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1 Epidemiological Data

1.1 Data on seasonal influenza disease burden

The seasonal influenza epidemics were captured via two distinct data sets. Firstly, the magnitude of each
epidemic season was given through the influenza attributable number of medically attended acute respiratory
infections (MAARI), i.e. the number of influenza excess consultations as estimated in the work by an der Heiden
et al. [1]. Secondly, the subtype distribution within each season was derived from virological surveillance data
from the National Reference Centre for Influenza located at the Robert Koch Institute. Both of these data
sources are also displayed in the annual reports of the German working group on influenza (Arbeitsgemeinschaft
Influenza, AGI) (e.g. [32]).

1.1.1 Syndromic surveillance: Influenza attributable excess MAARI

The number of influenza attributable excess MAARI, i.e. the I-MAARI, is estimated based on data from the syn-
dromic sentinel surveillance system of the AGI. The syndromic surveillance measures the age-specific MAARI
incidence over the course of each season in Germany.

The influenza attributable proportion among all MAARI was then estimated by utilizing a time series modelling
approach as it was described in an der Heiden et al. [1]. The influenza-attributable excess MAARI were defined
as the difference between the actual MAARI (measured though the sentinel network) and an estimated baseline
within each epidemic season.

The resulting estimates thus provided data on the number of medically attended influenza cases D(s)
t,a for each

season1 s ∈ {2004, . . . ,2009,2011, . . . ,2014}, week2 t ∈ {−12, . . . ,30} and age group a. The AGI considers
five age groups: 0-4 years of age (y), 5-14 y, 15-34 y, 35-59 y and ≥60 y. The I-MAARI data D is shown in
Figure S1.

1.1.2 Virological surveillance

Data on subtype distribution was provided by the National Reference Centre for Influenza and is displayed in
the annual AGI reports, e.g. [32]. Each season the reference centre examined a set of specimen (submitted from
practitioners participating in the sentinel system) and examined whether the specimen was influenza positive
and, if so, determined the influenza subtype.

The possible subtypes were the two types of influenza A (i.e. AH1N1 and AH3N2) and influenza B. The
AH1N1 type either referred to the pandemic variant AH1N1pdm09 or to the pre-pandemic variant AH1N1prepan
for the seasons following and prior to the year 2010, respectively. With beginning of the season 2008/09, data
from the reference centre also distinguished between the two lineages of influenza B (Yamagata and Victoria).
For the seasons prior to 2008/09 we assessed the distribution of the B-lineages from the seasonal AGI reports.

Nevertheless, we required data on influenza-positive tests for each B-lineage for the epidemic seasons prior to
2008/09. Thus, we assigned each influenza-B positive specimen to one of the two B-lineages with probability
equal to the season-specific lineage share. For instance, for the season 2005/06 each specimen positive for

1e.g. s = 2004 denotes the season 2003/2004, etc.
2e.g. t = 0 denotes the last week of calendar year leading into the season, t = 1 denotes the second to last week of that year, etc.
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Figure S1: Age-stratified number of weekly I-MAARI for each season from 2003/2004 until 2013/14. (The pandemic
season was excluded from the analysis). The year displayed in each subfigure refers to the later half year of the epidemic
season.

influenza B was assigned to the B-Victoria lineage with a probability of 90%. Otherwise, it was assigned to the
B-Yamagata lineage.

According to the AGI reports, apart from the season 2005/06 there was no other epidemic season with consid-
erable cocirculation of both B-lineages prior to 2009. Thus, the random lineage assignment of the B-positive
specimen has only marginal impact on the virological data.

The resulting virological data consisted of numbers on overall influenza positive specimen and its distribution
over the four considered subtypes P (s)

t,a = (P(s),AH1N1
t,a ,P(s),AH3N2

t,a ,P(s),B-Vic
t,a ,P(s),B-Yam

t,a ) (i.e. the two A types and
the two B-lineages), stratified by seasons s ∈ {2004, . . . ,2009,2011, . . . ,2014}, week t ∈ {−12, . . . ,30} and
seven age groups a. These seven age groups were 0-1 y, 2-4 y, 5-14 y, 15-34 y, 35-49 y, 50-59 y and ≥60 y.
The virological data P (pooled over all age groups) is displayed in Figure S2.
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Figure S2: Subtype-specific weekly number of influenza positive specimen as provided by the National Reference Centre
for each season from 2003/2004 until 2013/14. (The pandemic season was excluded from the analysis). The year displayed
in the title of each subfigure refers to the second half year of the season.

1.2 Demographic data

Data on population counts with respect to yearly age groups was obtained from the Federal Bureau of Statistics
[11]. This data covered all years from 2000 up to 2012. To generate population count data for the years 2013
and 2014 we extrapolated the yearly birth cohorts, i.e. the year-specific number of people younger than one
year of age. Then we extrapolated the size of existing one-year wide age cohorts into the years 2013 and 2014,
subject to the observed survival rates and possible immigration rates.

For instance, to estimate the number of 10 year old children in 2013 we first estimated the rate of change
between the population sizes of 9 year old children and 10 year old children for all years from 2001 to 2012.
These change rates were then extrapolated to the year 2013 using a linear model. This extrapolated change rate
was then applied to the cohort of 9 year old children in 2012 to obtain an estimate for the number of 10 year
old children in 2013. This procedure was performed for all one-year wide age cohorts from 1 to 100 years of
age and subsequently for both years 2013 and 2014. The resulting population counts as they were applied in
the model are displayed in Table S1.
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Table S1: Season-specific data/estimates on population counts for five-year age bands in Germany.
Seasonal population counts (in 1,000)

Age Season
group 03/04 04/05 05/06 06/07 07/08 08/09 10/11 11/12 12/13 13/14

0-4 4435 4346 4245 4192 4154 4117 4089 4108 4073 4031
5-9 3984 3972 3963 3896 3797 3714 3575 3529 3503 3490

10-14 4459 4296 4110 4036 4009 3981 3973 3922 3828 3748
15-19 4770 4810 4853 4782 4660 4501 4177 4125 4095 4058
20-24 4919 4930 4886 4881 4876 4927 5066 5044 4934 4775
25-29 4713 4757 4856 4923 4965 4979 4997 5050 5082 5164
30-34 5650 5287 4997 4787 4686 4691 4870 4982 5063 5113
35-39 7111 6928 6678 6389 6020 5599 4986 4813 4744 4779
40-44 6964 7105 7174 7198 7153 7033 6636 6379 6037 5640
45-49 5996 6152 6330 6513 6680 6867 7093 7137 7113 7013
50-54 5496 5554 5593 5676 5761 5875 6213 6408 6587 6785
55-59 4384 4467 4819 5072 5231 5331 5432 5519 5611 5732
60-64 5417 5141 4618 4257 4202 4180 4603 4852 5008 5110
65-69 4882 5110 5292 5378 5242 5064 4318 3981 3937 3927
70-74 3414 3518 3670 3881 4123 4410 4805 4895 4777 4626
75-79 2835 2895 2938 2945 2935 2891 3136 3314 3541 3812
80-84 1909 1965 1985 2001 2028 2097 2191 2209 2179 2137
85-89 720 761 879 998 1088 1138 1199 1225 1266 1315
90-94 353 354 342 323 306 310 386 422 461 496
95-99 73 72 71 72 72 77 82 89 94 101

1.3 Vaccination coverage

Age and seasons specific vaccination coverage rates were based on statutory health insurance claims data which
were routinely collected at the Robert Koch Institute [31].

