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Lagrange multiplier approach for tangential flows

We present a generic finite element approach allowing to address flows of finite surface-compressibility ηb.
We approximate the solution of vectorial equations set on a curved surface of R3. This also offers a framework
for future extensions of the method to non-Newtonian fluids.

Eq (3) must be solved for velocities v tangential to the surface Γ, which corresponds to the continuum
formed by the apical actomyosin cortices of cells and adherens junctions. In terms of solution spaces,

this constraint can be written as v ∈ Vt =
{
w ∈

(
H 1 (Γ)

)3 | w · n = 0
}

, where
(
H 1 (Γ)

)3
is the set of

vector-valued functions defined on Γ whose differential is square-integrable, and n is the outer normal to Γ.
Constraints such as the tangentiality of the solution can be implemented either by defining finite element
spaces that can satisfy the constraint (see e.g. the work by [1]) or by introducing a mixed finite element
approximation following e.g. [2]. Here we opt for the latter solution, which allows us to discretise vector
fields on the surface in the Cartesian system of coordinates rather than a curvilinear one.

Using an energetic formulation, it can then be shown that Eq (3) is equivalent to the constrained
minimisation:

v = arg inf
w∈Vt

E(w) (1)

where E is the rate of energy dissipation in the tissue, namely:

E(w) =

∫
Γ

cf
2
|w|2 ds +

∫
Γ

η |ε̇ (w)|2 ds +

∫
Γ

ηb

2
|∇Γ ·w|2 ds −

∫
Γ

f ·w ds

and f = ∇Γ · σa.
Our approach is to introduce a vector field θ that will act as a Lagrange multiplier to constrain the veloc-

ities v to be tangential. This field θ can be interpreted as the force needed to prevent normal deformations.
In order to do this, we first define θ by θ = γL (v) where L (v) = (v · n)y − ∇Γv · n, y is the curvature
vector defined as y = Tr(∇Γv)n, and γ is a strictly positive parameter. Then we note that Vt = kerL. The
problem can now be rewritten as an unconstrained saddle-point problem:

(v,θ) = arg inf
w∈V

sup
ξ∈Ξ

E(w) +

∫
Γ

(
L (w)− 1

γ
ξ

)
· ξ ds

where V =
(
H 1 (Γ)

)3
and Ξ =

(
L2 (Γ)

)3
, the set of square-integrable vector fields. We further introduce

the surface pressure p which enforces the finite compressibility of the actomyosin in the tangential plane,
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p = −ηb∇Γ · v. We can then write the problem as :

(v, p,θ) = arg inf
w∈V

sup
q∈Q
ξ∈Ξ

L (w, q, ξ)

where Q = L2 (Γ),

L (w, q, ξ) =
1

2
a(w,w) + b1(w, q) − 1

2
c1(q, q) + b2(w, ξ) − 1

2
c2(ξ, ξ) − `(w)

and a, b1, b2, c1 and c2 are the bilinear forms defined by :

a(v,w) =

∫
Γ

cfv ·w ds +

∫
Γ

2ηε̇ (v) : ε̇ (w) ds,

b1(w, q) =

∫
Γ

−q∇Γ ·w ds, c1(p, q) =

∫
Γ

1

ηb
pq ds,

b2(w, ξ) =

∫
Γ

L (w) · ξ ds, c2(θ, ξ) =

∫
Γ

1

γ
θ · ξ ds

and ` is the linear form define by : `(w) =

∫
Γ

f ·w ds. The saddle point can then be characterized as the

solution of the linear problem :

a(v,w) + b1(w, p) + b2(w,θ) = `(w) ∀ w ∈
(
H 1 (Γ)

)3
b1(v, q) − c1(p, q) = 0 ∀ q ∈ Q
b2(v, ξ) − c2(θ, ξ) = 0 ∀ ξ ∈ Ξ.

We show [3] that this problem has a unique solution in V ×Ξ×Q.

