Supplementary Information Appendix

Experimental evidence that parasites drive eco-evolutionary feedbacks

Contents

SI	Supplementary Methods	3
	SI.1 Further details on parasite exposure	3
	SI.2 Further details on mesocosm setup and sampling at the end of phase 1	3
	SI.3 Further details on preparation and sampling of phase 2	4
	SI.4 Further details on common garden experiment	4
	SI.5 Further details on molecular analyses	5
	SI.6 Further details on statistical analyses	5
SI	Supplementary Discussion	7

List of Figures

1	Figure-S1. Gene expression responses of lab-reared adults to parasite exposure in common	
	garden setting.	8
2	Figure-S2. Parallelism between gene expression responses in mesocosms and common	
	garden setting.	9
3	Figure-S3. Effects of phase 1 ecosystem modifications on phase 2 fish survival	10

List of Tables

Table S1: Effects of the experimental treatments (in phase 1) on fish mortality, infection	
intensity (i.i.), and metabolic condition (hepatosomatic index)	11
Table S2: Functions and primers for the 28 genes used in this study.	12
Table S3a: Multivariate perMANOVAs testing the effects of experimental treatments on gene	
expression profiles of adult fish in phase 1	15
Table S3b: Univariate LMMs testing the effects of experimental treatments on each gene. .	18
Table S4a. Multivariate analysis on gene expression profiles for lab-bred adults in a common	
garden setting	25
Table S4b. Univariate LMMs testing the effects of parasite exposure in lab-bred adults in a	
common garden setting	26
Table S5a: Results of multivariate analyses from genes to ecosystems	27
Table S5b: Univariate LMMs testing effects of experimental treatments on each prey cate-	
gory, zooplanktoncategory, and ecosystem measurement.	30
Table S6: Introduction and survival of phase 2 fish Introduction Introduction	39
Table S7: Effects of phase 1 on survival, selection and body condition of juveniles in phase 2.	40

Table S8a: Multivariate perMANOVAs testing the effects of the experimental treatments from	
phase 1 on gene expression profiles of juvenile fish in phase 2	41
Table S8b: Univariate LMMs testing the effects of experimental treatments from phase 1 on	
each gene of juvenile fish in phase 2	44

SI Supplementary Methods

SI.1 Further details on parasite exposure

All fish were kept under standard conditions for 24 to 45 days after collection before entering the experiment. All experimental fish were disinfected on the same dates by a 1-hour exposure to 1:4000 Formalin dilution on three consecutive days (modified from [1]). Experimental infection was achieved by manual transfer of *Gyrodactylus spp*. individuals from non-disinfected sticklebacks collected from the same lake and stream populations. All experimental fish were anaesthetized in a 0.1M MS-222 solution before infection or control treatment and non-disinfected parasite source fish were euthanized in a 1M MS-222 solution before parasites were picked off. Two individual parasites from each of the lake and stream environments were transferred. Fifty-eight *Gyrodactylus* individuals from the same parasite source fish were preserved for molecular species identification by sequencing of the ITS1 region [2] and confirmed to be *G. gasterostei* (50 individuals) and *G.arcuatus* (8 individuals), with both parasite species occurring on both host ecotypes in the wild. Control fish were handled similarly without parasite transfer (P contrast). After infection or control treatment, fish were kept in their respective experimental groups in laboratory aquaria for one week before transfer to outdoor mesocosms.

SI.2 Further details on mesocosm setup and sampling at the end of phase 1

The mesocosms were plastic tanks of one cubic meter. They were filled with a 5cm layer of gravel and sand, sediment collected from lake Lucerne and a nearby stream (47°00'45.1"N 8°18'41.4"E). Lake water and a concentrated zooplankton inoculum from Lake Lucerne and Lake Constance were also used. Mesocosms were arranged in blocks of 8 tanks and input material was distributed block-wise. Within each block, we established contrasting nutrient environments by adding nutrient solution aliquots of 20ml containing NaNO₃ and HNa₂PO₄. Initial nutrient concentrations were $640 \mu g/L$ Nitrogen + $40 \mu g/L$ Phosphorus and 80μ g/L Nitrogen + 5μ g/L Phosphorus in high and low nutrient tanks respectively (E contrast). For the first phase of the experiment, we introduced three-spined sticklebacks of either lake or stream origin to establish the host ecotype contrast (H). Each mesocosm initially contained a standardized total biomass of fish of 12.5±4.4g consisting of groups of 6 or 7 fish. We collected ecosystem samples 6 weeks after fish introduction to the mesocosms and removed the fish one week later. Ecosystem samples consisted in measuring a series of physico-chemical parameters (11 parameters including nutrients, NH_4 , and DOC concentration, turbidity and DOC-abs), biological parameters (5 parameters including chlorophyll concentration, zooplankton size, and bacterial counts), ecosystem processes (7 parameters including gross primary productivity, bacterial respiration, and sedimentation), and zooplankton community (12 parameters including abundance of cladocerans, copepods, and rotifers). Individual ecosystem parameters are listed in Table S5b. After euthanasia of the fish in 1M MS-222, Gyrodactylus specimen were counted on each fish before morphological measurements and dissection. 35 Gyrodactylus individuals were successfully sequenced at the ITS region and identified as G.arcuatus in 34 cases and G.gasterostei in 1 case. Organs were taken out, livers were weighed for estimating metabolic condition (Hepatosomatic index), spleens were stored in RNA later for gene expression analysis, and stomachs were used for diet assessment. For diet analysis, prey items were identified to the lowest possible taxonomic level [3, 4, 5] and counted on a 2.5x2.5mm grid under a binocular. Non-aquatic adult insects were classified together as imagos and digested prey as unidentified

material.

