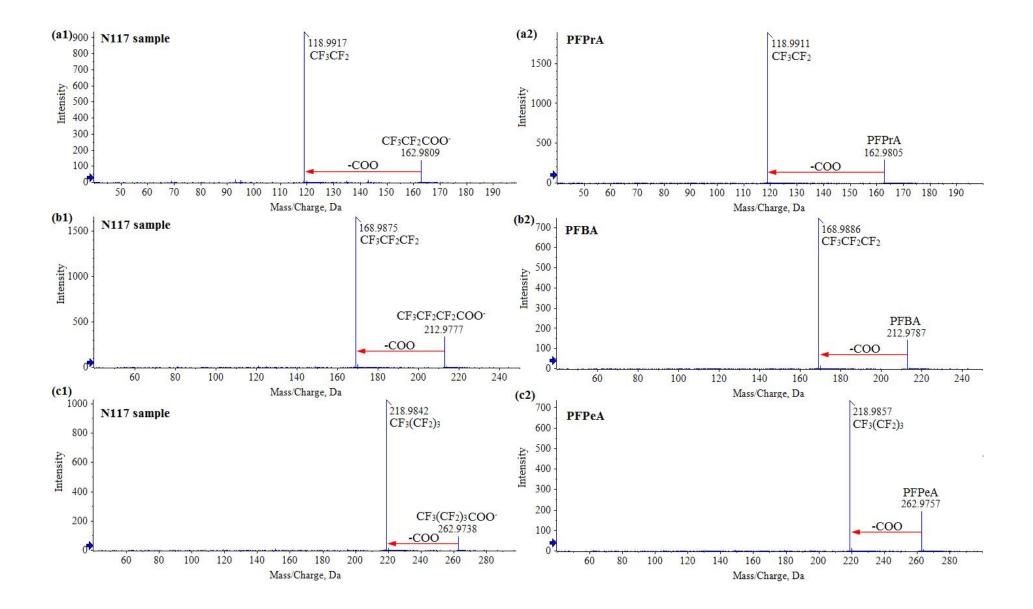
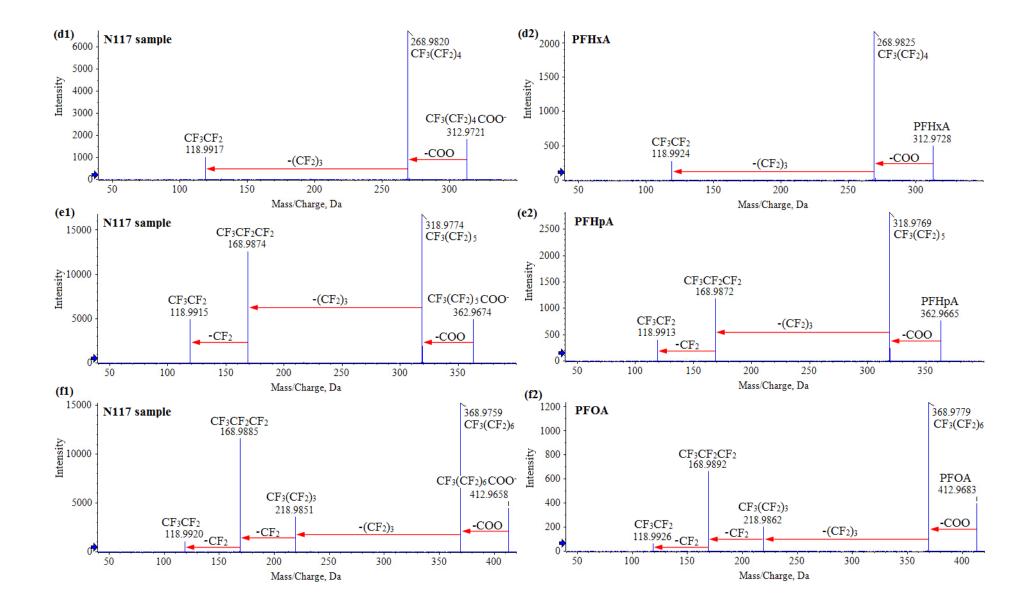
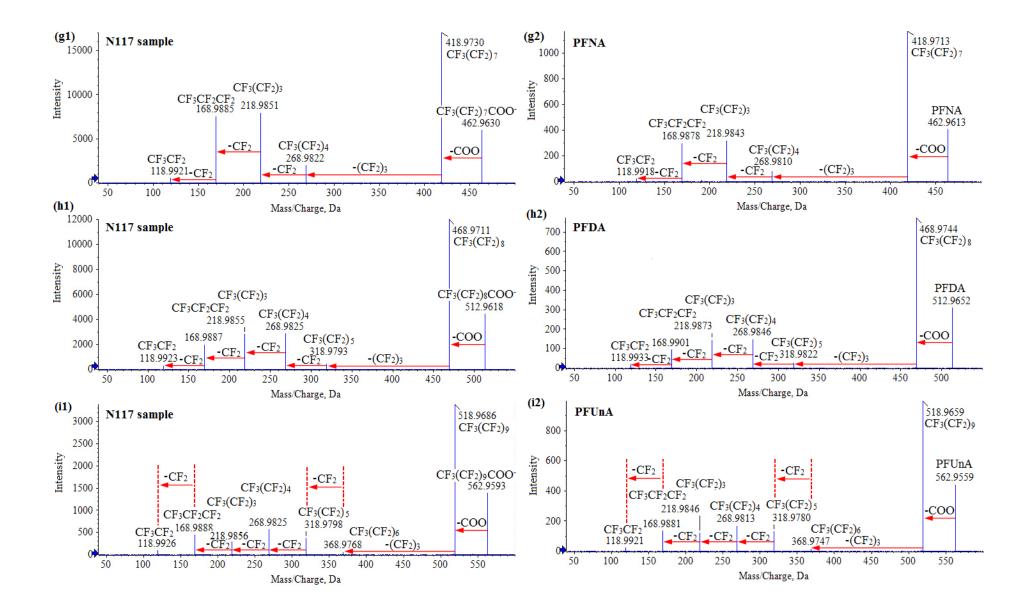
Supplementary Information

Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

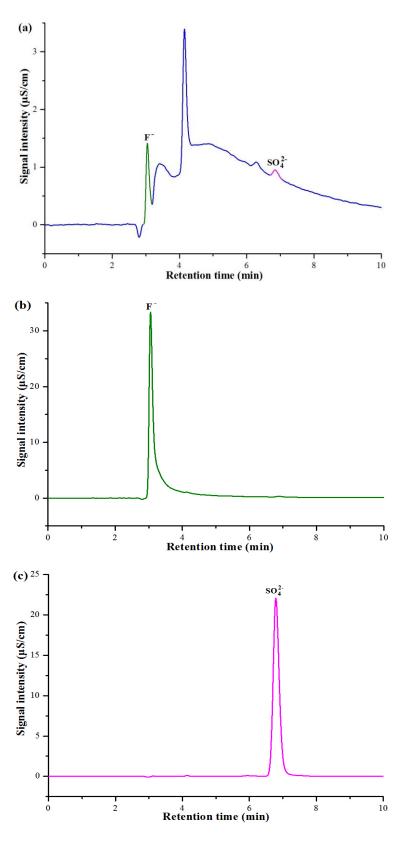

Mingbao Feng, Ruijuan Qu, Zhongbo Wei, Liansheng Wang, Ping Sun^{*}, Zunyao Wang^{*}

