. (h) Kymographs
26	generated from the data in (g). (i) Relative number of stationary AP-2µ-mRFP puncta confined
27	to active zones (87.4 \pm 5.9% from total AP-2 μ -mRFP puncta, n=3 independent experiments). (j)
28	STED image of cultured neurons treated with folimycin and immunostained for LC3b and AP-2.
29	Scale bar, 15 μ m. White rectangular box indicate the area magnified in Fig. 1h. (k) Endogenous
30	AP-2µ partially colocalizes with LC3b in neurons (Rp: 0.36±0.04). Rp was calculated for 18
31	regions of interest per condition from $n=3$ independent experiments. (l , m). Clathrin heavy chain
32	(CHC) is not enriched on AP-2 μ -positive autophagosomes. (I) Representative images and (m)
33	distribution pattern of CHC fluorescence intensity along AP-2µ-positive autophagomes labeled
34	with eGFP-LC3b (n=3 independent experiments). Scale bars: main, 5 µm, insert, 1µm.
35	Data in (b) are illustrated as box plots as described in Methods. Data in (c,d,f,ik,m) and

all data reported in the text are mean±SEM.

Supplementary Fig. 2. AP-2 colocalizes with LC3b and p150^{Glued} on autophagosomes. (a) Coomassie Blue stained gel of purified proteins used for the experiments shown in Fig. 2a. (b) Complex formation of endogenous LC3b with AP- $2\alpha_A$ and AP- $2\alpha_C$. Upper panel: Ponceaustained membrane. Lower panel: Immunoblot analysis of material affinity-purified from mouse

43	brain lysates by GST-AP-2 α_A , GST-AP-2 α_C or GST taken as a control. AP-2 α_A and AP-2 α_C co-
44	purify native LC3b present in the lysate, albeit with different efficiency (AP- $2\alpha_A$ > AP- $2\alpha_C$).
45	Input, 1.5% of lysate added to the assay. (c) Coomassie Blue stained gel of purified proteins used
46	for the experiments shown in Fig. 2b. (d) Ponceau stained membranes corresponding to the
47	affinity chromatography experiment shown in Fig. 2e. (e,f) Representative confocal images of
48	cultured cortico-hippocampal WT or AP-2 μ KO neurons left untreated or treated with folimycin
49	and immunostained for LC3b (red), AP-2 (green) and $p150^{Glued}$. Scale bars, (e) 20 μ m, (f) 5 μ m.
50	White rectangular boxes in (e) indicate the areas magnified in (f). (g) Folimycin treatment
51	significantly increases the colocalization of AP-2 with LC3b in cultured cortico-hippocampal
52	neurons (Rp Untreated: 0.40±0.02 versus Rp Folimycin: 0.53±0.03, *p=0.017). Rp was
53	calculated for 60-67 regions of interest (ROI) per condition from 3 independent experiments. (h)
54	Folimycin treatment significantly increases the colocalization of AP-2 with p150 ^{Glued} in cultured
55	cortico-hippocampal neurons (Rp: untreated (UT): 0.60±0.04 versus Rp Folimycin: 0.80±0.001,
56	**p=0.007). Rp was calculated for 60-67 regions of interest (ROI) per condition from 3
57	independent experiments (n=3).

Data in (g,h) are illustrated as box plots as described in Methods. All data reported are mean±SEM.

62 Supplementary Fig. 3. Impaired autophagosome processing in absence of AP-2 μ is not a 63 result of alterations in presynaptic and/or endocytic protein levels. (a,b) Loss of AP-2 α in