SI.3 Further details on preparation and sampling of phase 2

After removal of phase 1 fish, groups of juvenile lab-bred sticklebacks were introduced into the tanks modified throughout phase 1 of the experiment. Each tank received lake, hybrid and stream juvenile fish originating from the same number of different fish families and consistent family distribution within blocks. Juveniles were introduced into mesocosms in two cohorts (7 - 33 days post-hatching, depending on hatching date). The first cohort was introduced one day after removal of first phase fish and the second cohort 32 days later and kept in separate aquaria under common garden conditions for 7 days, after grouping them with an average mortality of 62.5% in that time. Mortality was higher among lake and hybrid juveniles than among stream families (binomial GLM, z_{Stream} =-4.83, P<0.001), but mortality was unrelated to experimental treatments in the destination mesocosms (binomial GLM, all X² <1.76, all P>0.19). Juveniles were not treated individually, but the first cohort was exposed group-wise to a euthanized first phase fish from the same tank for 5 hours in a 2L aquarium for potential parasite transmission. The second cohort was introduced to the mesocosms immediately after group assembly and not exposed to parasites at all, such that 16 nave fish entered each mesocosm. Table S6 contains a full description of juvenile fish introduction and survival for each tank.

All surviving fish were caught three months after the first juvenile cohort was introduced to the mesocosms. As with phase 1 fish, after euthanasia in a 1M MS-222 bath *Gyrodactylus* specimen were counted on each fish before length and weight measurements and removal of spleens and livers for gene expression assays. Spleens and livers were pooled for gene expression analysis in this cohort as spleens alone were too small for sufficient RNA yield. Only 10 of the 407 scanned individuals were infected with *Gyrodactylus* at the end of the experiment, with no significant effects of any previous treatment on infection levels in this second generation (binomial GLMMs, all $X^2 < 2.03$, all P>0.15, Table S7). We also confirmed that effects detected in gene expression profiles and body condition were robust to removal of these few infected individuals from analyses (results as presented in Table S7 and S8 do not change qualitatively), and consequently infection intensities were excluded from the analyses of the second fish generation.

SI.4 Further details on common garden experiment

Lab-bred sticklebacks of pure lake and stream origin were raised in the lab for one year on the same diet, namely artemia during the first month of their life and on frozen chironomids later on. These fish were disinfected with formalin on three subsequent days in the same way as the mesocosm fish. We then set up experimental groups of three fish, either of lake or stream origin and either exposed to *Gyrodactylus* from both wild populations as described above or not. Three replicate blocks of these four experimental groups were set up, each of them kept in one of 12 separate black 300 L outdoor tanks for a total of 36 fish. Fish were kept in these groups and fed with frozen chironomids every second day over the course of five weeks. Then they were euthanized and dissected in the same way as the mesocosm fish. One fish died before sample collection and the spleen sample of one fish did not yield good quality gene expression data, so that 34 fish were included in the analyses.

SI.5 Further details on molecular analyses

Because transcriptome analyses have been conducted with lake and stream three-spined sticklebacks [6], we used a target gene approach, measuring relative mRNA levels in microfluidic qPCR assays on Fluidigm 96.96 Dynamic Array IFCs on the BioMark System using EvaGreen DNA Binding Dye (Biotium) according to the Advanced Development Protocol 14 (PN 100-1208 B) by Fluidigm. Gene expression assays included 4 reference genes (ubiquitin (ubc), L13A ribosomal binding protein (*rpl13a*), beta-2-microglobulin (*b2m*), elongation factor *ef1*_{α} (eef1a) [7]) and 28 target genes. These target genes spanned metabolic functions (*fabp2, gapdh, acadsb, rab11al ,ctrc*), the general stress response (*hsp70, hsp90, nr3c1*), innate cellular (*sod2, vegfa, tf, sla1, ogfr, tlr2*) and innate humoral immune response (*f2, saal1*), innate immune signaling (*socs1, cd97, mif, il1b, tgfb1, tnfa*) as well as the complement system (c7, c9,) and the adaptive immune system (*ighm, ly75, il16, mhcll*). Further information on gene functions and primer details can be found in Table S2. Primers for reference genes were previously published [7] as well as primers for mhcll [8]. All new primers were designed in quantprime [9]. The combination of ubc and rpl13a was found to be the most stable composite reference value with geNorm [10] (M=0.721, CV=0.243) and was therefore used to calculated Δ Ct values.

Juveniles were genotyped at 7 microsatellite loci (Stich5196, Stich4170, Stich1125, Stich1097, Stich7033, STN18, STN75) for ecotype determination. All 7 microsatellites was amplified in one multiplex reaction, using the Multiplex PCR Master Mix by Qiagen and previously published primers [11] and the following PCR protocol: 95°C for 15min, 25 cycles of 30s at 94°C,90s at 58°C,60s at 72°C and a final 30min at 60°C. Microsatellite data was then collected on a 3100 Genetic Analyzer (ABI).

SI.6 Further details on statistical analyses

All statistical analyses were performed in R version 3.1.0 [12]. Linear mixed effect models (LMM) and generalized linear mixed effect models (GLMM) were performed with the *Ime4* and *MASS* packages (for infection intensity test); while p-values were obtained with Anova (*car*) by performing Type II X² or F tests with Kenward-Roger degrees of freedom. The standardized model structure tested for the effects of phase 1 experimental treatments: parasite exposure (P), host ecotype (H), ecosystem nutrient levels (E) and their interactions as fixed structure with block as a random factor. Univariate analyses on individual fish characteristics such as parasite burden, fish condition, gene expression and survival also included tank identity nested within block as a random effect. Significance levels among univariate results were adjusted for multiple testing within each functional parameter group (gene groups, diet, zooplankton, ecosystem parameter groups) by FDR correction according to Benjamini-Yekutieli [13]. Multivariate analyses such as permutational multivariate analysis of variance (perMANOVA) and redundancy analysis (RDA) were performed using the vegan-package and controlled for the effects of block and tank when necessary.

The effects of experimental treatments on individual infection intensity were tested with a Penalized Quasi Maximum Likelihood GLMM (glmmPQL) with negative binomial error distribution, including fish standard length as an offset in MASS R-package (theta = 0.223, link = "sqrt"). Then, we analyzed effects of infection intensity and experimental treatments on individual fish condition. Fish condition was calculated as the hepatosomatic index (HSI) = 1000 x liver wet-mass (mg)/fish mass (mg). HSI was tested with an LMM using infection intensity as well as the experimental treatments as fixed structure (Table S1). Furthermore, we tested if mortality was significantly different between treatments during phase 1 of the experiment with a binomial GLMM, on the live:dead ratio at the end of this phase.