These data contained numbers on mandatorily insured people covered by each federal health insurance, strat-
ified by year of birth and season from 2003 till 2014. Additionally, the data provided the number of monthly
administered influenza vaccine doses stratified by age group. Lastly, the data contained numbers on the popu-
lation sizes within each region of the respective federal health insurances. Some federal insurances started to
report the administration data not in 2004, but in a later season instead. Thus, coverage estimates from the early
years could not be obtained for each region.

The data allowed to estimate monthly influenza vaccination coverage rates within each season from 2004 till
2014, stratified by yearly birth cohort and region, subject to data availability. By weighting the available region
specific estimates with the regions populations sizes, this yielded an overall estimate for the monthly coverage
rates in Germany. Since almost all influenza vaccine doses were administered prior to beginning of each
season, for each season the monthly coverage rates were pooled to obtain an overall estimate of the influenza
vaccination coverage by age group. The so derived coverage estimates for the seasons 2004/2005 till 2013/2014
are displayed in Table S2. For the season 2003/04 we assumed the vaccination coverage to be the same as in
2004/05.
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Table S2: Season-specific estimates for influenza vaccination coverage stratified by age groups. Estimates are
based on health insurance claims data [31].

Seasonal vaccination coverage (in %)
Age Season

group 04/05 05/06 06/07 07/08 08/09 10/11 11/12 12/13 13/14
0-4 3.4 5.9 4.1 4.1 3.8 3.7 3.4 2.9 3.0
5-9 5.0 8.7 6.5 6.7 6.2 5.9 5.5 4.7 4.7

10-19 5.4 8.0 5.4 5.5 4.8 4.6 4.4 3.9 4.0
20-29 4.9 7.0 4.8 5.0 4.4 3.9 3.6 2.9 3.1
30-39 7.2 9.9 7.3 7.4 6.7 6.1 5.7 4.6 5.0
40-49 11.2 14.5 11.5 11.6 10.6 9.7 9.1 7.6 8.0
50-59 19.4 24.2 20.5 20.3 18.8 16.7 15.7 13.3 13.7
60-69 38.0 45.6 42.3 41.6 39.2 34.5 32.2 28.1 28.6
70-79 48.4 55.5 53.3 53.2 51.4 47.8 46.4 42.4 43.7
80+ 51.1 57.7 56.2 56.8 55.7 51.9 50.8 46.6 47.9

1.4 Vaccine effectiveness data

To obtain estimates on influenza vaccine effectiveness (VE) for the seasons 2003/04 until 2013/14, we relied
on three different sources: (1) data from the European network ”Influenza - Monitoring Vaccine Effectiveness”
(I-MOVE) providing subtype and age specific estimates for each season beginning in 2008/09 [20, 21, 22,
23, 35, 36], (2) data from Cochrane reviews measuring the influenza vaccine effectiveness for children and
adults stratified by strain match of the vaccine [8, 18], and (3) data from the AGI reports providing WHO
recommendations on strain components in the vaccine and the observed strain match within each season.

The final transmission model required VE estimates for each season, subtype and age group. Since such detailed
data with respect to age was not available we defined three age groups (<15y, 15-59y, ≥60y) assuming the VE
within each of these age groups to be equal within each season. To inform each of the 120 VE estimates (10
seasons, 4 subtypes, 3 age groups) we applied the following hierarchical procedure:

1. For influenza A, if data from I-MOVE was available, we applied the best available estimate to specify
the VE for each subtype, season and age group (i.e. adjusted for poss. risk factors and site > adjusted for
site only > crude estimate).

2. For well-matched seasons (according to AGI reports) and if no I-MOVE data was available, we applied
the mean VE estimates from all I-MOVE studies subject to subtype and age group.

3. For poorly-matched seasons (according to AGI reports) and if no I-MOVE data was available, we applied
the VE estimated from well-matched seasons reduced by 10 percentage points, as this was the observed
VE difference according to the cochrane reviews [8, 18].

4. Regarding influenza B, the I-MOVE VE estimates were not referring to one B-lineage but to the B-
lineage mix instead. Thus, we derived the two B-lineage specific VE estimates taking the observed
lineage mix and a B-lineage cross-protection of 60% into account. This cross-protection refers to the
vaccine induced protection against the B-lineage that was not included in the trivalent vaccine according
to WHO recommendation. A cross-protection of 60% compared to the effectiveness against the B-lineage

7



that is included in the vaccine was detected in a few clinical studies and has already been used within
other transmission models [10, 25, 34]. Thus, for instance in the season 2012/13 I-MOVE estimated the
influenza B VE of 44% among elderly. The B-Yamagata lineage had a share of 90% among circulating
B-lineages which – in combination with the assumption of 60% crossprotection – thus yielded estimated
VEs of 46% and 28% against B-Yamagata and B-Victoria, respectively.

The resulting comprehensive VE matrix is given by Table S3.

Table S3: VE estimates applied in the transmission model. Yellow: estimates based on I-MOVE data. Orange:
mean estimates for B-lineage included in vaccine. Red: VE for B-lineage not included in vaccine. Green: mean
VE for A strains in well-matched seasons. Violet: mean VE for A strains in poorly-matched seasons.

Year
VE (in %) in age group<15, 15-59 and ≥60

AH1N1 AH3N2 B Yama. B Vict.
2014 (64, 39, 52) (30, 7, 47) (38, 67, 52) (23, 40, 31)
2013 (36, 56, 59) (36, 44, 37) (24, 66, 46) (23, 40, 31)
2012 (65, 50, 60) (19, 63, 15) (23, 40, 31) (38, 67, 52)
2011 (77, 27, 72) (38, 44, 39) (23, 40, 31) (52, 68, 60)
2010 (85, 73, 78) (38, 44, 39) (23, 40, 31) (38, 67, 52)
2009 (55, 40, 50) (56, 56, 56) (38, 67, 52) (23, 40, 31)
2008 (65, 50, 60) (38, 44, 39) (23, 40, 31) (38, 67, 52)
2007 (55, 40, 50) (38, 44, 39) (23, 40, 31) (38, 67, 52)
2006 (65, 50, 60) (28, 34, 29) (38, 67, 52) (23, 40, 31)
2005 (65, 50, 60) (28, 34, 29) (38, 67, 52) (23, 40, 31)
2004 (65, 50, 60) (28, 34, 29) (38, 67, 52) (23, 40, 31)

1.5 Contact frequency data

Although a successful person-to-person transmission of influenza requires more than a sole social contact –
namely a given susceptibility of the affected person and a degree of virus transmissibility – the actual frequency
of social contacts play a central role in transmission modelling, especially when considering age-structured
models. For informing the contact matrix employed in our here developed transmission model we utilised two
different sources of data, i.e.

• Firstly, we applied data from a European wide survey on the frequency on social contact, also known as
POLYMOD [28]. Using this data is by now standard when it comes to modelling the spread of airborne
diseases and other person-to-person transmitted pathogens.

• Additionally, we incorporated data measuring the impact of illness on social behaviour as it was as-
sessed by Van Kerckhove et al. [37] and Eames et al. [9]. Since influenza is primarily transmitted by
symptomatically ill people, the actual contact frequencies leading to transmission are not accurately rep-
resented through the POLYMOD data (which assessed the contact behaviour of healthy people). Thus,
the POLYMOD contact matrix has to be adjusted to account for the changed contact pattern of sick
people.
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To derive a contact matrix used within the eventual model, we proceeded in two steps. First, we estimated a
contact matrix subject to healthy people using the German part of the POLYMOD data. In a second step, this
matrix was processed with the relative age-specific contact frequency changes as measured by Van Kerckhove
et al. [37] and Eames et al. [9] to obtain a contact matrix subject to symptomatically ill people. These two steps
are outlined in the following.