64	conditional AP-2µ-KO neurons (WT: 173.74±15.19 g.v.; KO: 12.28±2.26 g.v., ***p<0.001,
65	n=3, 30-31 neurons per genotype). g.v., mean grey value of immunofluorescent signal. Scale bar,
66	20 μ m. (c,d) Levels of endocytic and presynaptic proteins in brain lysates from p21 WT and
67	neuron-specific AP-2 μ KO mice (AP-2 μ ^{lox/lox} x Tub α 1-Cre). Protein levels in KO condition were
68	normalized to the WT set to 100%. n=3, (e) Deletion of AP-2 μ significantly decreased the
69	percentage of retrogradely moving autophagosomes (WT: 20.35±3.18%, KO: 8.81± 1.11%,
70	*p=0.01), whereas the number of anterograde carriers is unaltered (WT: $12.04\pm 3.52\%$, KO:
71	$8.90\pm$ 2.75%, p=0.51, n=4 independent experiments). (f) The number of stationary
72	autophagosomes is increased in neurons lacking AP-2 μ (WT: 67.65± 4.44%, KO: 82.45± 3.61%,
73	*p=0.04, n=4 independent experiments). (g) Deletion of AP-2 μ significantly decreased the
74	retrograde autophagosome velocity (WT: $0.39\pm0.04 \ \mu\text{m/sec}$, KO: $0.27\pm0.02 \ \mu\text{m/sec}$, *p=0.048),
75	whereas their anterograde velocity is unaltered (WT: 0.38± 0.06 μ m/sec, KO: 0.26± 0.05
76	μ m/sec, p=0.17, n=4 independent experiments). (h,i) Representative images and corresponding
77	kymographs of axons, expressing Mito-mCherry in WT (h) and AP-2 KO (i) neurons. Scale bars,
78	5μ m. (j) Bar diagram representing the relative axonal mobility of Mito-mCherry in WT and AP-
79	2μ KO neurons (WT: 7.72±0.94%, KO: 8.59±1.38%, p=0.70, n=3 independent experiments). (k)
80	Bar diagram representing the anterograde and retrograde velocity of mitochondria in WT and
81	AP-2 μ KO neurons (Retrograde WT: 0.40±0.03 μ m/sec, Retrograde KO: 0.31± 0.03 μ m/sec,
82	p=0.15; Anterograde WT: $0.36\pm0.02 \ \mu m/sec$, KO: $0.35\pm0.01 \ \mu m/sec$, p=0.64, n=3 independent
83	experiments). (I,m) Representative EM snapshots of somata of cultured WT (I) and AP-2 μ KO
84	(m) neurons. Black boxes in (l) mark the areas magnified in (m). Scale bars, left panel, $1\mu m$,
85	right panel, 500 nm. g, Golgi, n. nucleus, Lys, lysosome. (n) Mean number of lysosomes/ μ m ²
86	within the soma of AP-2 μ KO neurons was unaltered (0.025±0.019) compared to control
87	neurons (0.028±0.015, p=0.84, 9 somata per condition). (o) Examples of multilamellar dense
88	structures in synapses of AP-2µ KO neurons. Scale bars, 500nm.

- 89 Data in (b) are illustrated as box plots as described in Methods. Data in (d,e,f,g,j,k,n) and
- 90 all data reported in the text are mean±SEM. n.s., non-significant.

Supplementary Fig. 4. Impaired autophagic flux in the absence of AP-2µ is not a result of 93 decreased mTORC1 signalling. (a) Representative confocal images of WT and AP-2µ KO 94 95 neurons immunostained for Rab5 (green) and detyrosinated tubulin (detyr-Tub, red) to label axonal processes. Scale bars, 5 μ m. (b) The mean number of Rab5-positive puncta/ 1 μ m² in AP-96 2μ KO neurons was unaltered (0.26±0.05) compared to control neurons (0.19±0.05, p=0.4, data 97 are from n=3 independent experiments, 26-27 neurons per condition). (c) Representative 98 confocal images of WT and AP-2µ KO neurons immunostained for LAMP1 (green). Scale bars, 99 20 μ m. (d) Mean number of LAMP1-positive puncta/ 1 μ m² in AP-2 μ KO neurons was unaltered 100 101 (0.026±0.007) compared to control neurons (0.022±0.007, p=0.667, n=3, 26-27 neurons per condition). (e) Representative confocal images of WT and AP-2µ KO neurons treated with 102 103 folimycin (20 nM, 4 h) and immunostained for endogenous LC3b (red) and Rab7 (green). Scale