Mean prey preferences and mean zooplankton abundance per tank were Hellinger transformed and then tested in a distance-based redundancy analysis (db-RDA) for treatment effects (60). For multivariate analyses of the ecosystem level, we scaled each ecosystem parameter (mean=0, \pm 1 SD) and then tested for experimental treatment effects in an RDA. Significant effects of each RDA were obtained by permuting treatments 9999 times within each block with the function anova.cca (by=term, strata=block). For univariate analyses, we standardized all LMMs and GLMMs for diet, zooplankton and ecosystem parameters to \pm 2 SD in a model average framework following Grueber et al [14] and Gelman et al [15], to calculate the relative importance (RI) and standardized effect sized (ES) in Table S5b.

Gene expression was analyzed as Δ Ct values [16]. For comparison among biological levels, gene expression data was analyzed in an RDA in the same way as ecosystem parameters. Further gene expression analyses of fish from phase 1 were performed once for the complete dataset to evaluate three-way interactions but interpreted according to separate analyses for lake and stream fish as reference gene expression differed between fish ecotypes. Multivariate effects were assessed with perMANOVA on data averaged within experimental tank. PerMANOVA results were calculated using adonis (*vegan*) with 999 permutations on a Pearson distance matrix obtained with Dist (*amap*) and stratifying data within Blocks (Tables S3a, S4a and S8a). Univariate effects were assessed in LMMs and with Yeo-Johnson transformation where necessary prior to model testing if residual distributions were non-normal or heteroscedastic (λ -values for transformations are listed with the respective LMM output in Tables S3b, S4b and S8b). To correct for the possible dependence of gene expression on fish size we included standard length as prior weights in the linear mixed effect models. Gene expression data from the common garden experiment was analyzed the same way but included only parasite exposure and ecotype as fixed effects and way carried out only in joint models for both ecotypes.

Juvenile stocking differences between tanks (19-39/tank) were statistically accounted for by including tank as a random factor in individual based tests (i.e. survival, body condition and LMMs for gene expression) and by including stocking numbers in tank based tests (i.e. as prior weights in LMMs for selection coefficients and as covariate in perMANOVAs for gene expression). Survival differences between lake, hybrid and stream juveniles (according to their parents origin as determined with microsatellites) were tested with a Pearsons X²-test. Then we tested for effects of phase 1 treatments on juvenile survival using binomial GLMMs with survival rates from each tank as the response variable and phase 1 experimental treatments as fixed factors. The same model was run for all juveniles together and for each juvenile ecotype individually. We further calculated the selection coefficient S against each juvenile ecotype as the change in frequency of the ecotype relative to the frequency of the fittest genotype, subtracted from 1, within each tank [17]. Effects of phase 1 ecosystem modifications on viability selection were tested in linear mixed models for each juvenile ecotype separately (Table S7). To evaluate second generation fish body condition, we calculated the relative weight W_{rel} [18] as a percentage of the average expected weight for a given fish size according to a logarithmic length-weight regression. These W_{rel} values were analyzed in an LMM using the Ime4 package. For fish from phase 2, we analyzed experimental treatment effects on body condition in three subgroups (lake, hybrid or stream) (Table S7). Gene expression data of these fish was analyzed separately for lake, hybrid and stream fish for consistency with phase 1 fish (Table S8a and S8b). Statistical methods for gene expression analysis were the same as for phase 1, except for the inclusion of stocking numbers as a covariate in perMANOVAs.

To determine if differential expression between ecotypes was similar between environments, we calculated the ratio between experiments (mesocosm/common garden) of the difference between ecotypes (stream-lake) and tested (using a 2-tailed t-test) whether the value of this ratio (i.e. the slope see Fig-S2A-B) was significantly different from either 0 or 1. Additionally, we determined whether stream and lake fish showed parallel responses to infection Fig-S2C) by testing whether the directional expression responses across all 28 genes, between our pair of environments (common garden v.s. mesocosm), were more similar than expected by chance using a McNemar test [19, 20].

SI Supplementary Discussion

We found many instances of three-way interactions of parasite exposure x fish ecotype x nutrient loading in the eco-evolutionary feedback from first phase ecosystem manipulations to the relative fitness of juveniles in the second experimental phase. For instance, selection against lake juveniles shows that lake fish are at a selective disadvantage when mesocosms are nutrient poor and have been modified by lake adults under parasite pressure. This indicates that preferred resources of one ecotype can be depleted and might cause a negative feedback for this ecotype in the next generation, particularly under parasite exposure. When nutrient loads are increased (i.e. in eutrophic mesocosms), lake juveniles have similar survival rates as stream and hybrid juveniles in mesocosms modified by parasite exposed lake adults. This suggests that directional selection (driven by parasites) is reduced at higher nutrient levels because compensation is easier to achieve in productive environments. When parasite pressure is low however, lake juveniles are at a selective disadvantage under high nutrient conditions. One possible explanation is that the lake adults in phase 1 benefit from the simultaneous absence (or low level) of parasites and high nutrient levels to the extent that they deplete prey items preferred by lake fish again. Proving these suggested mechanism would require additional experiments, such as laboratory feeding trials of the different ecotypes with and without parasite pressure.

Figure-S1. Gene expression responses of lab-reared adults to parasite exposure in common garden setting, from fourfold down regulation to fourfold up regulation in parasitized vs. control manipulations (P). Significant expression changes for gene groups are highlighted by black outlines (lake: N=6, stream: N=6, test on tank averages). See Table S4a and Table S4b

Fold-expression (Common Garden)