1.5.1 Contact matrix: healthy people

The POLYMOD survey contains data on the number of daily contacts of each participant, with additional
information on the age, duration and quality (e.g. physical vs. non-physical) of each contact. The German part
of the survey consisted of filled out contact diaries from 1185 participants.

For our purpose of deriving a contact matrix for transmission of influenza we extracted only physical contacts
lasting longer than 15 minutes. The resulting contact data consisted of data points

c(i) =
(

c(i)0 ,c(i)1 , . . . ,c(i)99 ,c
(i)
100

)
, i = 1, . . . ,1185

where each component c(i)j denotes the number of contacts of participant i with people of age j, i.e. c(i) sum-
marizes all contacts of participant i. We utilized these data to estimate an age-structured contact matrix

β =
{

βk j
}

k, j=0,...,100 ,

where βk j refers to average number of daily contacts from individuals of age k with individuals of age j. The
matrix β was parametrized using a two dimensional third-order B-spline basis

B = (B1(a), . . . ,B18(a)) ,

defined on 15 knots over the age range a ∈ [0,80]. Thus, the components of the parametrized contact matrix
β(φ) are given by

βk j(φ) =
18

∑
l=1

18

∑
n=1

φl,nBl(k)Bn( j), (1)

subject to the parameter vector φ= {φl,n}l,n=1,...,18. The parameter φ was estimated such that it maximizes the
likelihood L(c|φ) of observing the contact data c=

{
c(i)
}

, i.e.

φ̂= argmax
φ

L(c|φ), (2)

with

L(c |φ) =
1185

∏
i=1

80

∏
j=0

βai j(φ)
c(i)j

c(i)j !
e−βai j(φ), (3)

where the likelihood function L implies that the contact frequencies c(i)j are assumed to be Poisson-distributed
with expectation βai j(φ), where ai denotes the age of participant i. Alternative approaches for a spline-based
estimation of the contact matrix utilizing the POLYMOD data can be found in e.g. Goeyvaerts et al. [15]. The
fitted matrix is displayed in Figure S3 (left figure).
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1.5.2 Contact matrix: sick people

Data on changes in the contact behaviour caused by symptomatic illness was collected by Eames et al. [9] and
previously analysed by Eames et al. [9] and Van Kerckhove et al. [37].

Here we utilized results from Van Kerckhove et al. [37] who estimated a pair of physical contact matrices based
on diaries from symptomatic individuals and from the same individuals after recovery from illness, respectively.
These two matrices contain contact rates C(healthy) =

{
C(healthy)

k j

}
(and analogously C(sick)) stratified by six

different age groups (k, j = 1, . . . ,6), i.e. 0-3 y, 4-10 y, 11-21 y, 22-45 y, 46-64 y, and 65-80 y. Thus, C(healthy)
k j

provides the average daily number of physical contacts of a healthy individual from age group k with any people
of age group j, whereas C(sick)

k j provides the corresponding number of physical contacts from sick people. The
necessary data was provided by the authors upon request.

As the contact matrices contained some zero entries which complicated the comparison, we pursued a Bayesian
approach to adjust the contact rates in the data. For that, we assumed each contact rate is a priori Γ(2,2)-
distributed (i.e. has mean one), whereas the measured contact frequencies in the data was assumed to be
Poisson-distributed with mean C(healthy)

k j or C(sick)
k j , respectively. Accounting for the number nk of survey par-

ticipants within each of the six considerd age groups, this leads to adjusted posterior mean contact frequencies
Ĉ(•)

k j , i.e.

Ĉ(•)
k j =

1+niC
(•)
k j

2+ni
, • ∈ {healthy, sick} , (4)

such that the adjusted contact frequencies were strictly positive. Based on Ĉ(•)
k j (k, j = 1 . . . ,6, •∈ {healthy, sick})

we constructed a contact frequency matrix
{

ĉ(•)k j

}
k, j=0,...,80

employing one-year age groups up to 80 years of

age, by equally distributing the estimated average number of contacts over all one-year age groups. From that
we calculated the relative age-specific change in contact frequency due to symptomatic sickness

{
r̂k j
}

k, j=0,...,80,
i.e.

r̂k j =
ĉ(sick)

k j

ĉ(healthy)
k j

, k, j = 0, . . . ,80, (5)

which gives the relative reduction (or increase) in the frequency of physical contacts from individuals of age k
with individuals of age j.

By construction the resulting matrix
{

r̂k j
}

was piecewise constant along the six age groups defined by Van Ker-
ckhove et al. [37]. To obtain a smoothed matrix, we again applied a B-Spline approximation which yields a
parametrized matrix

{
rk j(ψ)

}
. The spline coefficients ψ were estimated by minimizing the squared error sum,

i.e.

ψ̂ = argmin
ψ

80

∑
k=0

80

∑
j=0

(
rk j(ψ)− r̂k j

)2
. (6)

Thus,
{

rk j(ψ̂)
}

provides the contact adjustment matrix due to symptomatic illness based on the data by
Van Kerckhove et al. [37] and Eames et al. [9]. This matrix was then applied to the contact behaviour as
derived for healthy people in the proceeding section, which yields a final contact frequency matrix β(sick) to be
applicable for sick individuals, i.e.

β
(sick)
k j = βk j(φ̂) · rk j(ψ̂). (7)

This matrix is also displayed in Figure S3 (right figure).

10



into age group
20 40 60

fr
om

 a
ge

 g
ro

up

20

40

60

contact frequency

0.0

0.2

0.4

0.6

into age group
20 40 60

fr
om

 a
ge

 g
ro

up

20

40

60

contact frequency

0.0

0.2

0.4

0.6

Figure S3: Estimated contact matrices providing the age-specific contact frequencies of healthy (left) and symptomati-
cally ill (right) people.

2 Influenza transmission model

The dynamic transmission of influenza was captured by a mathematical model governing several levels from
pathogen transmission to developing symptoms to assessing the associated number of influenza attributable
MAARI and subtype distribution. The unobserved disease transmission process within the population was
modelled through a system of ordinary differential equations. The corresponding number of influenza cases,
excess I-MAARI, and subtype distribution were then derived from the solution of the ODE system and thus
provided the link from the hidden transmission dynamics to the observed data. In this section, we will explain
the details (and provide corresponding equations) of each aspect from the underlying transmission model and
observational component. Details on the model inference procedure will be presented in Section 3.

The overall model time horizon is given through the 10 epidemic seasons from 2003/04 to 2013/14 excluding
the pandemic season 2009/10.

2.1 Basic transmission model structure

To capture the hidden transmission dynamics within the German population for each influenza season we
implemented a deterministic SEIR-type model, as we were inspired by the models from Baguelin et al. [3],
Goeyvaerts et al. [16], Meeyai et al. [27], Pitman et al. [29], Rose et al. [33], Vynnycky et al. [38]. These
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dynamics are represented by the following system of ordinary differential equations.

dSi

dt
=−λi(t,I(t),IV (t))Si

dSV
i

dt
=−λi(t,I(t),IV (t))SV

i

dEi

dt
= λi(t,I(t),IV (t))Si− γEi

dEV
i

dt
= λi(t,I(t),IV (t))SV

i − γEV
i

dIi

dt
= γEi− γIi

dIV
i

dt
= γEV

i − γIV
i

dRi

dt
= γRi

dRV
i

dt
= γRV

i (8)

The variables Si,Ei, Ii,Ri provide the absolute numbers of susceptibles, latently infected, infectious, and im-
mune people, stratified by nA age groups (index i = 1 . . . ,nA). The variables SV

i ,E
V
i , I

V
i ,R

V
i provide the corre-

sponding number of vaccinated individuals within the four considered states. We defined overall nA = 21 dis-
joint age groups, where the respective upper age bounds are given through the vector (0,1,2,4,7,10,14,19,24,29,
34,39,44,49,54,59,64,69,79,89,100).