104 bars, 20 µm. (f) Representative epifluorescent images of neurons expressing mRFP-eGFP-LC3 105 under serum-deprived conditions. Scale bar, 20 µm. (g) Immunoblot illustrating the levels of p62 106 in lysates from cultured WT and AP-2 μ KO neurons, treated with cycloheximide. (h) 107 Immunoblot illustrating the effect of AP-2µ loss on mTORC1 signalling in brain lysates from p21 neuron-specific AP-2 μ KO mice (AP-2 $\mu^{lox/lox}$ x Tuba1-Cre). (i) Quantification of data 108 shown in (h). Protein levels of S6 kinase are slightly increased in AP-2µ KO brain lysates (WT: 109 1.00±0.01, KO: 1.73±0.09, *p=0.015, n= 3 independent experiments). n.s., non-significant. 110 111 Protein levels in KO condition were normalized to the WT set to 100%. Data in (b and d) are illustrated as box plots as described in Methods. Data illustrated in 112

- (i) and all data reported in the text are mean±SEM.
- 114

115

Supplementary Fig. 5. Endocytosis-independent role for AP-2μ in TrkB receptor
 trafficking. (a,b) Retrograde velocity of eGFP-LC3/ TrkB-mRFP-positive carriers in AP-2μ KO
 neurons is unaltered upon BDNF application (KO: 0.15±0.03 μm/s, KO+BDNF: 0.19±0.07
 13

119	μ m/s; *p=0.65, n=3 independent experiments. (c,d) Representative confocal images of WT and
120	AP-2µ KO neurons, expressing cMyc-LC3 (green) and mRFP-TrkB (red). Arrows indicate
121	mRFP-TrkB accumulations within LC3b-positive puncta. Scale bar, 20 μ m. (e) Loss of AP-2 μ
122	leads to accumulation of mRFP-TrkB within LC3b-positive compartments (WT: 0.019±0.025,
123	KO: 0.128±0.012, *p=0.042, n=3, 30 neurons per condition). mRFP-TrkB levels were calculated
124	per 1 μ m ² within LC3-positve area. (f) TrkB signalling component Grb2 (growth factor receptor-
125	bound protein 2) accumulates within autophagosome-like structures in AP-2µ KO neurons.
126	Neurons were immunostained for Tubulin beta-3 (Tubb3) and either LC3b or Grb2. (g,h) TrkB
127	full length (TrkB-FL) expression levels are significantly upregulated in brain lysates from p21
128	neuron-specific AP-2µ KO mice compared to controls. TrkB levels in KO were normalized to
129	the WT, set to 100% (KO: 148±7%, *p=0.021, n=3 independent experiments). (i,j) Immunoblot
130	analysis of TrkB-FL and its truncated isoform (TrkB-T1) in lysates from cultured WT and AP-
131	2μ KO neurons, treated with cycloheximide. TrkB levels in KO were normalized to the WT, set
132	to 100% (KO TrkB-FL: 248.1±55.5%, *p=0.046, KO TrkB-T1: 293.9±53.5%, *p=0.021, n=3
133	independent experiments). (k) Unaltered levels of p75NGF receptor in AP-2µ KO brains,
134	visualized by immunohistochemistry with p75NGF-specific antibodies. Scale bar, 30 μ m. (l, m)
135	Immunoblot analysis of p75NGF receptor expression levels in lysates from cultured WT and AP-
136	2 KO neurons. p75NGF levels in KO were normalized to the WT, set to 100% (KO: 103±8.07%,
137	*p=0.38, n=4 independent experiments). (n,o) Representative confocal images of eGFP-TrkB-
138	expressing WT and AP-2 μ KO neurons treated with 50 ng/ml BDNF and incubated with GFP
139	antibody at 4 C° (control, n) or 37 C° to allow endocytosis (uptake, o). Scale bars, 50 μ m. (p)
140	BDNF-induced endocytosis of TrkB is independent of AP-2µ. Control (4C°) WT versus KO,
141	p=0.668; Uptake (37°C) WT versus KO, p=0.098, n=5 independent experiments.
142	Data in (b,e,h,j,m) and (p) are illustrated as box plots as described in Methods. All data

- 143 reported in the text are mean±SEM.