Figure-S2. Panel A: Conceptual figure for comparing patterns of gene expression in two contrasting environmental contexts: wild fish put into experimental mesocosms (M) and lab reared fish from a common garden (C) setting. First, considering both ecotypes together, we expected a positive correlation for gene expression between environments (grey shaded area). Second, we expected variation in the slopes connecting gene expression of lake and stream fish. When the slope is close to 1, we interpret this as evidence for parallel responses, because the divergence in gene expression between ecotypes is similar in both environments. If the slopes are significantly less than or greater than 1, this would indicate that the environmental context (M or C) has a large influence on the differences in gene expression between ecotypes. Panel B: We found support for both of our expectations illustrated in Panel A. First, there was a strong positive relationship (i.e. grey shaded area in Panel A) between levels of expression across all 28 genes (R^2 =0.78, t=6.443, p<0.001). This is consistent with a limited role for plasticity causing different levels of gene expression between environments (M vs. C). Second, there was variation in the slopes between ecotypes, and the mean slope was not significantly different from 1 (two sided t-test, t= 0.506, df = 27, p-value = 0.617). The slopes were also significantly positive (one sided t-test, t = 1.739, df = 27, p-value = 0.047), which is expected given that expression levels tended to be higher in the lake fish. Panel C: To determine whether stream and lake fish showed parallel responses to parasite (P) infection, we tested whether the directional expression responses across all 28 genes (based on log response ratios (In[+P/-P]) between our pair of environments (M or C) were more similar than expected by chance [using a McNemar test, 19, 20]. We found that the direction of gene expression responses to parasites was significantly parallel between experiments for stream (McNemar test: b=12, c=4, p-value = 0.077) but not for lake fish (McNemar test: b=12, c=1, p-value = 0.003). Our analyses also show that gene expression was parallel between lake fish in mesocosms and stream fish in common garden (McNemar test: b=5, c=10, p-value = 0.302), but not between stream fish in mesocosms and lake fish in common garden (McNemar test: b=1, c=12, p-value = 0.003).

Figure-S3. Effects of phase 1 ecosystem modifications on phase 2 fish survival. Survival percentages of different stickleback genetic backgrounds in ecosystems modified by the phase 1 manipulations. Lake fish survival depends on an interaction of all previous ecosystem modification factors (PxHxE, N=280) and hybrid survival is affected by phase 1 nutrient manipulation (E, hybrids: N=265, stream: N=395). Data is shown as means \pm SEM across 5 replicated tanks for each phase 1 treatment. See Table S7

Table S1: Effects of the experimental treatments (in phase 1) on fish mortality, infection intensity (i.i.), and metabolic condition (hepatosomatic index). Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. HxE). Significant P values are highlighted in bold, and N is the number of tested individuals

		Mortal	ity		G	iyrodact	ylus i.i.				Μ	etabolic	conditio	on	
		Both	-	B	oth	Lake	host	Strea	m host	Bo	oth	Lake	host	Strear	m host
Treatment	Df	X^2	Р	X^2	Р	X^2	Р	X^2	Ρ	X^2	Ρ	X^2	Ρ	X^2	Ρ
Gyrodactylus i.i.	1									3.847	0.050	4.454	0.035	2.139	0.144
P	1	0.233	0.629	0.008	0.929	6.276	0.012	1.190	0.275	3.217	0.073	2.454	0.117	0.712	0.399
Н	1	4.164	0.041	20.262	<0.001					3.354	0.067				
E	1	0.002	0.966	0.023	0.879	7.470	0.006	0.011	0.916	7.047	0.008	1.400	0.237	5.919	0.015
H:E	1	2.055	0.152	0.015	0.903					1.738	0.187				
H:P	1	1.481	0.224	5.626	0.018					0.015	0.902				
E:P	1	0.560	0.454	1.918	0.166	0.354	0.552	2.080	0.149	0.485	0.486	0.742	0.389	0.100	0.752
H:E:P	1	0.535	0.465	1.229	0.268					0.320	0.572				
Ν		159		159		72		87		159		72		87	

Table S2: Functions and primers for the 28 genes used in this study.

Gene	Putative gene function	ENSEMBL transcript ID	Forward / Reverse Primers	Amplicon size	Reference
ubc	Ubiquitin, basic cell metabolism	ENSGACT00000010662	AGACGGGCATAGCACTTGC	218	[7]
			CAGGACAAGGAAGGCATCC		
rpl13a	Ribosomal protein L13a, basic cell metabolism	ENSGACT00000012319	CACCTTGGTCAACTTGAACAGTG	218	[7]
			TCCCTCCGCCCTACGAC		
b2m	Beta-2 microgobulin, serum protein associated	ENSGACT00000025537	GAAGATGTGTTGAATAGAAGCTGG	226	[7]
	with MHCI, expressed on all cells		AGACTATGCCTGGGAATCAAAC		
eef1a	Eukaryotic Elongation factor 1 alpha,	ENSGACT0000002833	CCACCGTTGCCTTTGTCC	unknown	[7]
	basic cell metabolism		TGGGACTGTTCCAATACCTCC		
Metabolis	sm				
1 fabp2	Fatty acid binding protein 2 intestinal, growth factor	ENSGACT00000023459	CGCCGATGGAACAGAACTATCAGG	102	This study
			CGGGTTGTCGTCAGTTGCTTTC		
² gapdh	glyceraldehyde-3-phosphate dehydrogenase,	ENSGACT00000013612	ACAAGTCCCTCAAGGTCGTCAG	123	This study
	glycolysis		TGGTGGCATGAACTGTGCTCATC		
³ acadsb	acyl-CoA dehydrogenase, short/branched chain, first	ENSGACT0000003295	ACCAGACAGAGAGTGCAGTTTGG	60	This study
	step in fatty acid metabolism in cells		TTGATGCTGCATGCCCTGGAAG		
⁴ rab11al	member of RAS oncogene family, angiogenesis,	ENSGACT00000017582	ATAGTCATCATGCTAGTGGGCAAC	102	This study
	protein transport		GAAAGAAAGGCCATGTTTCTCTGC		
⁵ ctrc	chymotrypsin C (caldecrin), proteolysis,	ENSGACT0000008916	TCATGGGCACCGCTAATATTGTTG	75	This study
	cellular calcium ion homeostasis		TGATCAGGGCGATGTCATTACGG		
Stress Re	esponse				
⁶ hsp70	Heat shock 70kDa protein 8, molecular chaperone	ENSGACT00000013955	CACCTGGCTTGATGGGAATCAGTC	60	This study
			TCCTTCTGCTGATGCTCAAACTCC		
⁷ hsp90	Heat shock 90kDa protein alpha, molecular chaperone	ENSGACT00000017081	TCACCGTCAAAGTGGACAACTCC	79	This study
			TCGATCTGGTCTTCCTTCAAGTGC		
⁸ nr3c1	Glucocorticoid receptor, initiates stress	ENSGACT00000024121	TCTTCAAGAGAGCAGTGGAAGGG	137	This study
	response upon cortisol binding		TTCCAGGTTCATGCCTGCCATC		
Innate Im	munity				
⁹ sod2	superoxide dismutase 2, superoxide metabolic process,	ENSGACT000000119[7]	CGTACGTGAACAACCTCAACGTC	73	This study