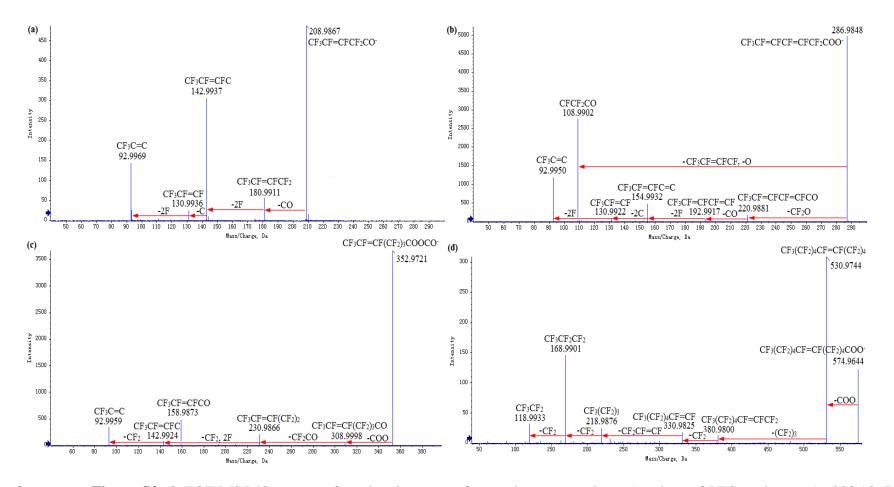

State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China

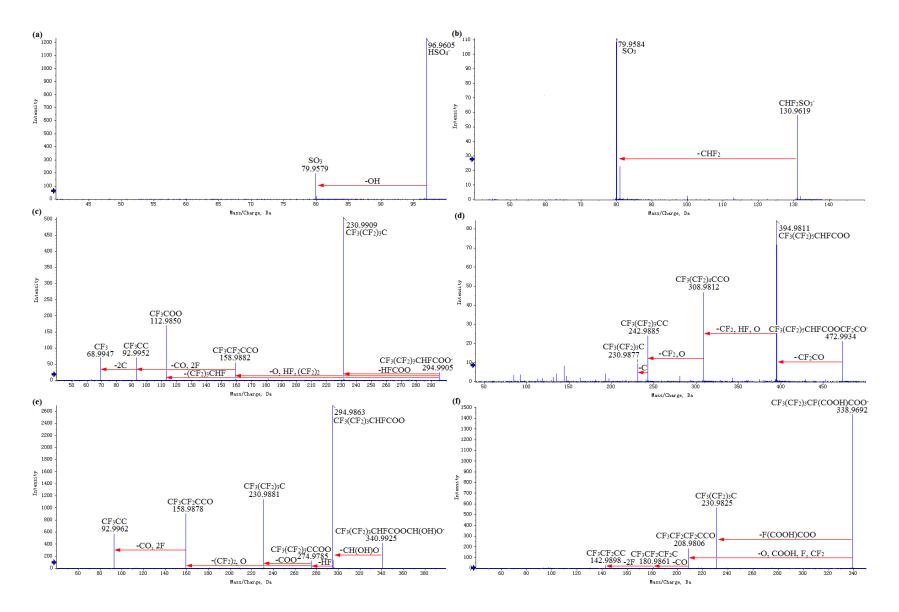

* Corresponding authors:

Dr. Zunyao Wang, Fax: +86-25-89680358; E-mail: <u>wangzy@nju.edu.cn</u>.

Dr. Ping Sun, Fax: +86-25-83686580; E-mail: <u>sunping@nju.edu.cn</u>.






Supplementary Figure S1. Q-TOF MS/MS spectra of product ion scan of selected m/z values (a1, 162.9809; b1, 212.9777; c1, 262.9738; d1, 312.9721; e1, 362.9674; f1, 412.9658; g1, 462.9630; h1, 512.9618; i1, 562.9593; l1, 612.9575) of N117 thermolysis products, and the validations by the corresponding standard solutions of PFCAs (a2, PFPrA; b2, PFBA; c2, PFPeA; d2, PFHxA; e2, PFHpA; f2, PFOA; g2, PFNA; h2, PFDA; i2, PFUnA; l2, PFDoA; 50 μ g L⁻¹ for each compound) and the proposed structures for their major fragments.

Supplementary Figure S2. The observed ion chromatogram (IC) of NaOH absorption solution (a), which indicates the formation of F^- and $SO_4^{2^-}$ ions during N117 thermolysis, NaF solution (20 mg L⁻¹; b) and Na₂SO₄ solution (20 mg L⁻¹; c).

Supplementary Figure S3. Q-TOF MS/MS spectra of product ion scan of several representative m/z values of PFC analogues (a, 208.9867; b, 286.9848; c, 352.9721; d, 574.9644), and the proposed structures for their major fragments.

Supplementary Figure S4. Q-TOF MS/MS spectra of product ion scan of selected *m/z* values of several other products (a, 96.9605; b, 130.9619; c, 294.9905; d, 472.9934; e, 340.9925; and f, 338.9692), and the proposed structures for their major fragments.

<i>m/z</i> , values	Molecular formula	Proposed chemical structures
208.9867	$C_5F_7O^-$	
180.9911	C_4F_7	
142.9937	C_4F_5	F F F F F
130.9936	C_3F_5	F F F F
352.9721	$C_8F_{11}O_3^{-1}$	F F F F F F F F F F
308.9998	C ₇ F ₁₁ O	F F F F F F F F F F
230.9866	C ₅ F ₉	F F F F F
142.9924	C_4F_5	F F F F F
574.9644	$C_{12}F_{21}O_{2}^{-1}$	F F F F F F F F F F F F F F F F F F F
530.9744	C ₁₁ F ₂₁	F F F F F F F F F F F F F F F F F F F
380.9800	C ₈ F ₁₅	F F F F F F F F F F F F F F F F F F F
330.9825	C ₇ F ₁₃	F F F F F F F F F F F F F F F F F F F

Supplementary Table S1. The proposed chemical structures of several other m/z values observed in this study, and their possible cleavage sites (highlighted in red).