Supplementary Fig. 6. Autophagosomal trafficking via AP-2 mediates neuronal complexity. 146 147 (a) eGFP-expressing WT and AP-2µ KO neurons transfected with AP-2µ. Scale bar, 40 µm. (b) Sholl analysis of cultured WT and AP-2µ KO neurons reveals the decrease in neuronal 148 complexity upon loss of AP-2 μ . (c) Sholl analysis of cultured WT and AP-2 μ KO neurons 149 150 reveals the rescue of neuronal complexity in AP-2µ KO neurons upon AP-2µ re-expression. (d) 151 Control neurons transfected with eGFP and co-transfected with HA-tagged WT AP- $2\alpha_A$ (HA-152 AP- $2\alpha_A$ WT) or LC3-binding deficient mutant AP- $2\alpha_A$ (HA-AP- $2\alpha_A$ Mut). Scale bar, 40 μ m. (e) Sholl analysis of neurons, expressing wildtype AP- $2\alpha_A$ (AP- $2\alpha_A$ WT, black) or LC3-binding 153

154	deficient mutant AP-2 α_A (AP-2 α_A Mut, red). (f) p150 ^{Glued} levels in cultured rat neurons,
155	nucleofected on DIV0 with either pSuper control or pSuper encoding shRNA against p150 ^{Glued}
156	and analyzed 48 h postransfection by immunoblotting. (g) eGFP-expressing rat neurons
157	transfected on DIV7 with either pSuper control (WT+pSuper) or with shRNA against p150 ^{Glued}
158	(WT+ shRNA p150 ^{Glued}). Scale bar, 40 μ m. (h) Mean number of branching points is severely
159	decreased in WT rat neurons expressing p150 ^{Glued} shRNA (22.05±11.03) compared to control
160	(113.29±12.52, *p=0.015, 79-93 neurons per condition, n=4 experiments). (i) Sholl analysis of
161	cultured rat neurons 72h posttransfection with either pSuper control (black) or pSuper encoding
162	shRNA against $p150^{Glued}$ (gray). (j-l) AP-2 μ deletion induced by application of tamoxifen at
163	DIV8 impairs the neuronal complexity of mature DIV20 neurons. (j) eGFP-expressing WT and
164	AP-2 μ KO neurons at DIV20. Scale bar, 40 μ m. (k) Sholl analysis of cultured WT and AP-2 μ
165	KO neurons reveals a decrease in neuronal complexity upon induction of AP-2µ deletion at
166	DIV8. (1) Decreased branching complexity in neurons treated by tamoxifen at DIV8
167	(91.33±32.37), but not in ethanol-treated controls (246.90±45.54, *p=0.043, 28-29 neurons per
168	condition from 3 independent experiments). (m) Sholl analysis of cultured neurons from
169	ATG5 ^{lox/lox} :CAG-iCre mice, treated either with ethanol (WT) or tamoxifen (ATG5 KO).

Sholl analysis was performed by counting the number of intersections with concentric
rings radiating every 10 µm from the soma center. Data in (h,l) are illustrated as box plots as
described in Materials and Methods. Data in (b,c,e,i,k,m) and all data reported in the text are
mean±SEM.