The term λi(t,I,IV ) represents the force of infection affecting age group i, which is a function that de-
pends among other parameters on the age-stratified number of infected people I(t) and IV (t). (Notation:
I = (I1, . . . , InA))

In contrast to the models presented in Goeyvaerts et al. [16], Pitman et al. [29], Rose et al. [33], Vynnycky
et al. [38], the here presented transmission model was applied for each season and each of the four considered
influenza subtypes separately. Such a separation approach was also pursued by Baguelin et al. [3] and Meeyai
et al. [27]. Hence, interseasonal dynamics (e.g. acquired immunity that lasts more than one season) or cross
protection between the subtypes were not directly implemented into the model.

The time horizon of each season was t ∈ [−17,25], where one time unit represents on week. That means each
model season began at calender week 35 of the preceding calender year (t =−17) and continued over the winter
until calender week 25, i.e. from September till June.

This model did not account for any demographic dynamics in the form of birth and death rates, since we
assumed that minor demographic developments could be neglected for the short seasonal model time horizon
of 42 weeks. Constant population sizes were also considered in the seasonal model by Baguelin et al. [3].
However, the model population counts differed from season to season subject to data from the Federal Statistical
Office (Section 1.2).

2.1.1 Initial conditions of the ODE system

In each season and for each subtype individuals either started as susceptible (S) or immune (R) at the beginning
of each season. Infection was initially introduced into the model population through a constant outside force of
infection affecting every susceptible individual as it will be later described in Section 2.2.

Which fraction of the population starts as susceptible vs. immune and vaccinated vs. unvaccinated at the begin-
ning of each model season depends on two factors: (i) an already existing subtype and age specific immunity
and (ii) the season specific vaccination coverage and effectiveness.

Regarding the pre-existing age-specific susceptibility profile we differentiated between the four subtypes AH1N1,
AH3N2, B-Yamagata and B-Victoria and additionally distinguished between the pre-pandemic and post-pandemic
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AH1N1 strain (AH1N1prepan vs. AH1N1pdm09). For each subtype we considered the same three age bands
(<15 y, 15-59 y, ≥60 y) to define age specific susceptibilities σ

(z)
a , i.e.

σ =
{

σ
(z)
a

}
, a ∈ {< 15y,15-59y,≥ 60y} , z ∈ {AH1N1prepan,AH1N1pdm,AH3N2,B-Yam,B-Vic} .

Since these 15 parameters represent a pre-existing immunity in the population, originating from the circulation
of the given subtypes in earlier decades, we assumed this susceptibility within the youngest age band to be
complete, i.e. σ

(z)
<15y = 1 for all subtypes z.

In order to additionally consider immunity induced from shortly past influenza seasons, we introduced pa-
rameters ϕ(s,z) that control which fraction of the non-immune population (with respect to subtype z) is in fact
susceptible for a given season s.

The vaccine coverage VC(s)
i ∈ [0,1] and effectiveness VE(s,z)

i ∈ [0,1] as given in Sections 1.3 and 1.4 also
depend on either age group i and season (s) or on age group i, season (s) and subtype (z), respectively. Hence,
we defined the following initial model state at time t0 =−17 for a certain subtype season (s,z) as given below.
For easier readability, we dropped the upper index (s,z) from the state variables (S(t),E(t), . . .) although the
model is run separately for each season and subtype.

Si(t0) = ϕ
(s,z)

σ
(z)
ai (1−VC(s)

i )Ni SV
i (t0) = ϕ

(s,z)
σ
(z)
ai (1−VE(s,z)

i )VC(s)
i Ni

Ei(t0) = 0 EV
i (t0) = 0

Ii(t0) = 0 IV
i (t0) = 0

Ri(t0) = (1−ϕ
(s,z)

σ
(z)
ai )(1−VC(s)

i )Ni RV
i (t0) =

(
1−ϕ

(s,z)
σ
(z)
ai (1−VE(s,z)

i )
)

VC(s)
i Ni (9)

Here, Ni denotes the size of age group i at the beginning of season s and ai ∈ {< 15y,15-59y,≥ 60y} refers to
the age band in which age group i is included. Note, that the age groups i = 1, . . . ,nA considered in the model
are a finer decomposition of the age groups for stratification of susceptibility or data.

2.2 Disease transmission

This section provides a full description of the mathematical implementation of the disease transmission rate, i.e.
the force of infection, within the model. This includes aspects regarding the age dependent contact frequencies,
seasonality, transmissibility, and potential spatial clustering.

2.2.1 Transmission rate

The transmission rate λi(t,I,IV ) measures the per person force of infection and thus controls the rate at which
available susceptibles will become infected within a time unit (i.e. one week in our case) subject to the ODE
system given above. The full functional term of the force of infection is defined by

λ(t,I,IV ) = Reγ exp
{

δsin
(

2π

( t
52
− tz + ts

))}
β(eff)

(
I+IV

N

)ρ

+λo, (10)

which gives the vector of age specific force of infections λi(t,I,IV ). This term includes several quantities
affecting the time specific transmission rate, which will be explained in the following.
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Firstly, it contains two constants, the baseline transmissibility Re and the recovery rate γ. The transmissibility
parameter Re can be interpreted as a measure for the effective reproduction rate (although it does not coincide
with the effective reproduction rate), since it directly scales the overall force of infection. The recovery rate
γ is included in the functional term in order to avoid parameter collinearity between the recovery rate and Re,
since the time and age specific reproduction rate is given through λi(t,I,IV )/γ, which is then unaffected by the
recovery rate and primarily controlled by Re.

Secondly, the force of infection contains a purely time-dependent term exp(δsin(2π(t/52− tz + ts))) sub-
ject to the parameters δ, tz and ts. This term entails the within season variation of the transmission rate
due to external (e.g. environmental) changes. In that regard, the parameter δ controls the magnitude of the
within-season variation whereas the time points ts and tz determine the peak transmission time, i.e. the time
in the season yielding the highest transmissibility, which might vary with respect to season s and subtype
z ∈ {AH1N1,AH3N2,B-Yam,B-Vic} (not distinguishing between pre-pandemic and pandemic AH1N1).

The third component of the transmission rate is the effective contact matrix β(eff), which provides the link
between susceptible individuals and the infectious fraction of the population. The effective contact matrix is a
composition of the two contact matrices subject to healthy individuals and symptomatically ill individuals, i.e.
β(healthy) and β(sick) according to Section 1.5, respectively. Thus, we define

β(eff) = ν(m)−1
(
β(healthy)+mβ(sick)

)
, (11)

as also suggested by Van Kerckhove et al. [37], where the mixing parameter m controls the relative share of the
illness-adjusted contact matrix. This relative share m summarizes two aspects: (i) what proportion of infectious
people actually develop symptoms and thus change their contact behaviour according to β(sick), and (ii) by how
much symptomatically ill individuals are more infectious compared to asymptomatically infected individuals.