Table S2 continued

Gene	Putative gene function	ENSEMBL transcript ID	Forward / Reverse Primers	Amplicon size	Reference
	involved in inflammation processes		TGAGCGGTCACATCTCCCTTTG		
10 vegfa	Vascular endothelial growth factor receptor 2 subtype 1,	ENSGACT00000018538	CGAAGCCATGGAGTGTGTTTCC	69	This study
	stimulation of macrophage and monocyte migration		AGAAGTCTAAGCCGCGTTACCTG		
¹¹ tf	transferrin-a, antibacterial, cellular iron homeostasis	ENSGACT00000017999	ATGCTTCTTGTCACCTGGCCATC	115	This study
			TTGCTGGAACCTAATCTGGTCTGC		
12 sla1	Src-like-adaptor, regulates GM-CSFR signaling	ENSGACT00000007895	ACAGAGTCGGCTCCTTCATGATAC	66	This study
	and monocytic dendritic cell maturation		TCACAGAGAGCGAATACAGACCTC		
13 ogfr	opioid growth factor receptor, immunocytochemistry,	ENSGACT00000020054	TGAAACGAGCAGACAATTGGAAGG	66	This study
	tissue renewal, wound healing		GCAGGTTGTTGTGCATGTTCCG		
14 tlr2	toll-like receptor 2, antigen recognition	ENSGACT00000024730	CGGAAGGTGATTTTCCTGACC	230	Sascha Hibbeler,
			CTGACCAGGTACGAAGCCG		
15 f2	coagulation factor II (thrombin),	ENSGACT00000020418	ACCTTTGGAGAAGGAGAGAGTGTG	115	This study
	involved in thrombotic response		CGACGATGCGTTCTTGTCTGTATG		
Innate Hu	Imoral Immunity				
16 saal1	Serum amyloid A, acute phase protein	ENSGACT0000007599	TCGCAGTGAGGCCAAAGATGAG	134	This study
			AAATCTGCCACCGTGTCCTTGG		
¹⁷ socs1	suppressor of cytokine signaling 1,	ENSGACT00000018981	ACTGCAGTGAGAACTAAACGGATG	138	This study
	negative immune regulation		ATGATGATGACGACGACGACAAGG		
Innate Im	mune Signaling				
¹⁸ cd97	cell surface protein, leucocyte recruitment	ENSGACT00000024871	CTCGTGGCACTCTACGACATGAAG	60	This study
			CAGCCCTATCTTGGTGACCAGTTG		
¹⁹ mif	macrophage migration inhibitory factor,	ENSGACT00000023656	ATCAGCGGAGCTCACAACAAGC	77	This study
	inflammatory cytokine		TCAGGAGAGATGCTCAGGTGTTTG		
²⁰ il1b	interleukin 1 B, inflammation signaling	ENSGACT00000019325	TGACGATGAAGCAGGTGGTCAAC	150	This study
			ACAGCGTCACGATCTCCTCTTC		
²¹ tgfb1	transforming growth factor beta 1,	ENSGACT00000016962	GGTGGTTGCTTTGTCCTCAT	190	Marc Ritter,
	cytokine, antiflammatory		TGTCCTTCGACGTCACTGAG		
²² tnfa	tumor necrosis factor a, cytokine activity	ENSGACT00000013402	AACTACTACAGAGCCAAGGGCAAG	60	This study
			ACGGCACTCAGCGGTACAATTC		

1ω

Table S2 continued

Gene	Putative gene function	ENSEMBL transcript ID	Forward / Reverse Primers	Amplicon size	Reference
Complem	ent System				
23 c7	bridge btw adaptive and innate immune system	ENSGACT00000009181	TGGCTCAAGCTCAGCACAACAG	79	This study
			AGCGACACGTGTTTGTTTGATCG		
24 c9	bridge btw adaptive and innate immune system	ENSGACT00000020968	CCGTGACGAACAAAGACTCAGTTG	71	This study
			TCTGACCGATGTCAGCACCTTG		
Adaptive	Immunity				
25 ighm	immunoglobulin heavy constant mu (ighm),	ENSGACT00000016907,	AAGGCAGGAGAATGAAACCTTGG	175	Sascha Hibbeler,
	antibody molecule, activates complement system	ENSGACT00000016927,	CCGAGTGAGCAGACAGGGACTGG		
		ENSGACT00000016947			
²⁶ ly75	Lymphocyte antigen 75,	ENSGACT00000020067	TTGTCTGCACAACCGAAGCAAAG	70	This study
	reduces B lymphocyte proliferation		AGGAAGACCACGACGAAGAGAC		
²⁷ il16	interleukin 16, T cell activation and proliferation	ENSGACT00000016499	CTGGTCTGGGCTTCAGTATTGC	76	This study
			CTGGGAAACACTCTGTGGACTG		
²⁸ mhcll	Major histocompatibility complex, pathogen recognition	many	GTCTTTAACTCCACGGAGCTGAAGG	variable	[8]
			ACTCACCGGACTTAGTCAG		

Table S3a: Multivariate perMANOVAs testing the effects of experimental treatments on gene expression profiles of adult fish in phase 1. We tested the effects on each functional gene group (e.g. stress response, metabolism genes, etc). Tests were performed including both host ecotypes (Both) and splitting them by host ecotype (lake and stream).Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. HxE). Significant P values are highlighted in bold.