177	Supplementary Fig. 7. Neurodegeneration in mice lacking neuronal AP-2µ. (a) Percentage
178	of genotypes in litters from AP-2 ^{lox/lox} :Tub α1-Cre crosses (AP-2 ^{lox/lox} :Tubα1-Cre (KO): 16%;
179	AP-2 ^{lox/lox} :Tuba1-Cre (WT): 31% and AP-2 ^{lox/wt} :Tuba1-Cre (Het): 53%; p< 0.0011). (b) Growth
180	curves of AP-2 μ KO mice and their littermate controls (KO: n= 14, WT and Het: n= 21 animals).
181	(c) Loss of neuronal AP-2 μ causes thalamic microvacuolation (indicated by arrows). Scale bar,
182	250μm. (d) Severe neurodegeneration of AP-2μ KO brains, detected by Fluoro-Jade staining.
183	Scale bar, 400 µm. (e,f) Immunoblot analysis representing the activation of caspase 3 in lysates
184	from cultured DIV14-17 WT and AP-2 μ KO neurons. Activated caspase 3 levels in KO were
185	normalized to the WT, set to 100% (KO: 339.7±80%, *p=0.014, n=5 independent experiments).
186	(g-l) Temporal progression of thalamic neurodegeneration in AP-2µ KO mice, captured by
187	Nissl-staining of brains at p4 (g,h), p7 (i,j) and p14 (k,l). White rectangles in (g) (i) and (k) mark
188	the areas magnified in (h), (j) and (l), accordingly. Black arrows in (l) mark the spongiform
189	neurodegeneration. Numbers indicate thalamic nuclei: 1, anteroventral, 2, anterodorsal, 3,
190	ventrolateral, 4, posterior. (m-p) Temporal progression of medial entorhinal cortex (MEC)
191	degeneration in AP-2 μ KO mice, captured by Nissl-staining of brains at p4 (m), p7 (n) and p14
192	(0,p). Black arrows in (p) mark the spongiform neurodegeneration. Scale bars, (g,i) 1000μ m, (h,
193	j) 150 µm, (k) 800µm, (l) 100 µm, (m,n) 300µm, (o) 400µm, (p) 80 µm. (q) Loss of barrel
194	compartments in the somatosensory cortex of AP-2 μ KO mice, revealed by Nissl-staining. Scale
195	bar, 200 μ m. (r) WT and AP-2 μ KO brain sections, immunostained for LC3b and Rab7. White
196	boxes indicate areas magnified in (s). Scale bars: (r) 20 μ m, (s) 5 μ m. (t, u) Mean intensity of
197	LC3b (WT: 110.1±8.7, KO: 140.5±8.8, *p=0.049, n=4) (u) and Rab7 (WT: 99.1±3.1, KO:
198	134.5±5.2, **p=0.001, n=4) (u) in AP-2 μ deficient brains. (v , w) pro-BDNF levels in WT or AP-
199	2μ KO brain lysates visualized by immunoblotting on the membrane presented in Fig. 7b. Pro-
200	BNDF levels in WT brains were set to 100% (n=3 mice per genotype, *p<0.000).
201	Data in (t,u) are illustrated as box plots. Data in (a,b,f,w) and all data reported in the text

are mean±SEM.

Fig. S3c				Fig. S4g
WB: CHC	WB: ITSN1	WB: Dyn1	WB: Amph1	WB: p62
175kDa	175kDa 80kDa	175kDa 80kDa	175kDa 80kDa	7 <u>0kDa</u>
WB: Stn2	WB: Syt1	WB: Syph		
175kDa	175kDa 80kDa			WB: AP-2α
8 <u>0kD</u> a <u>1</u>	i 4 <u>6kD</u> a			100kDa
WB: AP-1 γ1 1 <u>75k</u> Da 58kDa	WB: AP-3 µ3	WB: HSC70		WB: GAPDH
	3 <u>0kD</u> a	46 <u>kD</u> a		
Fig. S4h				Fig. S5g
WB: pmTOR	WB: mTOR	WB:	pRaptor	WB: TrkB
1 <u>75k</u> Da	25 <u>0kDa</u> 17 <u>0kD</u> a	170	<u>KD</u> a	175kDa
WB: pS6	WB: S6	WB	: HSC70	46kDa —
5 <u>8kD</u> a	58kDa	100kD	a	WB: AP-2α
46kDa	46kDa	70kD	a	
30kDa	30kDa	35kD	8	80kDa —
25kDa	25k <u>Da</u>	25kD	a.	58kDa
Fig. S5i	Fig. S5I	Fig. S	6f	J Fig. S7e
WB: TrkB	WB: p75NGF	WB:	p150 ^{Glued}	WB: Caspase 3
13 <u>0kD</u> a 🛫 🚥	70kDa	25 <u>0k</u> Da		25kDa +
100kDa	WP: CAPDH	1 <u>30kDa</u>		15 <u>kD</u> a
WB: AP-2α	WB. GAPDH		Tubulin	
13 <u>0kD</u> a	35kDa:			10 <u>kD</u> a
100kDa	i L	5 <u>0kD</u> a		WB: AP-2α
				100kDa
WB: GAPDH				WB: GAPDH
35kDa				
houringing	1.2 M 12			35kDa

208 Supplementary Fig. 8. Full-size blots corresponding to cropped imaged presented in the

209 manuscript.