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SUPPLEMENTARY NOTE 

1. Mathematical framework for generating survival times 

Given a hazard function, under certain conditions it is possible to simulate the 

corresponding survival times analytically. The cumulative distribution of survival times  

 ( )     ( ) follows a uniform distribution between 0 and 1 (Bender et al. 2005). Since 

      (   )       (   ),  ( )      ( )  
∑  
       (   ), survival times are equal to the 

inverse cumulative hazard function acting on a random uniformly distributed variable (here 

x represents the covariate vector, and β – corresponding hazard ratios): 
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This expression can be used to generate the survival time of any Cox model, as long as 

the inverse cumulative hazard function is known. For the Gompertz model used in the 

simulations presented here, the equivalent formula is: 
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This formula can be used to generate survival times only when the effects of each risk 

factor are constant. With time-varying covariates, equivalent closed-form expressions are 

available only under certain conditions. Austin (Austin 2012) provides several such 

formulas, namely, for proportionally increasing or decreasing covariates (i.e., when 

 ( )    ) and for covariates that flip between two states, e.g., untreated → treated → 

untreated. The latter formulas rely on piecewise definitions of the inverse cumulative 

hazard function. The main limitation in using these expressions is that covariate values 
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may only change at the knots1. For the simulation models of our study, this limitation would 

mean that the sensitivity periods of simulated risk factors must not overlap in time and 

have sharp „on‟ and „off‟ steps, instead of gradual increase and decrease of effect. We 

believe this would be a gross oversimplification of real developmental genetics. Thus, we 

opted to use the closed-form expression only in simulations with constant-effect genetic 

risk factors alone. 

2. Parameter estimation 

For each model, the following algorithm was used to estimate the lowest cost and 

parameters associated with it: 

1. Draw 1000 input parameter combinations 

2. Simulate the model with 1 replication for each input 

3. Select 50 input combinations that result in lowest costs and determine the range of 

corresponding ∑    values 

4. Draw new parameter combinations and exclude any inputs resulting in ∑    

values outside the range defined in step 3 

5. Repeat step 4 until 500 input combinations for 2-parameter models (M1, M3) or 

250,000 for others (M2, M4) are obtained 

6. Simulate the model with 1 replication for each input 

7. Test 20 best input combinations with 20 replications 

The best cost reported for each model is the best average of costs from 20 replications 

performed in step 7. ∑    was chosen as the predictor for metamodeling, since we 

observed that it showed a quadratic relationship with the model cost, resulting in a easily 

                                                

1
 Some confusion may arise as the formulas elsewhere generally refer to fixed effect sizes βx and 

time-variant covariates x(t), while our simulations use fixed covariates Gi and time-variant effect 

sizes, γi(t). However, as these variables always enter the model as a product                 , 
both approaches are mathematically equivalent. 
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identifiable minimum. (See Figure S2 for an example of this prediction.) It is also closely 

related to the mean genetic effect of each individual, as the expected value of a genotype 

composed from two 0/1 alleles is 2np. 

As our models are stochastic, each simulation uses synchronized random number 

streams, or common random numbers (CRNs). The streams are not synchronized between 

replicated simulations of the same input. In this way, the observed variance of cost is 

reduced, and more closely reflects the „true‟ variance caused by parameter differences 

(see Kleijnen 2015 for more details on CRNs). 

Number of combinations used in step 4 was chosen to maintain comparability between 2-

parameter and 4-parameter models – increasing number of tested inputs as km, where m is 

the number of parameters, ensures the same sampling density for all models (Hastie et al. 

2009). The choice of k was assessed by bootstrap as follows. Model M1 was simulated 

10,000 times with random parameters (limited by the ∑    boundaries determined 

previously) to generate a distribution of costs, and 100 samples of size k were drawn from 

this distribution. We vary k and observe how frequently these samples contain the “true” 

lowest cost among the 10,000 replicates, and how far the average minimum observed per 

one sample of k simulations deviates from the “true” lowest cost (Figure S3). 

3. Sensitivity analysis 

We performed a sensitivity analysis to evaluate how the fit of model M3 is affected by the 

choice of parameter values for varying-effect loci. Each of the 12 tested parameters was 

perturbed individually in both directions by -3 to +3 days (for μ) or -3 to +3 % of the best-fit 

value (for p and γ). Parameters for the constant-effect locus were fixed at their best-fit 

values. 10 iterations were performed for each parameter value. Resulting GA quantiles 

were averaged across the iterations to produce Figure S5.  

