S1 Table. Summary of model selection process on dynamic occupancy probabilities

Model	K	AIC	ΔΑΙC	w
ψ (State)	25	2193.86	0.00	0.4778
ψ (State + Crops)	26	2194.55	0.69	0.3384
ψ (State + Ruggedness)	26	2195.85	1.99	0.1767
ψ (Year + State + Ruggedness)	31	2203.28	9.42	0.0043
ψ (State + Zone)	26	2205.07	11.21	0.0018
ψ (Year + State)	30	2207.22	13.36	0.0006
ψ (Year + State + Crops)	31	2207.22	15.26	0.0002
ψ (Year × State)	40	2209.80	15.94	0.0002
ψ (Year)	28	2227.62	33.76	0.0000
$\psi(.)$	23	2227.81	33.95	0.0000
ψ (Year + Ruggedness)	29	2229.27	35.41	0.0000
ψ (Year + Crops)	29	2231.09	37.23	0.0000
ψ (Year + Ruggedness + Crops)	30	2232.74	38.88	0.0000
ψ (Year + State + Zone)	31	2235.49	41.63	0.0000
ψ (Zone + Crops)	24	2236.54	42.68	0.0000
$\psi(\text{Crops})$	23	2236.61	42.75	0.0000
ψ (Zone)	23	2236.61	42.75	0.0000
ψ (Ruggedness)	23	2236.61	42.75	0.0000
ψ (Ruggedness + Crops)	24	2238.61	44.75	0.0000
ψ (Zone + Ruggedness)	24	2238.61	44.75	0.0000
ψ (Year + Zone + Ruggedness)	30	2241.46	47.60	0.0000
ψ (Year + State + Crops)	30	2242.60	48.74	0.0000
ψ (Year + Zone)	29	2244.30	50.44	0.0000

 $(\psi_t^{[m]})$ of a Eurasian Eagle-owl population in south-eastern Spain.

Summary of 23 multi-season, multi-state models for occupancy probabilities, including the total number of estimable parameters (*K*), the value of the Akaike Information Criterion (AIC), the relative differences in AIC (Δ AIC) and the Akaike weights (*w*). Models are ordered in terms of Δ AIC. ψ (.) denotes the null (only constant) model. The probabilities of breeding success, *R*, were modelled considering the influence of annual variation, the previous reproductive state of the territory and the ruggedness of the territory R(Year + State + Ruggedness). The probabilities of detecting occupancy given that the territory was occupied without successful breeding $(p_{1-4}^{[1]})$ and detecting occupancy given that the territory was occupied with successful reproduction $(p_{1-4}^{[2]})$ were modelled based on the *survey* covariate but considered constant across years. The probability of detecting a successful reproduction was fixed as zero for the first survey $(\delta_1 = 0)$ and allowed to vary independently for the rest of the surveys, but considered constant across years (δ_{2-4}) .