SUPPLEMENTAL MATERIAL

Supplemental Ta	ble S1. Plasmids	and oligonucleotic	les used in this study.
		J	

Plasmid Name	Reference		
pRSF-NT	(Korotkov <i>et al.</i> , 2013)		
pGCC4	(Skaar <i>et al.</i> , 2002)		
pUC18	(Yanisch-Perron <i>et al.</i> , 1985)		
pUC18K	(Menard <i>et al.</i> , 1993)		
pRSF-NT-GmhA _{GC}	This study		
pRSF-NT-Zwf	This study		
pGCC4-GmhA _{GC}	This study		
pUC18K-GmhA _{GC}	This study		
pUC18-GmhA _{GC}	This study		
pUC18-GmhA _{GC} E65A	This study		
pUC18-GmhA _{GC} H183A	This study		
pGCC4-GmhA _{GC} E65A	This study		
pGCC4-GmhA _{GC} H183A	This study		
pGCC4-GmhA _{NM}	This study		
pUC18K-GmhA _{NM}	This study		
pGCC4-GmhA _{EC}	This study		
Oligonucleotide	Sequence ¹		
Primers used for creating recombinant protein with N-terminal 6×His-tag:			
rNGO1986-F	GGATTTAC <u>CCATGG</u> CGACATTACAAGAACGCG		
rNGO1986-R	ACTCGGTC <u>AAGCTT</u> CATTCCTTCCAGCAGTACG		
rZwf-F	GACT <u>CCATGG</u> GTACACAGACAAATTTTGATTTGG		
rZwf-R	GATC <u>AAGCTT</u> GCATTACTGTTCTTCGTGC		
Primers used for gene deletion and complementation:			
NGO1986-Up-F	GACTGATA <u>GAATTC</u> GCGCAGGGTAATGTCTG		
NGO1986-Up-R	ATCGAT <u>GGTACC</u> GCAACGCGTTCTTGTAATG		
NGO1986-Down-F	GGATTTAC <u>GGATC</u> CACTGTATCGACTCCGTACTGC		
NGO1986-Down-R	ACTCGGTC <u>AAGCTT</u> TGATGCCCAGCAGCGTG		
NGO1986-RBS-F	GAATATTACAGGTTGACGATATG		
NGO1986-RBS-R	AAGCTT <u>GGCCGGCC</u> TTACATTCCTTCCAGCAG		
pGCC4-Ver-F	AAATCGCCCTTGATACCG		
pGCC4-Ver-R	ACACTTTATGCTTCCGGCTC		
NGO1986-Ver-F	GCCGGCGTACCCGCAT		

NGO1986-Ver-R	TGAAGGCGGTTCAGACGGC		
NMB2090-Up-F	GACTGATA <u>GAATTCC</u> AATACCGCCAAAGCG		
NMB2090-Down-R	ACTCGGTC <u>AAGCTT</u> TGATGCCCAACAGCGTG		
ECBD3400-RBS-F	TTATGCTGAAGGATATCCTC		
ECBD3400-RBS-R	AAGCTT <u>GGCCGGCC</u> TTACTTAACCATCTCTTTTCAATC		
Primers used for the mutagenesis of the $GmhA_{GC}$ conserved residues E65 and H183:			
E65A-F	CTTCGCCGCCGCAATGACCGGGC		
E65A-R	TGTTGCGCGTCGGCAGCC		
H183A-F	CCTGCTGATAGCCGCCATGTGCG		
H138A-R	ATGTGGTTTTCCTGAATGC		
Primers used for the sequencing of lactose operator and promoter:			
LACOP-F	TCCCTTAACTTGTTTTCGTGTACC		
LACOP-R	CGCTTACCCTTCCTGAAGACA		
LACOP-SEQ	CCGACATCATAACGGTTCTGGC		

¹Sequences recognized by restriction enzymes are underlined.