  



Time-variant genetics and preterm birth 

4 
 

LITERATURE CITED 

Austin, P. C., 2012 Generating survival times to simulate Cox proportional hazards models with 

time-varying covariates. Stat. Med. 31: 3946–3958. 

Bender, R., T. Augustin, and M. Blettner, 2005 Generating survival times to simulate Cox 

proportional hazards models. Stat. Med. 24: 1713–1723. 

Hastie, T., R. Tibshirani, and J. Friedman, 2009 The Elements of Statistical Learning. Springer New 

York, New York, NY. 

Kleijnen, J. P. C., 2015 Design and Analysis of Simulation Experiments. Springer. 

  



Time-variant genetics and preterm birth 

5 
 

SUPPLEMENTARY FIGURES AND TABLES 

 

Figure S1. Dynamics of the baseline survival model. Grey histogram – actual gestational 

age data, observed in the entire Swedish Medical Birth Register (>1.3 million 

observations). Corresponding density of gestational ages, simulated using the baseline 

Gompertz model with optimal parameters, is shown in blue. Remaining curves show the 

simulated “hazard” to be born, corresponding cumulative “hazard”, and proportion of 

fetuses remaining in utero at each day of gestation. As all these functions are measured in 

different units and were rescaled for presentation purposes, y-axis is shown without scale. 
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Figure S2. A – Metamodeling of cost as a quadratic function of predictor ∑   , model M1. 

Best-fit parabola                       is shown in blue. Since a clear minimum 

is observed, metamodeling allows to constrain the parameter space to a certain range of 

predictor values. Highlighted section is shown in detail in B. Red lines indicate the 

minimum and maximum predictor values (-0.098 and 0.1277, respectively) observed for 

top 50 results. Only parameter combinations having ∑    within these boundaries will be 

tested when searching for the best fit of this model. Note also that a clear lower limit of cost 

exists for each predictor value, while the upper limit is less defined. 
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Figure S3. Choice of 500 simulations per model was assessed by bootstrapping samples 

of various size from 10,000 simulations of M1. Boxes show the median and interquartile 

range of minimum cost observed in each sample. Using <3000 simulations, most of the 

samples did not contain the “true” minimum observed among 10,000 simulations. However, 

the average difference between the “true” minimum and the lowest cost in samples of 500 

simulations was only about 80 units, therefore, to save computing time, this number was 

chosen for further use. 
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Figure S4. Comparison of different simulator types. X axis represents 20 best 

combinations of inputs for model M2, determined by iterative simulator. For each input 

combination, 20 replications were simulated with both simulators (dots). 
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Figure S5. Sensitivity analysis of model M3. Each panel shows simulation results 

produced by perturbing one parameter (indicated in the corner). Perturbations range from -

3 to +3 % of the initial value (for γ and p), or from -3 to 3 days (for μ). High overlap between 

curves, as seen in γ and p parameter plots, indicates that the results are relatively 

insensitive to the choice of these parameter values. In contrast, timing of the late-acting 

locus (μ5) can have a stronger effect on the simulation results. 
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Term β SE(β) p-value 

(Intercept) 308.4 3.1 <10-6 

Parity 2 0.215 0.02 <10-6 

3 0.468 0.03 <10-6 

≥4 -0.196 0.04 9.99×10-6 

Gender (female) -0.208 0.09 <10-6 

Maternal height, per 1 cm 0.114 0.002 <10-6 

Birth year, per 1 year -0.0249 0.002 <10-6 

Maternal weight, per 1 kg 0.0337 0.001 <10-6 

Marital status (other than married) -0.0326 0.04 0.37 

Maternal age ≤20 years -0.328 0.05 <10-6 

>25, ≤30 years 0.294 0.05 <10-6 

>30, ≤35 years 0.530 0.05 <10-6 

>35 years 0.234 0.06 <10-6 

Mother born not in Sweden -0.293 0.02 <10-6 

Smoking 1-9 cigarettes/day -0.852 0.04 <10-6 

≥10 cigarettes/day -1.837 0.05 <10-6 

Table S1. Coefficients, standard errors and p-values obtained from multivariable linear 

regression model, used to adjust gestational age. Coefficients for categorical variables 

represent differences in gestational age in days, compared to a corresponding reference 

group of primiparous, married, Swedish-born, non-smoking mothers between 21-25 years, 

having a male child. 