Both					Lake				Stream			
Treatment	DF	F	\mathbf{R}^2	Р	DF	F	\mathbf{R}^2	Р	DF	F	\mathbf{R}^2	Р
					A	II genes						
Р	1	-0.111	-0.003	0.771	1	0.585	0.042	0.407	1	2.6	0.134	0.083
Н	1	9.136	0.22	0.002								
E	1	0.365	0.009	0.514	1	-0.753	-0.054	0.992	1	0.883	0.046	0.406
H:P	1	2.758	0.066	0.061								
P:E	1	-0.18	-0.004	0.822	1	0.156	0.011	0.632	1	-0.149	-0.008	0.874
H:E	1	-0.722	-0.017	0.952								
H:P:E	1	0.279	0.007	0.574								
Residuals	30		0.722		14		1.001		16		0.828	
Total	37		1		17		1		19		1	
				•								
_				St	ress r	esponse	genes					
Р	1	1.168	0.031	0.238	1	-0.036	-0.003	0.572	1	4.788	0.238	0.083
H	1	7.131	0.186	0.026								
E	1	0.458	0.012	0.408	1	-0.951	-0.071	0.942	1	-0.188	-0.009	0.649
H:P	1	1.252	0.033	0.23								
P:E	1	0.002	0	0.594	1	0.349	0.026	0.306	1	-0.471	-0.023	0.851
H:E	1	-2.032	-0.053	0.981								
H:P:E	1	0.296	0.008	0.457								
Residuals	30		0.784		14		1.048		16		0.795	
Total	37		1		17		1		19		1	
					Metak	olism ae	nes					
Р	1	-2 013	-0.075	0 94	1	-0 473	-0.038	0 765	1	-1 526	-0 098	0 911
Н	1	0 141	0.005	0.538	•	0.170	0.000	0.700	•	1.020	0.000	0.011
F	1	-0.922	-0.034	0.300	1	-1 68	-0 137	0 952	1	1 329	0.085	0.343
L H·P	1	0.022	0.004	0.70		1.00	0.107	0.002	•	1.020	0.000	0.040
P·F	1	0.705	0.020	0.401	1	0 451	0.037	0 537	1	-0 156	-0.01	0 594
H·F	1	-1 717	-0.064	0.896		0.401	0.007	0.007	•	0.100	0.01	0.004
	- 1	0.334	0.004	0.000								
Residuals	30	0.004	1 1 1 3	0.434	1/		1 1 2 8		16		1 023	
Total	37		1.110		17		1.100		19		1.020	
Iotai	07				17				15			
				Inn	ate co	ellular im	munity					
Р	1	-4.685	-0.08	0.997	1	2.912	0.174	0.173	1	1.149	0.056	0.334
Н	1	20.498	0.352	0.002								
Е	1	1.661	0.029	0.232	1	-0.54	-0.032	0.85	1	3.766	0.185	0.119
H:P	1	7.744	0.133	0.03								
P:E	1	0.62	0.011	0.423	1	0.394	0.023	0.494	1	-0.535	-0.026	0.739

Table 53a continue	ed
--------------------	----

		B	Both			L	ake			St	ream	
Treatment	DF	F	\mathbf{R}^2	Р	DF	F	\mathbf{R}^2	Р	DF	F	\mathbf{R}^2	Ρ
H:E	1	3.579	0.061	0.11								
H:P:E	1	-1.214	-0.021	0.928								
Residuals	30		0.515		14		0.835		16		0.785	
Total	37		1		17		1		19		1	
				Inn	ate hi	ımoral in	munity					
Р	1	-0.346	-0.012	0 689	1	-0.397	-0.029	0.817	1	-0.063	-0 004	0.64
Н	. 1	0.518	0.018	0.371	•	0.007	0.020	0.017	•	0.000	0.001	0.01
н	1	15 705	0.33	0.001								
F	1	2 21/	0.076	0.105	1	0/17	0.031	0 301	1	1 1 1 /	0.074	0.26
L H·P	י 1	-0.074	-0.070	0.105	I	0.417	0.001	0.004	I	1.114	0.074	0.20
D.E		-0.074	-0.003	0.555	-	0.56	0.042	0.042	-	2 044	0 126	0.007
г.с u.с	1 - 1	-0.395	-0.014	0.675	I	-0.56	-0.042	0.942	I	-2.044	-0.136	0.907
	1	-0.619	-0.021	0.757								
H:P:E	1	-2.348	-0.081	0.988					4.0		1 000	
Residuals	30		1.036		14		1.04		16		1.066	
Total	37		1		17		1		19		1	
				Inn	ate in	nmune si	gnaling					
Р	1	0.602	0.013	0.379	1	0.52	0.035	0.392	1	-0.922	-0.055	0.825
E	1	0.063	0.001	0.528	1	0.239	0.016	0.508	1	-0.542	-0.032	0.758
H:P	1	-0.249	-0.005	0.635								
P:E	1	1.635	0.034	0.229	1	0.205	0.014	0.52	1	2.293	0.136	0.152
H:E	1	0.041	0.001	0.548								
H:P:E	1	-0.163	-0.003	0.61								
Residuals	30		0.63		14		0.936		16		0.951	
Total	37		1		17		1		19		1	
				c	Compl	ement sv	stem					
Р	1	-3.343	-0.053	0.952	1	8.027	0.329	0.111	1	9.339	0.385	0.024
н	1	14.765	0.234	0.009								
E	1	3.602	0.057	0.158	1	2.145	0.088	0.39	1	0.944	0.039	0.46
H:P	1	20.716	0.328	0.003		-						
P·F	1	-1 655	-0.026	0.835	1	0 194	0.008	0 527	1	-2 054	-0.085	0.89
H·F	. 1	-0 571	-0.009	0.596	•	0.101	0.000	0.027	•	2.001	0.000	0.00
H·P·F	1	-0.293	-0.005	0.500								
Residuale	ر ۲	0.200	0.000	0.004	11		0 575		16		0 66	
Total	30 27		0.475		14		0.575		10		0.00	
TOLAI	37		I		17		I		19		1	
					Adap	tive immu	unity					
Р	1	3.669	0.073	0.127	1	-0.35	-0.02	0.802	1	15.456	0.502	0.004
Н	1	7.102	0.141	0.033								
E	1	3.157	0.063	0.179	1	2.149	0.123	0.263	1	-1.207	-0.039	0.952
H:P	1	3.854	0.077	0.126								
P:F	1	1.108	0.022	0.36	1	1.718	0.098	0.303	1	0.535	0.017	0.446

Table S3a	continued
-----------	-----------

		В	oth			La	ake		Stream			
Treatment	DF	F	\mathbf{R}^{2}	Р	DF	F	\mathbf{R}^2	Ρ	DF	F	\mathbf{R}^2	Ρ
H:E	1	-0.463	-0.009	0.754								
H:P:E	1	1.829	0.036	0.277								
Residuals	30		0.597		14		0.799		16		0.52	
Total	37		1		17		1		19		1	

Table S3b: Univariate LMMs testing the effects of experimental treatments on each gene. Tests were performed including both host ecotypes (Both) and splitting them by host ecotype (lake and stream). Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. HxE). P-values lower than 0.05 are highlighted in bold and significant P-values after FDR correction according to Benjamini-Yekutieli are marked with *.