Furthermore, the effective contact matrix is normalized by the factor ν(m) which we defined as the maxi-
mum eigenvalue of β(healthy)+mβ(sick) adjusted for the susceptible fractions σ within the population. Thus,
by writing the age, season and subtype specific susceptible fractions

{
ϕ(s,z)σ

(z)
i

}
as a diagonal matrix Σ =

ϕ(s,z) ·diag(σ(z)
a1 , . . . ,σ

(z)
ana ) we computed the maximum eigenvalue of the next-generation-matrix Σ · (β(healthy)+

mβ(sick)). Since this eigenvalue, i.e. ν(m), is commonly interpreted as a measure for the reproduction rate
([2]), a normalization of the matrix using ν(m) implies that within our employed model the effective reproduc-
tion number is primarily controlled by the parameter Re. See e.g. Birrell et al. [5] for a similar approach on
normalization of the contact matrix.

The final (but most causal) multiplicative component of the transmission rate is a measure for the momenta-
neous infectious fraction within the population stratified by age. Whereas most influenza transmission models
assume the standard mass-action-principle – which implies that the force of infection is proportional to the
infectious fraction – here we implemented a so-called phenomenological transmission rate [26], i.e. the force
of infection is a concave function with respect to the infectious fraction:

λ(t,I,IV ) ∝

(
I+IV

N

)ρ

, (12)

where I and IV provide the age stratified number of infected people and N is the vector of age group sizes.
The reasoning for this modelling is that an infection is commonly spatially clustered within a population such
that already infected people are more likely to have contact to other infected individuals as compared to yet
uninfected people. This also implies that primary infected people have more transmission-relevant contacts
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than secondary infected cases. This phenomenon is mathematically reflected by the power parameter ρ, which
controls the additional marginal force of infection caused by an increasing infectious fraction. The relevance of
non-linear transmission rates was also discussed by Chowell et al. [7] and Kong et al. [24] and a phenomeno-
logical transmission approach was already applied for measles transmission by Finkenstdt and Grenfell [12].

The last term within the transmission rate – an additive term – is the already mentioned outside force of infection
λo which provides a constant chance that susceptible people become infected from an external (from outside
of the German population) source of infection, for instance due to abroad stays. This is the initial cause of an
influenza epidemic in our model, since there are no initially infectious people within the population at beginning
of each model season.

Breaking down the force of infection λ(t,I,IV ) into its a age specific components λi(t,I,IV ) for i = 1, . . . ,na

we obtain

λi(t,I,IV ) = Reγ exp
{

δsin
(

2π

( t
52
− tz + ts

))} na

∑
j=1

β
(eff)
ji

(
I j + IV

j

N j

)ρ

+λo. (13)

2.2.2 Adjustment of seasonal shift

Considering the transmission rate λ(t,I,IV ) as defined above, it creates an issue of parameter collinearity
regarding the seasonality in transmission. We would like the timing of the influenza seasonality to be primarily
controlled by the parameters tz and ts within the sinus function in the seasonal transmission rate. However,
variations in the parameters Re, δ, ρ and ϕ also affect the starting time of the seasonal wave, since these
parameters also influence at which time point an infectious fraction (I+IV )/N is capable to reproduce itself
subject to λ(t,I,IV ).

To dampen this effect, we applied an additive adjustment of the parameter tz, i.e. t̃z(Re,δ,ρ,ϕ)= tz+c(Re,δ,ρ,ϕ)
such that the influence on seasonality from the parameters Re, δ, ρ, and ϕ are roughly neutralized by the additive
shift term.

However, note that the interactions between the variables are complex and thus the seasonal adjustment pro-
cedure suggested here is very crude: The underlying idea is that there exists an infectious fraction I∗ = fN
which is capable of reproducing itself, i.e. it fulfils the condition

I∗ =
λ(t,I∗)

γ
= Re exp

{
δsin

(
2π

( t
52
− tz + ts

))}
‖ϕσβ(eff)‖

(
I∗

N

)ρ

. (14)

For this illustration we did not distinguish between vaccinated and non-vaccinated individuals and we also
omitted the outside force of infection, since we believe that this term is negligible once infection can reproduce
itself. Here, we also think of I∗ as the total number of infectious people in the population (rather than a vector
of age stratified numbers) such that we switched from a matrix equation to a scalar equation and substituted
β(eff) by ‖ϕσβ(eff)‖, which gives the mean row sums of β(eff) while also accounting for existing immunities
ϕσ. Thus, ‖ϕσβ(eff)‖(I∗/N)ρ gives the mean (with respect to age group) force of infection caused by I∗.
Substituting the fraction I∗ = fN then yields the condition

f = Re exp
{

δsin
(

2π

( t
52
− tz + ts

))}
‖ϕσβ(eff)‖ f ρ. (15)

We are now interested in the time point t∗ that fulfils the condition, which is the time point upon which the
infections starts to (over)reproduce itself (due to the sinusoidal shape). This solution is given by

t∗
52

= tz + ts +
1

2π
arcsin

(
δ
−1
(
(1−ρ) log f − log(Re‖ϕσβ(eff)‖

))
. (16)
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As presumed, the solution t∗ obviously not only depends on f , tz and ts, but also on other parameters. Therefore,
the adjustment term c(Re,δ,ρ,ϕ) is defined such that the associated solution t∗ is roughly unaffected by Re, δ,
ρ and ϕ. By substituting tz with t̃z(Re,δ,ρ,ϕ) = tz + c(Re,δ,ρ,ϕ) and by defining

c(Re,δ,ρ,ϕ) =−
1

2π
arcsin

(
δ
−1
(
(1−ρ) log f − log(Re‖ϕσβ(eff)‖

))
, (17)

we obtain that the new equation

f = Re exp
{

δsin
(

2π

( t
52
− t̃z + ts

))}
‖ϕσβ(eff)‖ f ρ (18)

has a solution t∗ that only depends on f , tz and ts. Therefore by implementing the additive adjustment into the
model we achieve that the beginning of the influenza season is not affected through changes in the parameters
Re, δ, ρ, and ϕ (and even σ), but solely controlled by the shift parameters tz and ts, which considerably reduces
parameter collinearity within the model.

Again note, that due to some very crude simplifications not all parameter dependencies were removed. Fur-
thermore, we have to make some assumption on the steady state fraction f that leads to sufficient reproduction
of the infection and scales the impact of ρ within the additive adjustment. While actually this fraction depends
on the value of ρ itself subject to the phenomenological transmission rate, for our purposes we assumed that
f = 10−4.

For the purpose of illustration, we exemplarily investigated the impact of the seasonal shift adjustment once the
model was fitted. To do so we varied the estimated population fraction ϕ and then simulated epidemics utilizing
either the adjusted t̃z or the unadjusted tz, respectively. see Figure S4 for the corresponding results.

From the simulated epidemics one can observe that the shift correction achieves the desired effect. For models
utilizing the seasonal adjustment (left column of Figure S4) any changes in the susceptible fraction ϕ affect
primarily the intensity of the seasonal wave, but have only negligible effects on the timing – especially the
beginning – of the season. In contrast, when not employing the correction (right column) an increased ϕ

causes an earlier epidemic in the model since the reproduction threshold inherent in the transmission rate is
reached at an earlier time point within a season. However, in the real world seasonal influenza epidemics start
always around the same time within a calender year regardless of intensity as can be seen in Figure S1. Thus,
the correction term neutralizes the time shift effect such that the timing of the season is foremost determined
through the parameter tz and is therefore consistent over the years for each subtype.

