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Appendix E: Mechanistic Biological Interpretation of the Results 

Our study of genetic variants identified four SNPs: Rs1800469 (TGF-β1), Rs4803455 (TGF-β1), 

Rs1799983 (NOS3), and Rs6494633 (SMAD3) that were specifically prominent in our dataset.  Rs1800469 

(−509 C/T) is a SNP within the promoter of polymorphisms of the transforming growth factor beta1 (TGF-

β1), a multifunctional growth factor involved in wound healing and radiation pneumonitis [1, 2].  All 49 

SNPs in the SMAD3 gene were examined to identify eight haplotype blocks within the gene, and significant 

associations between haplotypes and overall survival were observed for haplotype block 5 of SMAD3 

including Rs6494633 (intron G/A) [3].  SMAD3 is a TGF-β1-dependent nuclear transcription factor and 

has been recently described as a key down-stream mediator in fibrotic signaling pathways [4].  In addition 

to activating extracellular matrix synthesis, SMAD3 appears to mediate the inhibitory activity of TGF-β1 

on matrix-degrading enzymes and increase expression of matrix metalloproteinase inhibitors [5].  

Additionally, it has been proposed that SMAD3 is up-regulated through a TGF-β1-dependent pathway and 

acts as an important transcription factor during the fibrotic process following radiation injury [4].  

Moreover, Flanders et al. proposed that SMAD3 plays a unique role in the cellular and tissue responses to 

wounding, and attenuation of SMAD3 signaling may improve wound healing in previously irradiated skin 

[6].  Hildebrandt et al. found that Rs1799983 in NOS3 genotype was associated with a 70% reduction in 

risk of pneumonitis, and their study also demonstrate a dose-related effect in inflammation-related SNPs 

[7].  Based on the pre-treatment BN data, all the above identified SNPs were primarily negatively associated 

with dosimetric parameters (Fig. 3a), whose intra-relationships minimally altered even during treatment 

(Fig. 5a).  Additionally, during treatment, we have identified a negative association between 

smad3_Rs6494633 and Interferon-gamma (IFNϒ), which impacted RP2 prediction via regulating TGF-β1 

(Fig. 5a).  Previous study identified a negative correlation between SMAD3 and IFNϒ, where loss of 

SMAD3 upon genetic ablation caused increased IFNϒ production by natural killers (NK) cells following 



treatments with CD-16 and IL-12 [8].  Taken together, these findings support the relationships between 

SNPs and RP2 identifed in our BNs (Figs. 3a and 5a).   

Damage caused by radiotherapy, such as RP, likely results from the interaction between pro- and 

anti-inflammatory cytokines, whether the inflammation occurs and to what severity depends on the inter-

balance between these two categories of cytokines [9].  The role of IL-2 in the inflammatory process is 

complex, and the balance between the IL-2 pro- and anti-inflammatory effects is critical for an appropriate 

mounting and resolution of immune responses [10].  There is increasing evidence to suggest that IL-15 may 

play an important role in protective immune responses such as allograft rejection and the pathogenesis of 

autoimmune diseases, where mononuclear cell infiltration is its hallmark feature [11].  IFNϒ is a cytokine 

that is produced primarily by activated CD4+ or CD8+ T cells and NK cells and is recognized as chief 

mediator of innate as well as adaptive immunity[12].  Among the biological activities of IFNϒ, activation 

of macrophages is of key importance and IFNϒ upregulates a variety of pro-inflammatory parameters such 

as IL-15[13].  Desai et al. have evaluated the cytokines secretion profile of human lung tumor cells, to 

compare their cytokine profile either before or after acute (6 Gy) and fractionated doses (3×2 Gy), and they 

observed that the secretion of certain cytokines was cell line-specific and that TGF-β1 was highly 

represented in irradiated conditioned medium rather than IFNϒ.  In addition, in all the cell lines studied, 

they showed that TGF-β1 increased markedly in a dose dependent manner[14, 15].  These findings 

corroborate the interactions found among dosimetric information, pre- and during cytokines shown in our 

BN (Fig. 5a). Moreover, our previous work demonstrated that patients who developed RP2 following 

radiotherapy had higher plasma TGF‑β1 levels compared with those prior to radiotherapy, unlike patients 

who did not develop RP2 [16], confirming the relatioship between SLP_TGF_β1 and RP2 observed in the 

BN at mid-treatment timepoint. 

Furthermore, our study of genetic expression parameters identified two microRNAs (miR-223-3p 

and miR-191-5p) as upstream regulators of various cytokines.  Both of them are among the top 25 

microRNA up-regulated in non-muscle-invasive Bladder Cancer according to white blood cells (WBC)-



derived bio-specimen source[17].  Liang et al. showed that miR-223 overexpression down-regulates ATM 

expression and sensitizes U87 cells to radiation in vitro and in vivo[18].  In contrast, miR-223 is upregulated 

in T cell acute lymphocytic leukemia (T-ALL), Epstein–Barr virus (EBV)-positive diffuse large B-cell 

lymphoma, and metastatic gastric cancer [19].  Mir-191 is one of the highly expressed and stable miRNA 

in human serum or saliva [20].  It has been found to be differentially expressed in lung cancer patients; 

however, it was shown to not alter cell cycle, proliferation or chemo-sensitivity of lung cancer cell lines[21, 

22].  In the context of inflammatory response, miR-191 has been shown to be involved in human NK cell 

activation through IL-2 and IL-15 stimulations[23]; and this relationship is also captured in the BNs (Figs. 

3a  and 5a).      
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