Distribution function Best fit parameters AIC score of best fit 

Exponential rate=7.712×10-3 15,402,346 

Weibull shape=15.88, scale=1.669×10-34 9,680,240 

Gompertz shape=0.1212, rate=1.026×10-8 9,640,465 

Table S2. Parameters and AIC scores obtained from fitting three survival distribution to the 

gestational ages observed in Swedish MBR. Values are presented following the 

parameterization used in „flexsurv‟ R package. 
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γ n p mean cost SD of cost 

2.21 1 0.019 796 51.2 

2.01 3 0.00795 819 45.5 

2.22 2 0.0117 824 77.0 

3.36 1 0.00907 840 56.5 

2.35 1 0.0262 935 29.9 

2.69 2 0.00964 946 47.9 

2.25 1 0.0292 960 37.5 

2.48 3 0.00856 998 20.4 

2.09 1 0.0375 1030 26.4 

2.60 3 0.00804 1030 23.2 

Table S3. 10 input parameter combinations resulting in the lowest costs for model M1. 

Mean and SD represent the average and standard deviation of costs obtained from 20 

replications. 

γ1 n1 p1 γ2 p2 mean cost SD of cost 

2.56 2 0.00857 -0.326 0.043 655 19.9 

-0.36 1 0.0242 2.79 0.0133 671 17.6 

-1.42 1 0.00398 2.57 0.0147 671 23.6 

-0.101 1 0.218 2.72 0.0163 685 19.8 

-0.314 1 0.0734 2.50 0.0189 688 24.3 

2.80 3 0.00399 0.808 0.00273 688 29.6 

-0.547 1 0.0346 2.56 0.0182 695 32.5 

0.15 3 0.00878 2.60 0.0142 699 48.2 

-0.058 2 0.286 2.41 0.0239 702 16.8 

-0.075 2 0.197 2.42 0.0205 706 22.4 

Table S4. 10 input parameter combinations resulting in the lowest costs for model M2. 

Mean and SD represent the average and standard deviation of costs obtained from 20 

replications. 
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γ n p mean cost SD of cost 

0.851 1 0.211 338 30.0 

0.817 1 0.225 348 44.6 

0.892 2 0.101 351 36.2 

0.82 1 0.225 355 34.9 

0.763 1 0.252 362 36.5 

0.79 2 0.109 366 28.9 

0.97 2 0.0932 369 47.9 

0.952 3 0.0632 373 34.2 

0.746 4 0.0638 373 38.8 

0.655 2 0.136 374 40.7 

Table S5. 10 input parameter combinations resulting in the lowest costs for model M3. 

Mean and SD represent the average and standard deviation of costs obtained from 20 

replications. 

γ2 γ3 γ4 γ5 mean cost SD of cost 

2.87 -0.237 -0.208 -0.519 1010 19.6 

3.02 -0.495 -0.417 -0.386 1020 23.0 

2.82 0.0863 -0.319 -0.45 1020 31.0 

2.8 -0.253 -0.844 -0.436 1020 29.9 

2.52 -0.223 -0.036 -0.487 1030 28.8 

2.65 -0.707 -0.109 -0.488 1030 38.2 

2.92 -1.63 -0.0547 -0.462 1040 27.5 

2.91 -2.58 -0.571 -0.404 1070 23.5 

2.39 -0.409 -0.931 -0.397 1080 37.2 

2.5 -1.26 0.213 -0.501 1090 29.2 

Table S6. 10 input parameter combinations resulting in the lowest costs for model M4. 

Mean and SD represent the average and standard deviation of costs obtained from 20 

replications. 
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Model Sample size 
T1E rate with 

MAF=0.01 
T1E rate with 

MAF=0.3 

Linear 

100 0.055 0.049 

200 0.065 0.052 

500 0.053 0.059 

700 0.049 0.043 

1000 0.052 0.049 

5000 0.050 0.062 

10000 0.054 0.048 

50000 0.056 0.054 

Cox 

100 0.097 0.057 

200 0.080 0.053 

500 0.062 0.058 

700 0.051 0.049 

1000 0.059 0.055 

5000 0.044 0.053 

10000 0.064 0.053 

50000 0.053 0.039 

Table S7. Type I error rate calculations. Two non-causal SNPs were tested by linear or 

Cox regression models, while the phenotype was simulated by model M3 with best-fit 

parameter values. Reported numbers are fractions of p-values below 0.05. The error rate 

holds at the expected value around 0.04-0.06 for most scenarios, except when the Cox 

model is applied to loci with 1-2 counts of the minor allele. 

 