Mixed finite element approach

We solve the saddle point problem using the finite element method. This requires us to introduce a mesh
Γh approximating Γ. We use a triangular tessellation of second order, i.e. elements are curved triangles
described by a quadratic transformation and whose largest dimension is smaller than the mesh size h. This
ensures that the distance between any point of Γh and Γ is at most Ch3, where C is a constant independent
of h. Using this mesh, we define discrete functional spaces Vh, Ξh for vector fields vh, θh and Qh of scalar
field ph. We approach the saddle point problem using the following formulation :

ah(vh,wh) + b1,h(wh, ph) + b2,h(wh,θh) = `h(wh) ∀ wh ∈ Vh

b1,h(vh, qh) − c1,h(ph, qh) = 0 ∀ qh ∈ Qh

b2,h(vh, ξh) − c2,h(θh, ξh) = 0 ∀ ξh ∈ Ξh

where ah, b1,h, b2,h, c1,h and c2,h are bilinear forms approximating the original forms, defined by :

ah(vh,wh) =

∫
Γh

cfvh ·wh dsh +

∫
Γh

2ηε̇h (vh) : ε̇h (wh) dsh,

b1,h(wh, qh) =

∫
Γh

−qh∇Γh
·wh dsh, c1,h(ph, qh) =

∫
Γh

1

ηb
phqh dsh,

b2,h(wh, ξh) =

∫
Γh

Lh (wh) · ξh dsh, c2,h(θh, ξh) =

∫
Γh

1

γ
θh · ξh dsh

and `h is the linear form defined by `h(vh) =

∫
Γh

fh · vh dsh. The choice of the finite element spaces

cannot be made arbitrarily because it is a mixed problem. It requires a suitable choice in order for the
discrete problem converges towards the saddle point problem. Indeed, the discrete problem must verify
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Figure 1: Convergence test. The mesh is refined (from right to left) and the error on an arbitrary flow field
is seen to decrease. L2 error is the overall squared difference of calculated minus original velocity vectors,
pointwise (L∞) error is the length of the largest difference between calculated and original velocity vectors
over the whole mesh.

two conditions called inf–sup or Brezzi–Babuska conditions (see [4]) : first between the spaces Vh and Qh

through the bilinear form b1,h, then between the spaces Vh and Ξh through the bilinear form b2,h. In the
absence of theoretical results on spaces that may verify these conditions, the idea is to produce compatible
mixed finite element combinations in order to obtain the convergence. For this, we guided our choice by
similarity with choices for which inf–sup conditions are verified in the case of classical problems (such as
the three-dimensional Stokes problem).

Numerical validation

Next, finite element spaces Vh, Qh and Ξh must be specified. We base them on a triangular tesselation of
the surface Γ (see next section) and choose Lagrange finite elements of degree 3 for Vh, 2 for Qh and Ξh. We
then check that this choice leads to a convergent approximation of the solution of Eq (3). In order to do so,
we make an arbitrary choice of a velocity field on an arbitrary surface (a sphere), and calculate analytically
the prestress that would be needed to achieve such a velocity field. We then run simulations on a series of
meshes of decreasing triangle size h and monitor the evolution of the error v − vh. We show [3] that this
decreases quadratically when h decreases, leading to pointwise errors (i.e., in L∞ norm) smaller than 10−3

for all meshes of more than 104 elements (h = 0.05). For these numerical tests, we chose : cf = 10−5, η = 1,
ηb = 103 and γ = 107.

Finite element mesh of the Drosophila embryo and resolution

We first describe the embryo shape with an analytical function, and then introduce a procedure to create
a finite element mesh which will be fine enough to capture geometric details such as the cephalic furrow,
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while remaining of reasonable size in terms of the number of triangles (since the computational cost of our
algorithms increases like N log(N) with number of triangles N).