Supplemental Figure Legends

Supplemental Figure S1. Purification of rGmhA_{GC}. **A.** rGmhA_{GC} eluted mainly as tetramers during size exclusion chromatography. Purified rGmhA_{GC} was separated by NGC Scout Chromatography system (Bio-Rad) with HiLoad 16/600 Superdex 75 pg column (GE Healthcare Life Sciences). Elution chromatogram of rGmhA_{GC} is indicated by blue line. Predicted mass of a monomeric rGmhA_{GC} is 21.1 kDa. Gel Filtration Standard (BioRad) is shown on the chromatogram as the red line. **B.** Increasing amounts of rGmhAGC after removal of His-tag by TEV protease were resolved by SDS-PAGE and visualized by Coomasie Brilliant Blue G-250 staining. The migration of molecular mass markers (kDa) is indicated on the left.

Supplemental Figure S2. The Neisseria gonorrhoeae FA1090 $\Delta gmhA_{GC}/P_{lac}$:: gmhA_{GC} acquires mutations in P_{lac} during growth under non**permissive conditions. A.** The N. gonorrhoeae FA1090 $\Delta gmhA_{GC}/P_{lac}$::gmhA_{GC}, was streaked out from frozen glycerol stock on solid media supplemented with 20 µM IPTG. Following 18 h of incubation at 37 °C in the presence of 5% atmospheric CO₂, the nonpiliated colonies were passaged onto plates either with (+) or without IPTG (-). Bacterial colonies that arose on media without IPTG (-) were passaged (passage II) further onto plates either with (+) or without IPTG (-) and incubated for 18 h at 37 °C, 5% CO₂. Colonies that grew on media lacking IPTG were once more streaked (passage III) onto plates either with (+) or without IPTG (-) and allowed to grow for 18 h at 37 °C, 5% CO₂. **B.** The lactose promoter (P_{lac}) sequence of the $gmhA_{GC}/P_{lac}$:: $gmhA_{GC}$ maintained in the presence of IPTG and after three passages on media without IPTG were determined by DNA Sanger sequencing. The sequence of *P*_{lac} from *E. coli* is shown. Nucleotides that differed from the default P_{lac} sequence are highlighted in red color. **C.** The FA1090 wt, $\Delta gmhA_{GC}/P_{lac}$; gmhA_{GC}, and $\Delta gmhA_{GC}/P_{lac}$; gmhA_{GC} after three passages on media without IPTG were harvested from solid media with (+) or without 20 µM IPTG (-) and whole cell lysates were either probed with polyclonal rabbit antisera or subjected to LOS extraction using proteinase K followed by silver staining. Samples were matched by the same OD₆₀₀ units. The migration of molecular mass marker (kDa) is indicated on the left.

Supplemental Figure S3. Loading controls for immunoblotting experiments. Samples of whole-cell lysates were prepared for SDS-PAGE as described in the text, separated in 10-20% Tris-Glycine gel and the protein profiles were visualized using Coomasie Brilliant Blue G-250. Loaded OD_{600} units matched the corresponding samples used in immunoblotting analyses of GmhA_{GC} and Zwf. The migration of molecular mass markers (kDa) is indicated on the left.

Supplemental Figure S4. Analysis of single nucleotide polymorphisms in gmhA.

Analysis of *gmhA* (locus NGO1986, NMB2090, NMC2070) in 39,182 *Neisseria spp* genomes deposited into PubMLST database (http://pubmlst.org/neisseria/ as of July, 20, 2016) showed that there are 340 *gmhA* alleles and 323 single nucleotide polymorphic sites.

REFERENCES

- Korotkov, K.V., J.R. Delarosa & W.G. Hol, (2013) A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic *Escherichia coli. Journal of structural biology* **183**: 354-362.
- Menard, R., P.J. Sansonetti & C. Parsot, (1993) Nonpolar mutagenesis of the ipa genes defines *IpaB*, *IpaC*, and *IpaD* as effectors of *Shigella flexneri* entry into epithelial cells. *Journal of Bacteriology* **175**: 5899-5906.
- Skaar, E.P., M.P. Lazio & H.S. Seifert, (2002) Roles of the *recJ* and *recN* genes in homologous recombination and DNA repair pathways of *Neisseria gonorrhoeae*. *Journal of Bacteriology* **184**: 919-927.
- Yanisch-Perron, C., J. Vieira & J. Messing, (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* **33**: 103-119.

Supplemental Figure S2

Supplemental Figure S3

Supplemental Figure S4

Key: 0-10 | >10-20 | >20-30 | >30-40 | >40-50 | >50-60 | >60-70 | >70-80 | >80-90 | >90-100