2.3 Number of cases and I-MAARI

The transmission model given through the ODE system presented in Section 2.1 captures the hidden dynamics
and the temporal development of the disease compartments. The weekly occurring number of newly infected
cases and I-MAARI however are not directly given in the model. These can be derived by integrating the flow
from the compartment ”latently infected” (E and EV ) into ”infectious” (I and IV ). Thus the age stratified
number of cases Xi(t) becoming infectious in week t is given by

Xi(t) =
∫ t+1

t
γ
(
Ei(s)+EV

i (s)
)

ds, (19)

for each age group i = 1, . . . ,na. Note, that this counts symptomatically as well as asymptomatically infected
cases since our model captures infectiousness which includes both groups. Furthermore, not all cases Xi(t)
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Figure S4: Comparison of simulated epidemics from transmission model using either the adjusted seasonal shift (left) or
the unadjusted seasonal shift (right) for three different susceptible population fractions ϕ ∈ {0.25,0.5,0.75}.
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are captured through our available data, which only consisted of counts of weekly medically attended cases
attributable to influenza. Hence, in order to derive a model prediction for the weekly number of I-MAARI
Yi(t) we multiply the case numbers Xi(t) with a probability of developing symptoms p(S) and an age dependent
probability p(c)(i) for seeking medical treatment by a general practicianer in the case of symptomatic infection,
i.e.

Yi(t) = p(S)p(c)(i)Xi(t). (20)

The model predicted number of seasonally occurring I-MAARI will later be necessary for conducting model
inference through the I-MAARI and virological data.

For the consultation probabilities p(c)(i) we distinguished between two age groups (<5 and 5+ years of age)
which were motivated through consultation rates collected by Bayer et al. [4]. Thus, for age groups i within the
age band 0-4 years we defined p(c)(i) = p(c)1 and for all other age groups we set p(c)(i) = p(c)2 .

The probability for developing symptoms p(S) was fixed at 0.67 based on Carrat et al. [6]. In contrast to
the consultation probabilities, the parameter p(S) will not be estimated within the model inference procedure.
However, since the respective probabilities for developing symptoms and seeking medical treatment have the
same functionality within the model, it is negligible if one of those was fixed as long as the other remained to
be subject of estimation.

2.4 Seasonal stratification and model parameters

The here presented model was designed to be applied to the transmission dynamics of each single season and
subtype, which was motivated by the large variability of the yearly epidemic courses with respect to magnitude
of the wave and pre-dominant strain. We believe that a continuous approach in which parameters are held
constant throughout the modelled time horizon – as previously implemented by many models (e.g. [29, 33, 38])
– is not capable of capturing this inter-seasonal variation and irregular pattern, since constant parameters often
produce the same epidemic course for all modelled seasons.

In contrast, the completely separate treatment of each seasonal and subtype as performed by Baguelin et al.
[3], Meeyai et al. [27] does not acknowledge that some aspects of influenza transmission remain constant over
the years. For instance Baguelin et al. [3] estimated parameters regarding contact behaviour and ascertainment
rates independently for each season and subtype, whereas these are likely consistent over the years.

For our modelling we aimed at following a hybrid approach, which allows for variability between seasons but
also acknowledges the fact that the underlying pathogen, i.e. influenza virus, remains the same in each season,
which implies that some transmission aspects arguably remain the same over the years.

To do so we employed an partially stratified model structure and divided all parameters considered in the
transmission model into four categories: (1) parameters which are constant for each season and subtype, (2)
parameters which may differ by subtype but are constant over the seasons, (3) parameters which differ by
season but are equal for each subtype, and (4) parameters which may differ by both season and subtype. An
alternative hybrid approach was presented by Goeyvaerts et al. [16], who employed a continuous compartment
model covering several years but allowing some parameters to vary from season to season.

Table S4 gives an overview on all model parameters which were subject of estimation, whether they were
stratified by season and/or subtype and their respective prior distribution within the here employed Bayesian
inference framework which will be presented in the next section.
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3 Bayesian inference procedure

For estimation of the overall 72 model parameters displayed in Table S4 we applied a Bayesian inference
framework, such that parameters were restricted to plausible ranges if respective prior information was available
or otherwise were allowed to vary more freely. For our purposes, model inference was performed for all
seasons and subtypes simultaneously due to some parameter values being held constant over the seasons and/or
subtypes.

Within the Bayesian setting the plausibility of a parameter combination θ is measured through a combination
of its prior probability π(θ) and a parameter likelihood function f (D,P |θ) subject to the observed I-MAARI
data D and subtype distribution P (see Section 1.1). This yields the eventual posterior probability π(θ|D,P )
of a parameter derived from the Bayesian theorem [13], i.e.

π(θ|D,P ) ∝ f (D,P |θ)π(θ). (21)

Here, we will provide some further details on prior elicitation, the likelihood function based on the influenza
disease burden data, and the employed posterior sampling algorithm.

3.1 Prior elicitation

The marginal prior distribution corresponding to the single model parameters are given in Table S4. Informative
prior knowledge was not available for every model parameter. For parameters that were difficult to quantify
through the epidemiological literature, we assigned a vague prior securing that the parameters were restricted
to a meaningful range, e.g. the susceptible population fraction each season ϕ was limited to the interval [0,1].
For parameters with available epidemiological knowledge, it was used for prior elicitation.

Regarding the recovery rate from both latent and infectious period γ we constructed a prior based on knowledge
on virus shedding and other models’ assumptions towards these parameters. While a study on virus shedding
shows that the latent and infectious period combined might take up to 5 day [6], transmission models imple-
mented this knowledge very differently – with infectious durations from 1.8 to 3.8 days [3, 16, 33]. Since
the eventual impact of this parameter on the transmission dynamics was found to be low, in order to achieve
parsimony we assumed that the latent and infectious period are of equal length 1/γ in the range 1 to 2.5 days
(similar to Meeyai et al. [27]).

For the outside force of infection λo we chose an uninformative prior of log(λo)∼N (−10,0.5) such that each
susceptible individual is assumed to have a chance somewhere around 1/200.000 for becoming infected from
outside of the population within a given week.

Regarding the spatial clustering we assumed that the parameter ρ is near (but below) 1 such that the trans-
mission rate within our model remains comparable to the mass-action principle employed in other influenza
transmission models.

The contact mixing parameter m as applied in equation (11) was assumed to be larger than one such that the
contact structure subject to sick individuals has a larger impact on the eventually employed contact matrix, since
we assume that the majority of infected individuals develop symptoms [6] and therefore behave accordingly
and also because symptomatically ill people likely have a higher infectiousness which additionally pronounces
this contact pattern to be more relevant for transmission.
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The subtype specific transmission peak shift tz was allowed to vary within [−0.5,0.5] to allow the full range of
one year.

The seasonal shifts in peak transmission ts were allowed to only vary within [−0.125,0.125] and as it should
only be able to cause minor time shifts in the seasonal occurrence of the influenza wave.

Lastly, the two consultation rate parameters p(c)1 and p(c)2 were allowed to only move within a range suggested
by data from GrippeWeb [4], i.e. p(c)1 ∈ [0.28,0.46] and p(c)2 ∈ [0.19,0.38]. The lower bounds represent the
proportion of people seeking medical consultation among individuals with acute respiratory illness (ARE)
whereas the upper bounds give the consultation seeking proportions among individuals with ILI symptoms
according to the web survey, averaged over the seasons for both considered age groups (< 5,≥ 5), respectively.

Finally, the joint prior density of all parameters is obtained as the product of the single priors as given in Table
S4, assuming a-priori independence.