The analytical function describing the embryo shape Γ = {φ(x, y, z) = 0} is chosen as:

φ(x, y, z) = 1−

√(
x

RAP

)2

+

(
y

RDV

)2

+

(
z − 1

2cAPx2

RDV

)2

+DCFψCF

(
x− SCF z − xCF

WCF

)
where RAP is the half-length of the embryo in AP, RDV its maximum radius in a transverse cut, cAP a
curvature parameter corresponding to the curvature of the main axis of the embryo (defined as the locus
of the centre of all transverse cuts), and parameters indexed with CF correspond to the cephalic furrow.
When DCF = 0, the cephalic furrow is absent, and the geometry corresponds to an ellipsoid of major axis
along x, with radius RAP , and minor axes along y and z of equal radii RDV . The curvature parameter
flattens the dorsal side (z > 0). We take RDV = 1 as the reference adimensional length, RAP = 3RDV and
cAP = 0.1/RDV , which leads to a shape close to the one of actual embryos.

The cephalic furrow depth is described by DCF = 0.1RDV , its position along the x axis in the mid-
coronal plane z = 0 is given by xCF = −1.2RDV , and its inclination with respect to the (y, z) transverse
planes is set by SCF = 0.3. The cephalic furrow has a total width WCF = 0.1RDV (exaggerated compared
to real embryos, since a very thin and sharp feature would increase tremendously the computational cost),
its shape is described by the function

ψCF (s) =

{
exp

(
− 2

1−s2 + 2
)

if |s| < 1

0 else

which is infinitely derivable, leading to a very smooth profile.
The mesh generation is delegated to mmgs software [5], and the meshes used have around 46000 elements.

The numerical resolution of the problem on this mesh is implemented in the open-source free software
environment rheolef [6].

Microscopy and cell tracking

In Fig 1a we present data extracted from the tracking of GB extension in a wildtype embryo with the whole-
membrane markers resille-GFP and spider-GFP, as described in [7]. Imaging was done using multidirectional
selective plane illumination microscopy (mSPIM) [8], embryos were rotated to image four perpendicular views
which were reconstructed into a whole embryo image stack post acquisition [9]. Image stacks were acquired
every 30 seconds.

In order to monitor the displacement of each cell, we first sensed the shape of the surface of the embryo in
the three-dimensional mSPIM z-stack. We applied a grey-scale threshold to binarise the z-stack, highlighting
only cell membrane-labelled signal. A ‘blanket’ of a fine meshwork of line-segments was dropped in the
positive z direction down onto the embryo, until caught by cell membrane signal. This described the surface
of the embryo accurately with a curved mesh, located at the apices of the embryonic epithelium. We used
this embryo surface ‘blanket’ to extract curved image layers, with deeper layers shrinking progressively in
single pixel steps in the direction normal to the local embryonic surface, towards the centre of the embryo
[10]. The radial depth giving the clearest view of the cell outlines of the embryonic epithelium was selected
for tracking. Automated cell tracking with manual correction was performed using custom software written
in ‘C’ and Interactive Data Language (IDL, Harris Geospatial). This tracked all cells in the chosen curved
layer over time, identifying cell outline shapes and links forwards and backwards in time in an iterative
process using an adaptive watershedding algorithm [11, 12]. From each cell shape we calculated the location
of the cell centroid (centre of mass). The coordinates of cell centroids, perimeter shapes, and links forwards
and backwards in time were stored for all cells at each time point.

Using the relative movements of cell centroids, local tissue 2D rate-of-strain tensor (deformation rate)
was calculated for small spatio-temporal domains focused on every tracked cell at each time point [11]. Local
domains were composed of a focal cell and one corona of neighbouring cells over a 30 s interval (between
successive frames). Local domains were first un-tilted according to the orientation of the local embryo
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surface and stretched to minimize artifacts caused by the local Gaussian curvature. All strain rates were
then projected onto the embryonic axes, AP and DV. The rate of local area change was calculated as the
trace of the 2D tissue strain rate tensor.
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