A putative O-linked β -N-acetylglucosamine transferase is essential for hormogonium development and motility in the filamentous cyanobacterium *Nostoc punctiforme*.

Behzad Khayatan¹, Divleen K. Bains¹, Monica H. Cheng¹, Ye Won Cho¹, Jessica Huynh¹, Rachelle Kim¹, Osagie H. Omoruyi¹, Adriana P. Pantoja¹, Jun Sang Park¹, Julia K. Peng¹, Samantha D. Splitt¹, Mason Y. Tian¹, and Douglas D. Risser¹*

-Supplementary material-

Figure S1. Merged images of fluorescence micrographs for cellular autofluorescence (red) or *sfgfp-aav* derived fluorescence (cyan) for vegetative filaments (0 h post induction) and hormogonia (24 h post-induction) of the wild-type and $\triangle ogtA$ strains harboring P_{ogtA} -*sfgfp-aav* (pBK111), or P_{pilA} -*sfgfp-aav* (pBK109) (as indicated). Bar = 10 μ m.

wild type

∆ogtA (+ogtA-gfpuv)

Figure S2. Merged images of fluorescence micrographs for cellular autofluorescence (red) or *gfpuv* derived fluorescence (cyan) from hormogonia of the wild-type strain, or the $\Delta ogtA$ strain harboring a plasmid (pDDR338) expressing an *ogtA-gfpuv* translational fusion from the *petE* promoter. Bar = 10 μ m.

Figure S3. Analysis of surface associated and soluble HPS in the wild-type, $\Delta hpsE-D$, $\Delta pilA$, or $\Delta ogtA$ strains. **A.** Merged images of fluorescence micrographs for cellular autofluorescence (red) or UEA-fluorescein derived fluorescence (cyan) from hormogonia of various strains (as indicated). Bar = 10 µm. **B.** Image of a single biological replicate for lectin blot analysis of soluble hormogonium polysaccharide from various strains (as indicated).

Figure S4. Detection of O-GlcNAcylated proteins by sWGA lectin blot. Whole cell protein extracts from strains (as indicated) over the time course of hormogonium development (as indicated in h) were separated by SDS-PAGE (12%) and probed via lectin blot analysis with succinylated wheat germ agglutinin (sWGA). Size of molecular weight marker (kDa) indicated on the left.

Strains	Relevant Characteristic(s)	source
Nostoc punctiforme strains		
ATCC 29133	wild type	ATCC
UCD153	Laboratory derivative of N. punctiforme ATCC 29133 with reduced motility	(1)
UCD543	Δ <i>hmpD</i> (NpF5963) *	(2)
UCD574	$\Delta hpsE-G$ (NpF0070-72)	(2)
UCD618	$\Delta pilA$ (NpF0676)	(3)
TNM103	UCD153 with a Tn5-1063 insertion after nucleotide 1782 of ogtA (NpF0677)	This study
TNM428	UCD153 with a Tn5-1063 insertion after nucleotide 556 of ogtA (NpF0677)	This study
UOP102	ogtA-gfp (NpF0677)	This study
UOP106	$\Delta ogtA$ (NpF0677)	This study
UOP121	<i>ogtB</i> Δ1664-2289 (NpR0678)	This study
UOP122	$\Delta ogtA, ogtB\Delta 1664-2289$	This study
Plasmids		
pAM504	Mobilizable shuttle vector	(4)
pRL278	Mobilizable suicide vector	(5)
pET28a	Protein expression vector	Novagen
pSCR569	Mobilizable suicide vector for C-terminal gfpuv translational fusions	(6)
pRL1063a	Suicide vector carrying Tn5-1063, a Tn5 derivative transposon	(7)
pDDR355	Suicide vector for in-frame deletion of <i>ogtA</i> (NpF0677) [1-4]†	This study
pDDR360	Suicide vector for allelic substitution of ogtA (NpF0677) with ogtA-gfp [5-7, 4]	This study
pBK100	Suicide vector for in-frame deletion of nucleotides 4,992-6,870, coding for the	This study
	OGT domain (amino acids 1664-2289) of ogtB (NpF0678) [10-13]	
pDDR387	Shuttle vector containing <i>ogtA</i> under the control of the <i>petE</i> promoter [8-9]	This study
pDDR388	Shuttle vector containing <i>ogtA-gfp</i> under the control of the <i>petE</i> promoter [6,8]	This study
pBK109	Shuttle vector containing <i>PpilA-sfgfp-aav</i> transcriptional reporter [16-19]	This study
pBK111	Shuttle vector containing PogtA-sfgfp-aav transcriptional reporter [16-17,20-21]	This study
pBK112	Shuttle vector containing <i>ogtA</i> and the 119 bp 5' intergenic region [9, 20]	This study

Table S1. Strains and plasmids used in this study

pDDR116

Protein expression vector containing *hmpD* (NpF5963) nucleotides 1-1,497, This study

encoding amino acids 1-499 of HmpD [14-15]