3.2 Likelihood function

The likelihood function f (D,P |θ) provides the probability of observing the disease burden data (D,P ) sub-
ject to the model and the parameter vector θ. Here, the disease burden consists of data on the estimated numbers
of I-MAARI D(s)

t,a that occurred in week t, age group a and season s, and the number of influenza-positive spec-

imen by subtype P (s)
t,a = (P(s),AH1N1

t,a ,P(s),AH3N2
t,a ,P(s),B-Vic

t,a ,P(s),B-Yam
t,a ) also as measured in week t, age group a

and season s (see Section 1.1).

Regarding the parameter likelihood f (D)(D|θ) with respect to the number of I-MAARI, we assumed that the
weekly age specific number of consultation D(s)

t,a would be a random variable with expectation equal to the

number of influenza attributable consultations Ȳ (s)
a (t) as predicted by the model. To obtain the prediction

Ȳ (s)
a (t), we aggregated the model predictions Y (s,z)

i (t) over the subtype and model age group decomposition
(see Section 2.3), i.e.

Ȳ (s)
a (t) = ∑

z∈Z
∑
i∈Ia

Y (s,z)
i (t). (22)

The aggregation over the subtypes Z = {AH1N1,AH3N2,B-Vic,B-Yam} is necessary, because the subtype-
stratified model yields only subtype specific I-MAARI predictions, whereas the data comprises all subtypes.
Moreover, the age group decomposition in the model (indexed by i) was more refined compared to the age
resolution in the data such that some age groups also had to be aggregated. Thus, Ia contains all model age
group indices that are included in the data age group a. Note, that Ȳ (s)

a (t) as the final model output exclusively
depends on the model parameter θ.

The number of excess consultations D(s)
t,a was then assumed to be negative binomially distributed with mean

Ȳ (s)
a (t) and dispersion d(s)

a (t), which was defined by

d(s)
a (t) =

 d
(

Ȳ (s)
a (t)

)0.1
for t ∈ T (s)

season

1 for t /∈ T (s)
season

, (23)

where

T (s)
season =

{
t ∈ {−12, . . . ,30}

∣∣∣∣∣∑
a∈A

D(s)
t,a > 0

}
(24)
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is the set of weeks in a given season (s) for which the total number of estimated I-MAARI is above zero. Thus,
these are the weeks that belong to the epidemic season of each given year.

The reasoning for defining two different dispersion rates lies in the nature of the I-MAARI data, which was
estimated as the excess MAARI incidence within the epidemic season of influenza. Thus, excess consultations
are set to zero be default for each week outside of the epidemic season, although influenza cases certainly occur
in the off-season as well.

To acknowledge this fact, during model fitting the model predicted I-MAARI are allowed to deviate stronger
from these zero counts during the off-season, which is implemented through the dispersion parameter being
d(s)

a (t) = 1 for those weeks in which the data suggest zero I-MAARI, whereas the model predicted I-MAARI
are considerably above zero.

For weeks t ∈ T (s)
season within the epidemic season the dispersion parameter is constructed such that the observa-

tions D(s)
t,a have a variance of

Var(D(s)
t,a) = Ȳ (s)

a (t)
(

1+d−1
(

Ȳ (s)
a (t)

)0.9
)
, (25)

with d being a model parameter to be estimated. This definition of the dispersion appears to be somewhat
arbitrary but we found that by defining d(s)

a (t) = d (i.e. a standard negative binomial distribution) the model had
problems to fit the peaks of the influenza waves, because in that case the standard deviation of the observations
would scale proportionally with the predicted mean which led to excessive overestimation of the I-MAARI data
through the model.

Assuming independence between age group specific and weekly observations leads to the overall likelihood
f (D) with respect to I-MAARI dataD given through

f (D)(D|θ) =∏
s∈S

∏
a∈A

30

∏
t=−12

pNegBin

(
D(s)

t,a

∣∣∣Ȳ (s)
a (t),d(s)

a (t)
)
, (26)

where pNegBin denotes the probability mass function of the negative binomial distribution and A is the set of
the five age groups considered in the I-MAARI data (Section 1.1).

Additionally to the I-MAARI data, which informs the model on the magnitude of each seasonal epidemic, we
fitted the model to virological data in order to also reproduce the observed seaonal subtype distribution (Section
1.1). To construct a likelihood function f (P)(P |θ) for observing the virological data P we assumed that each
influenza case seeking consultation would have the same chance of leading to a influenza positive test, regard-
less of which subtype caused the illness. This implies that the chance for ordering laboratory case diagnostic
and test sensitivity are equal for all influenza subtypes. This leads to a Dirichlet-multinomial distribution of the
weekly number of influenza positive tests by subtype for each age group. Here, the total number of draws P̄(s)

t,a
is determined through the total number of positive tests in the data, i.e.

P̄(s)
t,a = ∑

z∈Z
P(s,z)

t,a . (27)

The model predicted probabilities p(s,z)t,a that one of the positive tests confirms a specific subtype z ∈ Z are
drawn from a Dirichlet distribution with parameter α given through the predicted number of I-MAARI for
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each subtype Y (s,z)
a (t). Thus, the likelihood of observing a certain subtype distribution P (s)

t,a in a given week t
and age group a can be written as

f (P)s,t,a

(
P

(s)
t,a

∣∣∣Y (s,z)
a (t),z ∈ Z

)
=

P̄(s)
t,a !

∏z∈Z

(
P

(s,z)
t,a !

) Γ(Ȳ (s)
a (t))

Γ(P̄(s)
t,a + Ȳ (s)

a (t))
∏
z∈Z

Γ(P(s,z)
t,a +Y (s,z)

a (t))

Γ(Y (s,z)
a (t))

, (28)

where Γ(·) denotes the gamma function. Again, note that the quantities Y (s,z)
a (t) and Ȳ (s)

a (t) are those derived by
the model and thus depend on the parameter vector θ. Hence, the overall likelihood subject to the virological
data is given by

f (P)(P |θ) = ∏
s∈S

∏
a∈A

30

∏
t=−12

f (P)s,t,a

(
P

(s)
t,a

∣∣∣Y (s,z)
a (t),z ∈ Z

)
(29)

Finally, we defined the full likelihood by assuming the two data sources to be conditionally independent. Hence,
we obtain

f (D,P |θ) = f (D)(D|θ) f (P)(P |θ). (30)

3.3 Posterior sampling

Drawing a representative sample from the posterior distribution π(θ |D,P ) as introduced in Section 3 was
conducted by applying an adaptive Metropolis-Hastings algorithm. This type of Markov chain Monte Carlo
(MCMC) algorithm was originally presented by Haario et al. [17] and has already been applied for Bayesian
inference of disease transmission models by Baguelin et al. [3] and Weidemann et al. [39].

The algorithm as applied for our model is given by Algorithm 1. The idea of this MCMC procedure is to
construct suitable proposal distributions on the fly, with the aim of having simultaneously high acceptance rates
and large jumps while searching through the parameter space. The algorithm requires an initial parameter
candidate θ0 – suitably already within a high posterior density region – and a covariance matrix Σ0 for the
initial Gaussian proposal distribution.

To obtain an initial parameter vector θ0 we performed an sequential optimization procedure consisting of al-
ternating Nelder-Mead and gradient-based optimization algorithms in order to find a high posterior parameter
vector [30].