			Both				Lake			ę	Stream	
Treatment	F	Df	Df.res	Р	F	Df	Df.res	Р	F	Df	Df.res	Р
fabp2												
Р	0.051	1	451.062	0.822	0.098	1	127.668	0.754	0.513	1	197.800	0.475
Н	15.025	1	473.507	<0.001								
E	2.018	1	486.412	0.156	0.631	1	130.191	0.428	0.498	1	212.972	0.481
P:H	0.514	1	465.191	0.474								
P:E	1.253	1	464.094	0.264	2.040	1	125.529	0.156	0.053	1	203.020	0.818
H:E	0.004	1	468.787	0.950								
P:H:E	1.092	1	457.281	0.297								
lambda									-0.411			
gapdh												
Р	0.874	1	687.545	0.350	2.500	1	263.066	0.115	0.018	1	258.453	0.893
Н	0.443	1	714.801	0.506								
E	1.670	1	726.639	0.197	3.233	1	269.858	0.073	0.165	1	273.321	0.685
H:E	3.375	1	700.484	0.067								
P:H	0.545	1	697.017	0.461								
P:E	2.100	1	701.805	0.148	1.752	1	258.509	0.187	0.560	1	264.089	0.455
P:H:E	0.202	1	688.199	0.653								
lambda	2.612								3.031			
acadsb												
Р	0.357	1	271.766	0.551	0.015	1	186.303	0.903	0.387	1	118.822	0.535
Н	13.500	1	283.514	< 0.001								
E	0.608	1	282.652	0.436	0.293	1	190.820	0.589	0.273	1	125.783	0.602
P:H	0.141	1	281.681	0.707								
H:E	0.009	1	285.905	0.927								
P:E	0.787	1	278.108	0.376	3.054	1	183.452	0.082	0.012	1	121.944	0.913
P:H:E	1.174	1	279.484	0.279								
lambda												
rab11al												
Р	0.597	1	339.472	0.440	0.207	1	353.980	0.650	0.360	1	85.992	0.550
Н	22.718	1	354.017	< 0.001								
Е	1.022	1	354.471	0.313	2.618	1	361.037	0.107	0.000	1	90.499	0.984
H:E	1.023	1	356.352	0.313								
P:H	0.036	1	350.923	0.850								
P:E	0.010	1	347.549	0.922	1.311	1	350.935	0.253	0.458	1	88.081	0.500
P:H:E	1.581	1	347.992	0.209								
lambda												

Table S3b: Co	ontinued
---------------	----------

			Both				Lake			ę	Stream	
Treatment	F	Df	Df.res	Р	F	Df	Df.res	Р	F	Df	Df.res	Р
ctrc												
Р	0.006	1	524.456	0.939	0.084	1	129.995	0.773	0.028	1	259.353	0.867
Н	0.843	1	544.458	0.359								
E	0.343	1	549.908	0.559	0.016	1	132.244	0.900	0.247	1	276.352	0.619
H:E	0.000	1	543.735	0.988								
P:H	0.032	1	536.615	0.859								
P:E	3.254	1	536.454	0.072	2.582	1	128.987	0.111	0.352	1	265.825	0.554
P:H:E	1.137	1	531.672	0.287								
lambda	1.321								1.484			
hsp70												
Р	2.104	1	69.265	0.151	0.310	1	26.062	0.582	4.523	1	35.389	0.040
Н	8.879	1	71.048	0.004								
E	0.411	1	70.230	0.523	0.492	1	25.313	0.489	0.209	1	36.821	0.651
P:H	3.065	1	71.758	0.084								
P:E	1.340	1	70.131	0.251	1.529	1	25.489	0.228	0.286	1	36.011	0.596
H:E	0.013	1	71.954	0.908								
P:H:E	0.201	1	71.050	0.656								
lambda	1.414								1.488			
hsp90												
P	1.694	1	64.255	0.198	0.623	1	28.663	0.437	3.836	1	28.303	0.060
Н	7.682	1	65.775	0.007								
E	0.413	1	64.944	0.523	0.172	1	27.884	0.682	0.290	1	29.094	0.595
H:E	0.010	1	66.609	0.919								
P:H	3.392	1	66.466	0.070								
P:E	0.739	1	64.974	0.393	2.259	1	27.930	0.144	0.000	1	28.657	0.997
P:H:E	0.871	1	65.842	0.354								
lambda	1.134								1.055			
nr3c1												
Р	1.329	1	673.638	0.249	1.550	1	353.028	0.214	0.554	1	188.529	0.458
Н	5.463	1	696.482	0.020								
E	0.666	1	705.227	0.415	3.816	1	360.038	0.052	0.173	1	200.295	0.678
H:E	2.900	1	688.992	0.089								
P:H	0.005	1	682.619	0.944								
P:E	1.433	1	687.499	0.232	9.628	1	349.871	0.002*	0.877	1	193.233	0.350
P:H:E	7.557	1	676.061	0.006*								
lambda	-1.457				-4.058				-0.394			
sod2												
Р	0.026	1	321.077	0.873	0.048	1	265.735	0.827	0.276	1	64.343	0.601
Н	10.369	1	336.314	0.001								
E	2.551	1	340.225	0.111	2.708	1	271.783	0.101	0.351	1	68.147	0.556