Supplementary Table S2. Chemical names, formula and molecular structures (linear isomers) of PFCA analogues ($C_nF_{2n+1}COOH$, n = 1-11) of interest in this study.

Chemical name	Formula	Abbreviation	Molar weight (g mol ⁻¹)	Chemical structure
Trifluoroacetic acid	CF ₃ COOH	TFA	113.99	F F F F
Perfluoropropanoic acid	C ₂ F ₅ COOH	PFPrA	163.99	F F OH F F OH
Perfluorobutanoic acid	C ₃ F ₇ COOH	PFBA	213.99	F F F F
Perfluoropentanoic acid	C ₄ F ₉ COOH	PFPeA	263.98	F F F F OH F F F F F OH
Perfluorohexanoic acid	C ₅ F ₁₁ COOH	PFHxA	313.98	F F F F F OH F F F F F F F
Perfluoroheptanoic acid	C ₆ F ₁₃ COOH	PFHpA	363.98	F F F F F OH F F F F F F OH

Perfluorooctanoic acid	C ₇ F ₁₅ COOH	PFOA	413.97	F F F F F F OH F F F F F F F F OH
Perfluorononanoic acid	C ₈ F ₁₇ COOH	PFNA	463.97	F F F F F F F OH F F F F F F F F F OH
Perfluorodecanoic acid	C ₉ F ₁₉ COOH	PFDA	513.97	F F F F F F F F OH
Perfluoroundecanoic acid	$C_{10}F_{21}COOH$	PFUnA	563.96	F F F F F F F F F OH F F F F F F F F F F F F F F F F F F F
Perfluorododecanoic acid	C ₁₁ F ₂₃ COOH	PFDoA	613.96	F F F F F F F F F F F F F F F F F F F

Compound	Evolution Temperature, °C	mg g ⁻¹ Sample
SO ₂	280	15
CO_2	300	30
HF	400	- b
СО	400	3
R _f COF	400	10 ^c
COF_2	400	3
COS	400	Trace
R _f OH	400	Trace

Supplementary Table S3. The thermal degradation products of perfluorosulfonic acid copolymer ^a.

^a Cited from DuPont Fuel Cells¹.

^b Significant level but concentration could not be determined because HF reacts with and absorbs on cell walls.

^c Mixture of products.

Supplementary text

Chemical degradation mechanism of Nafion in fuel cells. Currently, the unzipping reaction has been termed as a commonly accepted chemical degradation mechanism. It is generally initiated by the attack of some radicals on the H-containing end groups, causing the release of HF and CO₂ and the formation of new carboxylate groups at the chain ends, and finally resulting in the membrane degradation^{2,3}. The proposed reactions between OH[•] and end groups -CF₂COOH are shown below (eq 1-3)^{2,4}.

$$R_{F}-CF_{2}COOH + OH \rightarrow R_{F}-CF_{2} + CO_{2} + H_{2}O$$
(1)

$$R_{F}-CF_{2} + OH \rightarrow R_{F}-CF_{2}OH \rightarrow R_{F}-COF + HF$$
(2)

$$R_{\rm F}\text{-}{\rm COF} + H_2 O \rightarrow R_{\rm F}\text{-}{\rm COOH} + {\rm HF}$$
(3)

Supplementary References

- DuPont Fuel Cells. Safe Handling and Use of Perfluorosulfonic Acid Products (Technical Information). (2009).
- Wu, J. F. *et al.* A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. *J. Power Sources* 184, 104-119 (2008).
- Danilczuk, M., Lancucki, L., Schlick, S., Hamrock, S. J. & Haugen, G. M. In-depth profiling of degradation processes in a fuel cell: 2D spectral-spatial FTIR spectra of Nafion membranes. *ACS Macro Lett.* 1, 280-285 (2012).
- Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. & Tisack, M. E. Advanced materials for improved PEMFC performance and life. *J. Power Sources* 131, 41-48 (2004).