Once we obtained a parameter vector θ0 sufficiently close to the posterior mode, we computed the initial
proposal covariance matrix by computing the component wise (approximate) second derivatives of the log
posterior at θ0, i.e. we set

Σ0 = n−1 Diag

(
−
(

logπ(θ0 +hei |D,P )−2logπ(θ0 |D,P )+ logπ(θ0−hei |D,P )

h2

)−1

i=1,...,n

)

≈ n−1 Diag

(
−
(

∂2 logπ(θ0 |D,P )

∂θ2
i

)−1

i=1,...,n

)
,

(31)

where ei denotes the i-th canonical unit vector, which has a one as its i-th component and zeros otherwise, h is
a sufficiently small number and n = dim(θ0) denotes the number of parameters in the model. This construction
yields a proposal matrix which allows large jumps in (component wise) directions yielding only minor changes
of the posterior and otherwise it produces small step sizes for components which have a large impact on the
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Algorithm 1: Adaptive Metropolis-Hastings
Input: π(θ |D,P ): (unnormalized) posterior density
Input: Σ0: initial covariance matrix of the proposal distribution
Input: sn: scaling factor for the sample covariance matrix
Input: θ(0): initial parameter value of the chain
Input: J: length of the chain
Input: K: length of the initial period
Output: Θ= (θ j) j=1,...,J: sample from the posterior distribution
for j = 1 to J do

1. Set the Gaussian proposal density q j to be

q j(θ,θ
∗) = φθ,Σ j(θ

∗)

where φ is the multivariate normal density with

Σ j =

{
Σ0 , if j ≤ K
sdĈov

(
θ(0), . . . ,θ( j−1)

)
, if j > K

where Ĉov
(
θ(0), . . . ,θ( j−1)

)
denotes to the empirical covariance and

sn is a predefined scaling factor.

2. Generate a candidate vector θ∗ using the proposal distribution q j(θ
( j−1), ·)

3. Compute the acceptance probability α = A
(
θ( j−1),θ∗

)
with

A
(
θ( j−1),θ∗

)
= min

{
1,

π(θ∗ |D,P )

π
(
θ( j−1) |D,P

)}

4. Set θ( j) = θ∗ with probability α and θ( j) = θ( j−1) otherwise

end
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log posterior. This induces an overall suitable initial moving through the parameter space until the adaptive
phase sets in. Note, that computation of the full inverse Hessian at θ0 which would be an optimal candidate as
proposal covariance is not feasible in this high-dimensional (n=72) setting.

As a remark, all parameters in θ were transformed onto the whole real axis using appropriate log or logit
transformations. For the exact choice of transformation of each parameter, please refer to the transformation
used for constructing the respective prior densities as given in Table S4.

For the scaling coefficient we used sn = 2.42/n as recommended by [14] in order to achieve a suitable accep-
tance rate for the MCMC algorithm.

3.4 Inference results

Posterior means (together with 95%-prediction intervals) of each estimated model parameter are given in Table
1 of the main article, a graphical overview based on kernel density estimates is provided by Figure S5. The
posterior distributions of the susceptible population fractions depending on age group, subtype, and year are
displayed by Figure 2 within the main article.

4 Sensitivity analyses

In order to investigate the robustness of the vaccination impact results, we examined the impact of selected
alternative model features. These include the assumption of mass-action transmission, the suppression of indi-
rect effects, not accounting for an adjusted contact matrix due to symptomatic illness, and the assumption of a
B-lineage vaccine cross protection of 0%. Within this section we present the construction of each alternative
model version and its associated impact prediction regarding a childhood vaccination program as provided in
Table 3 of the main article.

Each presented model version was fitted to the same data on I-MAARI and subtype distribution using the
same inference procedures given in Section 3. The validity of each model was measured through its associated
marginal loglikelihood of the data given in Table 3 of the main article [19]. Marginal loglikelihood differences
larger than 5 indicate a very strong evidence for the model yielding the higher likelihood. Nevertheless, the
marginal likelihood should be interpreted with caution, since it only assesses the likelihood of observing the
data subject to a specific model but it does account for the plausibility of the underlying model.

4.1 Model version: mass-action-transmission

Within the first alternative model we omitted the power parameter ρ within the phenomenological transmission
rate of the original model. In other words, we set ρ = 1 and the transmission rate becomes

λi(t,I,IV ) = Reγ exp
{

δsin
(

2π

( t
52
− tz + ts

))} na

∑
j=1

β
(eff)
ji

I j + IV
j

N j
+λo, (32)

which corresponds to the classical mass-action-principle as it was applied in all other influenza transmission
models [3, 16, 27, 29, 33, 38]. The fitting and the corresponding vaccination impact results subject to this
mass-action-transmission model are given in Figures S6 and S7, respectively.
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Figure S5: Kernel density estimate of each model parameters posterior distribution subject to the computed posterior
sample using MCMC. Please refer to Table 1 of the main article or Table S4 in the supplementary document for the
interpretation of each displayed parameter.
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Figure S7: Relative impact of childhood vaccination (40% coverage among 2-10 year old children)
based on a model scenario assuming mass-action-transmission.

4.2 Model version: disabled indirect effects

In this model scenario vaccination does not protect against infection but against illness instead. Thus, this model
is not capable of generating any indirect vaccination effects, since vaccinated and unvaccinated people are
equally likely to obtain infection and transmit the virus. This is implemented by adjusting the initial conditions
of the ODE system (Section 2.1.1), i.e. in this model version we set

Si(t0) = ϕ
(s,z)

σ
(s,z)
ai (1−VC(s)

i )Ni SV
i (t0) = ϕ

(s,z)
σ
(s,z)
ai VC(s)

i Ni

Ei(t0) = 0 EV
i (t0) = 0

Ii(t0) = 0 IV
i (t0) = 0

Ri(t0) = (1−ϕ
(s,z)

σ
(s,z)
ai )(1−VC(s)

i )Ni RV
i (t0) =

(
1−ϕ

(s,z)
σ
(s,z)
ai

)
VC(s)

i Ni. (33)

Additionally, for this model scenario the proportion of cases leading to consultation are modified in order to
distinguish between vaccinated cases

XV
i (t) =

∫ t+1

t
γEV

i (s)ds, (34)

and unvaccinated cases

Xi(t) =
∫ t+1

t
γEi(s)ds, (35)

for each age group i. The modified number of resulting consultations per season and subtype then accounted
for the vaccine protection, i.e.

Yi(t) = p(S)p(c)(i)
(
Xi(t)+(1−VEi)XV

i (t)
)
. (36)

The predicted childhood vaccination impact subject to this model is given in Figure S8.
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Figure S8: Relative impact of childhood vaccination (40% coverage among 2-10 year old children)
based on a model scenario disabling indirect vaccination effects.

4.3 Model version: POLYMOD contact matrix

For the third model scenario we dropped the assumption of a different contact pattern subject to symptomatic
illness as proposed by Van Kerckhove et al. [37] and used solely the POLYMOD matrix subject to healthy
individuals (Section 1.5). Thus, the model contact matrix is given by

β(eff) = ν
−1β(healthy), (37)

where ν refers to the maximum eigenvalue of β(healthy). Hence, the mixing parameter m is omitted in this model
scenario. Vaccination impact subject to this model are given in Figure S9.

4.4 Model version: no B-lineage cross protection

This model scenario utilized a different VE matrix as compared to the VEs given in Table S3. Differences
occur by assuming 0% vaccine effectiveness against the B-lineage that is not included in the vaccine according
to WHO recommendation. This affects the VE estimates that are coloured red in Table S3. The corresponding
vaccination impact results are given in Figure S10.
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Figure S9: Relative impact of childhood vaccination (40% coverage among 2-10 year old children)
based on a model scenario utilizing only the POLYMOD contact matrix.
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Figure S10: Relative impact of childhood vaccination (40% coverage among 2-10 year old children)
based on a model scenario assuming no B-lineage crossprotection.
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