Disruption of the Rice Nitrate Transporter OsNPF2.2 Hinders Root-to-Shoot Nitrate Transport and Vascular Development

Yuge Li^{1†}, Jie Ouyang^{2†}, Ya-Yun Wang³, Rui Hu^{1, 4}, Kuaifei Xia¹, Jun Duan¹, Yaqin Wang⁵, Yi-Fang Tsay⁶ & Mingyong Zhang^{1*}

¹Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; ²Rice Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; ³Department of life science, National Taiwan University, Taipei, Taiwan; ⁴University of Chinese Academy of Sciences, Beijing 100049, China; ⁵Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China; and ⁶Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan

[†]These authors contributed equally to this work.

* To whom correspondence should be addressed. E-mail zhangmy@scbg.ac.cn, tel. +86 20 3725 2891

Supplementary figure legends

Figure S1. Alignment of the amino-acid sequence for OsNPF2.2 to those of several nitrate and glucosinolate transporters from *Arabidopsis*.

Figure S2. Spatiotemporal expression profile of *OsNPF2.2* in various organs throughout the entire life cycle of rice under natural paddy conditions.

Figure S3. OsNPF2.2-RNAi phenotypic copy of the osnpf2.2 mutants.

(a) Relative expression level of the independent *OsNPF2.2*-RNAi transgenic lines by qRT-PCR analysis. (b-c) Comparison of the seedling growth between the *OsNPF2.2*-RNAi transgenic lines and the wild types (WT), bar = 2cm. (d) Panicle length comparison of the *OsNPF2.2*-RNAi transgenic lines and the wild types (WT), bar = 2cm. (e, f) Statistic analysis of panicle length and seed setting rate of the transgenic lines and the wild types.

Figure S4. Growth retardation of the *osnpf2.2* mutants when low or high levels of nitrate were supplied.

(a-c)The seedlings were grown in IRRI solution for two weeks with 0.2 mM (a), 1.4 mM (b) or 10 mM (c) nitrate as sole N source, bar = 2cm. (d) Statistic analysis of plant height under different concentration of nitrate. One or double asterisks indicate a significant difference (P < 0.05 or P < 0.01) of plant height (d) compared with the values of the wild types.

Figure S5. Cross sections of various organs from wild-type plants and the osnpf2.2

mutants.

Less and disordered arrangement of vascular bundles were observed in culms (a-d, bar: 50 μ m), leave blades (e-h, bar = 20 μ m), leave sheath (i-l, bar = 50 μ m), primary branches (m-p, bar = 10 μ m), anthers (q-t, bar = 50 μ m), and filaments (u-x, bar = 20 μ m) of the *osnpf2.2* mutants, compared with the wild types. WT, wild-type.

Cy3 signal intensity