* locus tag denoted in parentheses

† numbers in brackets correspond to primers used to construct plasmid. Detailed information on primers can be found

in Table S2

Table S2. Oligonucleotides used in this study

Oligonucleotide	Sequence	Number
NpF0677-5'-F	ATATAGGATCCCCGAGATTAGAGAGTATGAAATTG	1
NpF0677-5'-R	CTTATTTTTTCTCAGAAGTCATAGTCAAGAATTTTCAG	2
NpF0677-3'-F	CTATGACTTCTGAGAAAAAAAAAGTTAGTTGTGAGG	3
NpF0677-3'-R	ATATAGAGCTCTGGCTTGGGGGACATCCTGTG	4
NpF0677-gfp-BamHI-F	ATATAGGATCCATTTATAGTGACGACATTGCTG	5
NpF0677-gfp-SmaI-R	ATATACCCGGGATTTTTTCTCAATATACCTTTGCCAC	6
NpF0677-gfp-SpeI-F	ATATAACTAGTGTTAGTTGTGAGGGCTTCAGC	7
NpF0677-BamHI-F	ATATAGGATCCATGACTTCTGTCCAAATTCCTAATG	8
NpF0677-SacI-R	ATATAGAGCTCTTATTTTTTCTCAATATACCTTTGCCAC	9
NpR0678-OGT-5'-F	ATATAGGATCCTCCTGTGATTACTTGTCCTAATG	10
NpF0678-OGT-5'-R	CATTTCAGTGCTTTAGTAGTAGATTCATCGCCAC	11
NpF0678-OGT-3'-F	CTACTACTAAAGCACTGAAATGCTTAAATTTGTAATTAC	12
NpF0678-OGT-3'-R	ATATAGAGCTCGGAATACCAGCAGTTGATTAC	13
NpF5963-NcoI-F2	ATATACCATGGGCAAATTGGAGGAGGAAATGG	14
NpF5963-499-XhoI-R	ATATACTCGAGTTCTAGTTTCGAGACATCTGTTTG	15
sfGFP-5'-F	ATGAGCAAAGGAGAAGAACTTTTC	16
sfGFP-AAV-3'-R	ATATAGAGCTCTTAAACAGCAGCTTTGTAAAGCTCATCCATGCCATG	17
PpilA-BamHI-F	ATATAGGATCCAAGCTAACCTCATATTTGATACC	18
PpilA-sfGFP-3'-R	GTTCTTCTCCTTTGCTCATAAGTGTTTTTCCTGGGGTAG	19
PogtA-5'-F	ATATAGGATCCCAACTTGAGTTCTATATCTAATTGC	20
PogtA-sfGFP-3'-R	GTTCTTCTCCTTTGCTCATAGTCAAGAATTTTCAGGATAG	21
qNpF0677-F2	TGCGGCAAAATAAAGTAGCA	22
qNpF0677-R2	TCCTCGCTGGATTAGGTGTT	23

qpilA-F2	TCTGGTTGCCAACAATGGTA	24
qpilA-R2	ACTTCAGCACTCCGATCACC	25
qNpun_r018_F1	TAAGAGCGCACCAGCAGTAT	26
qNpun_r018_R1	CATTGAGCGGAACTGGTAAA	27
Tn5-seq-F	CGATGAAGAGCAGAAGTTATC	28
Tn5-seq-R	GGCTCTATTCAGGATAAATC	29
Tn5-seq-F-nest	CGTTACCATGTTAGGAGGTC	30

1. **Campbell, E. L., M. L. Summers, H. Christman, M. E. Martin, and J. C. Meeks.** 2007. Global gene expression patterns of *Nostoc punctiforme* in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J. Bacteriol. **189:**5247-5256. http://dx.doi.org/JB.00360-07 [pii].

2. **Risser, D. D., and J. C. Meeks.** 2013. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in *Nostoc punctiforme*. Mol. Microbiol. **87:**884-893. http://dx.doi.org/10.1111/mmi.12138.

3. **Khayatan, B., J. C. Meeks, and D. D. Risser.** 2015. Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria. Mol. Microbiol. **98:**1021-1036. http://dx.doi.org/10.1111/mmi.13205.

4. Wei, T. F., T. S. Ramasubramanian, and J. W. Golden. 1994. *Anabaena* sp. strain PCC 7120 *ntcA* gene required for growth on nitrate and heterocyst development. J. Bacteriol. **176**:4473-4482.

5. Cai, Y. P., and C. P. Wolk. 1990. Use of a conditionally lethal gene in *Anabaena* sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J. Bacteriol. **172**:3138-3145.

6. **Risser, D. D., F. C. Wong, and J. C. Meeks.** 2012. Biased inheritance of the protein PatN frees vegetative cells to initiate patterned heterocyst differentiation. Proc. Natl. Acad. Sci. U. S. A. **109:**15342-15347. http://dx.doi.org/1207530109 [pii].

7. Wolk, C. P., Y. Cai, and J. M. Panoff. 1991. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proceedings of the National Academy of Sciences. **88**:5355-5359. http://dx.doi.org/10.1073/pnas.88.12.5355.