Supplementary Figure Legends

Figure S1. Ectopic expression of Star-PAP inhibits growth of SUM-159PT cells. (a) Ectopic expression of Star-PAP was determined by western blot. β-Tubulin was used as the loading control. (b) SUM-159PT cells transfected with pCDNA3.1-Star-PAP were plated 5 000 cells/well, and colonies were stained with crystal violet. Representative images were shown (upper panel), and data from two replicate experiments were normalized and presented as mean \pm SD (lower panel). **p < 0.01. (c) Star-PAP inhibited proliferation of SUM-159PT cells. Cells were plated after transfection. Proliferation of cells was analyzed by MTS assay. Data were normalized to day 0. n=6, **p < 0.01.

Figure S2. Star-PAP correlates with prognosis of breast cancer patients. KM-plotter was exploited to investigate the correlation between Star-PAP levels and clinical prognosis. Kaplan-Meier analysis of relapse-free survival of breast cancer patients stratified by the expression levels of Star-PAP was shown. Four major breast cancer subtypes were investigated. **(a)** Basal-like. **(b)** Her2-enriched. **(c)** Luminal A. **(d)** Luminal B. Number of patients, log-rank p value and hazard ratio (HR) were shown.

Figure S3. Doxycycline-induced overexpression of Star-PAP inhibits proliferation and induces apoptosis of MDA-MB-468 cells. (a) MDA-MB-468 Tet-On control and Star-PAP cells were treated with 200 ng/ml doxycycline. BIK mRNA level was detected by qPCR. Data from triplicate experiments were presented as mean \pm SD. (b) Star-PAP inhibited proliferation of MDA-MB-468 cells. Tet-On control and Star-PAP cells were plated and induced with doxycycline immediately. Proliferation of cells was analyzed by MTS assay. Data were normalized to day 0. n=6, **p < 0.01. (c-d) Doxycycline-induced overexpression of Star-PAP induced apoptosis of MDA-MB-468 cells. Tet-On control and Star-PAP cells were induced with doxycycline and analyzed by Annexin V/propidium Iodide Apoptosis Assay. Data from two replicate experiments were presented as mean \pm SD. Dox, doxycycline.

Figure S4. Star-PAP sensitizes SUM-159PT cells to chemotherapy drugs. **(a-b)** SUM-159PT cells transfected with pCDNA3.1-Star-PAP or vector were treated with cisplatin and doxorubicin separately. Cell viability was measured by MTS assay. Dose-response curves were plotted. n = 6, error bar denotes SD. **(c-d)** SUM-159PT cells transfected with pCDNA3.1-Star-PAP or vector were treated with doxorubicin and DMSO, respectively. Apoptosis was analyzed by flow cytometry. Data from two replicate experiments were presented as mean \pm SD. DXR, doxorubicin.

Figure S5. Star-PAP knockdown promotes proliferation of mammary epithelial cells MCF10A. (a) Knockdown of Star-PAP in MCF10A cells was examined by western blot. Two independent siRNAs were used for transfection. β-Tubulin was used as the loading control. (b) Knockdown of Star-PAP in MCF10A cells was examined by qPCR. Two independent siRNAs were used for transfection. mRNA levels were normalized to

control and presented as mean \pm SD (n = 3). (c) MCF10A cells were plated in 96-well plates after transfected with two independent siRNAs. Proliferation of cells was analyzed by MTS assay, and data were normalized to day 0. n=5, **p < 0.01, error bar denotes SD. (d) BIK mRNA was examined by qPCR after Star-PAP knockdown. Two independent siRNAs were used for transfection. mRNA levels were normalized to control and presented as mean \pm SD (n = 3).