Supporting Information

Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity

Andrea D. Merg,[†] Jennifer C. Boatz,[‡] Abhishek Mandal,[‡] Gongpu Zhao,[‡] Soumitra Mokashi-Punekar,[†] Chong Liu,[†] Xianting Wang,[‡] Peijun Zhang,[‡] Patrick C. A. van der Wel,^{*‡} and Nathaniel L. Rosi^{*†}

[†]Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States

[‡]Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States

Supplementary Data

Figure S1. Chemical structure of (a) C_{18} -(PEP_{Au})₂ and (b) C_{18} -(PEP_{Au}^{M-Ox})₂.

Figure S2. LCMS spectra of (a) C_{18} -(PEP_{Au})₂, m/z = 1562 (m/2) and (b) C_{18} -(PEP_{Au}^{M-Ox})₂, m/z = 1578 (m/2).

Figure S3. Additional TEM images of the single-helical superstructure at different magnifications.

Figure S4. The nanoparticle length and widths of the single-helical superstructure were 16.6 ± 3.0 nm and 9.6 ± 1.9 nm, respectively, after 15 hours of reaction (based on 125 counts each).

Figure S5. Negative stained TEM images of the single helices after (a) 0 min., (b) 30 min., (c) 2 hrs., (d) 5 hrs., (e) 8 hrs., and (f) 2 days of reaction at room temperature (scale bar = nm).

Figure S6. Structural parameters of single helices from cryo-ET: (a) the helical pitch was 102.0 \pm 2.5 nm, based on 20 counts; (b) rotation angle was 34.3 ± 4.9 degrees, based on 20 counts; and (c) inner diameter was 10.1 ± 0.6 nm, based on 10 counts.

Figure S7. (a) CD spectrum of PEP_{Au}^{M-ox} capped gold nanoparticles and (b) their corresponding TEM image (scale bar = 100 nm). Both single particles and particle aggregates are observed.

Figure S8. (a) TEM image of helices formed with 10 min. of sonication and 20 min. of incubation prior to HAuCl₄/TEAA addition. (b) The particle width and lengths were 12.1 ± 3.0 nm and 23.9 ± 3.9 nm, respectively (based on 75 counts, each). (c) CD spectrum of the optimized single helices exhibit a very strong CD signal. (d) UV-Vis extinction spectrum, and (e) g-factor graph showing absolute g-factor values up to 0.04. g-factor = $\Delta \varepsilon/\varepsilon$, where $\Delta \varepsilon$ is the molar circular dichroism and ε is the molar extinctions.

Figure S9. (a-d) AFM images of C_{18} -(PEP_{Au}^{M-Ox})₂ fibers dispersed on APTES-functionalized mica (scale bar = 200 nm) and (e) height traces of the labeled segments.

Figure S10. FTIR spectrum of C_{18} -(PEP_{Au}^{M-Ox})₂ fibers. Peaks at 1630 cm⁻¹ and 2922 cm⁻¹ correspond to the amide I band and C-H stretch, respectively.

Figure S11. (a) CD spectrum of C_{18} -(PEP_{Au}^{M-Ox})₂ in 10 mM HEPES and 1 mM CaCl₂ after one day, and (b) corresponding negative stained TEM image (scale bar = 500 nm).

Figure S12. (a) CD spectra of C_{18} -(PEP_{Au}^{M-Ox})₂ in 10 mM HEPES as a function of time. Negative stained TEM images after (b) 15 min., (c) 3 hrs., and (d) 72 hrs. are shown (scale bar = 500 nm). Under these conditions, fibers form very slowly, and very few fibers are observed at early time points.

Figure S13. (a) Integrated d-spacings of the XRD diffractogram. (b) Figure showing the strandto-strand and sheet-to-sheet distances as revealed via XRD.

Figure S14. Additional ssNMR results and structural reference. (a) Aliphatic ¹³C 1D MAS ssNMR spectrum of the site-specifically labeled C_{18} -(PEP_{Au}^{M-Ox})₂ assemblies (top), with the P10 peaks indicated. Bottom: ssNMR spectrum of fibrillar huntingtin exon1-derived peptide htt^{NT}Q₃₀P₁₀K₂, with ¹³C, ¹⁵N-labeled Pro P48 (Adapted from ref.¹). In both cases the labeled Pro is part of a PPII helix that flanks the β-sheet amyloid core. (b) Long-mixing 500ms PDSD 2D

ssNMR spectrum on the labeled C_{18} -(PEP_{Au}^{M-Ox})₂ assemblies. Compared to the short-mixing spectrum (Figure 5b) only new intra-residue P10 peaks are observed, with no contacts between the distinct A1 conformers. (c) Compact zipper interfaces mediated by Ser and other small amino acids in amyloid-like crystals of peptides SSTSAA and SSTNVG from RNase and IAPP.² The compact 6 Å inter-sheet distance is indicated. (d) Tyr ring stacking in GNNQQNY in-register parallel (IP) β -sheets.³ (e) Amyloid interfaces featuring aromatic residues generate wider 9-10 Å inter-sheet distances. Illustrated for Phe in this Class-2 amyloid-like crystal of peptide ANFLVH.⁴ The PDB entries for the four peptide crystal structures are 20NW, 3DG1, 1YJP, and 5E5X.

Figure S15. Length of the different extended segments of C_{18} -(PEP_{Au}^{M-Ox})₂. The total length of the extended molecule is ~7.5 nm. The length measurement of the peptide portion takes into account the average length spanned by one amino acid in both the parallel β -sheet (3.25 Å)⁵ and the PPII (3.1 Å)⁶ secondary structure.

Table S1. Detailed experimental conditions of the MAS ssNMR experiments. Abbreviations:

NS, number of scans; Set Temp, set temperature of cooling gas; MAS, magic angle spinning rate; RD, recycle delay; TPPM, two-pulse phase-modulated ¹H decoupling power during evolution and acquisition ; t_1 evol., number of evolution time increments and increment size in the indirect dimension.

Figure	Expt.	NS	Set Temp (K)	MAS (kHz)	RD (s)	TPPM (kHz)	t ₁ evol. (μs)	DARR mixing time (ms)	¹ H- ¹³ C Contact time (ms)
5b	2D ¹³ C- ¹³ C CP- DARR	64	277	10	3	83	562*35.6	20	2
S14-a	¹ H- ¹³ C CP	1024	277	10	3	83	NA	NA	2
S14-b	2D ¹³ C- ¹³ C PDSD	64	277	10	3	83	562*33.11	500	2

References

- 1. Hoop, C. L.; Lin, H.-K.; Kar, K.; Hou, Z.; Poirier, M. A.; Wetzel, R.; van der Wel, P. C. A. *Biochemistry* **2014**, *53* (42), 6653-6666.
- Sawaya, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.; Wiltzius, J. J. W.; McFarlane, H. T.; Madsen, A. O.; Riekel, C.; Eisenberg, D. *Nature* 2007, 447 (7143), 453-457.
- Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; Eisenberg, D. Nature 2005, 435 (7043), 773-778.
- 4. Soriaga, A. B.; Sangwan, S.; Macdonald, R.; Sawaya, M. R.; Eisenberg, D. *The Journal of Physical Chemistry B* 2015.
- 5. Nesloney, C. L.; Kelly, J. W. Bioorganic & Medicinal Chemistry 1996, 4 (6), 739-766.
- 6. Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. A. *Journal of Molecular Biology* **2013**, *425* (12), 2100-2132.