|--|

			Both		Lake Stre				Stream			
Treatment	F	Df	Df.res	Р	F	Df	Df.res	Р	F	Df	Df.res	Р
H:E	0.568	1	336.079	0.451								
P:H	0.512	1	332.655	0.475								
P:E	1.948	1	329.288	0.164	3.334	1	263.472	0.069	0.058	1	66.001	0.810
P:H:E	1.097	1	328.118	0.296								
lambda												
vegfa												
Р	0.983	1	366.714	0.322	0.013	1	290.038	0.910	1.324	1	153.220	0.252
Н	16.705	1	382.812	<0.001								
E	1.716	1	384.893	0.191	1.746	1	297.119	0.187	0.526	1	162.781	0.469
H:E	0.392	1	383.386	0.532								
P:H	0.785	1	378.528	0.376								
P:E	0.472	1	375.372	0.492	3.974	1	285.359	0.047	0.387	1	157.347	0.535
P:H:E	2.507	1	374.685	0.114								
lambda	-1.535											
tf												
Р	3.233	1	702.358	0.073	7.004	1	372.070	0.008*	0.012	1	240.583	0.915
Н	0.052	1	723.632	0.820								
Е	0.685	1	735.580	0.408	0.726	1	381.215	0.395	3.634	1	255.335	0.058
H:E	4.677	1	719.137	0.031								
P:H	3.092	1	710.624	0.079								
P:E	2.067	1	717.846	0.151	2.585	1	369.982	0.109	0.194	1	246.335	0.660
P:H:E	0.501	1	704.017	0.479								
lambda	3.110				3.327				2.918			
sla1												
Р	0.473	1	356.204	0.492	1.816	1	372.070	0.179	0.000	1	58.085	0.988
Н	17.917	1	371.308	<0.001								
E	0.011	1	372.087	0.916	0.415	1	381.215	0.52	0.005	1	60.496	0.946
H:E	0.035	1	373.782	0.851								
P:H	0.599	1	367.961	0.439								
P:E	0.049	1	364.720	0.825	1.120	1	369.982	0.291	1.025	1	59.244	0.316
P:H:E	2.587	1	364.909	0.109								
lambda					-1.698							
ogfr												
Р	0.090	1	360.366	0.765	0.013	1	290.543	0.909	0.143	1	97.843	0.707
Н	13.883	1	375.893	<0.001								
Е	1.791	1	377.150	0.182	2.430	1	297.621	0.120	0.234	1	103.510	0.630
H:E	0.298	1	377.428	0.585								
P:H	0.094	1	372.098	0.759								
P:E	0.084	1	368.885	0.772	2.620	1	289.111	0.107	0.583	1	100.391	0.447
P:H:E	2.503	1	368.715	0.114								

			Both				Lake			ę	Stream	
Treatment	F	Df	Df.res	Р	F	Df	Df.res	Р	F	Df	Df.res	Р
lambda												
tir2												
Р	0.031	1	694.018	0.861	1.799	1	343.584	0.181	1.736	1	259.353	0.189
Н	18.862	1	717.673	i0.001								
Е	0.372	1	726.586	0.542	1.575	1	350.844	0.210	0.347	1	276.352	0.556
P:H	2.859	1	702.345	0.091								
P:E	0.568	1	707.861	0.451	2.314	1	338.612	0.129	0.445	1	265.825	0.505
H:E	1.913	1	708.023	0.167								
P:H:E	2.834	1	695.395	0.093								
lambda												
f2												
Р	0.019	1	703.054	0.891	0.077	1	301.646	0.781	0.221	1	258.841	0.639
Н	0.792	1	724.161	0.374								
E	0.704	1	736.558	0.402	0.158	1	308.487	0.691	2.090	1	274.441	0.149
H:E	2.168	1	720.092	0.141								
P:H	0.392	1	711.340	0.531								
P:E	1.439	1	718.713	0.231	2.247	1	299.613	0.135	0.000	1	264.784	0.994
P:H:E	1.350	1	704.705	0.246								
lambda	3.485								3.624			
saal1												
Р	0.050	1	681.465	0.822	0.326	1	343.635	0.568	0.007	1	251.122	0.934
Н	2.117	1	716.539	0.146								
E	0.093	1	746.100	0.760	0.005	1	356.425	0.945	0.001	1	274.988	0.979
H:E	0.019	1	698.551	0.889								
P:H	0.143	1	695.739	0.705								
P:E	0.050	1	703.432	0.823	0.268	1	331.786	0.605	0.132	1	257.314	0.717
P:H:E	0.455	1	682.326	0.500								
lambda	0.526				2.316							
socs1												
Р	3.167	1	555.467	0.076	1.629	1	346.213	0.203	1.206	1	208.693	0.273
Н	0.546	1	577.258	0.460								
E	0.024	1	583.854	0.877	0.021	1	353.216	0.885	0.387	1	221.240	0.535
H:E	0.576	1	572.820	0.448								
P:H	0.067	1	567.143	0.796								
P:E	1.299	1	567.592	0.255	2.664	1	341.933	0.104	0.023	1	213.682	0.879
P:H:E	1.886	1	561.245	0.170								
lambda												
cd97												
Р	0.267	1	459.328	0.606	0.457	1	205.687	0.500	0.000	1	259.353	0.993

			Both				Lake				Stream	
Treatment	F	Df	Df.res	Р	F	Df	Df.res	Р	F	Df	Df.res	Р
Н	14.551	1	477.443	<0.001								
E	0.016	1	481.175	0.900	1.266	1	210.511	0.262	2.260	1	276.352	0.134
H:E	3.589	1	479.419	0.059								
P:H	0.199	1	471.996	0.655								
P:E	0.297	1	470.330	0.586	2.129	1	203.225	0.146	0.946	1	265.825	0.331
P:H:E	3.431	1	467.899	0.065								
lambda	-1.086								-0.916			
	0.014	-	407.007	0.007	0.000	4	177 410	0.050	0 1 0 7	4	101 000	0 744
P	0.014	1	407.397	0.907	0.003	I	177.413	0.956	0.107	I	191.038	0.744
H F	2.214	1	427.017	0.137	0 557		101 000	0.450	0.050		004.000	0.010
E	0.675	1	435.445	0.412	0.557	1	181.662	0.456	0.053	1	204.086	0.818
H:E	0.299	1	424.260	0.585								
P:H	0.119	1	420.559	0.730								
P:E	0.191	1	418.287	0.662	0.792	1	174.649	0.375	3.113	1	195.905	0.079
P:H:E	3.969	1	414.152	0.047								
lambda												
il1b												
Р	0.688	1	336.065	0.407	1.649	1	145.013	0.201	0.000	1	257.743	0.995
Н	10.751	1	352.552	< 0.001								
E	0.114	1	358.710	0.736	0.480	1	148.925	0.490	0.030	1	271.867	0.862
H:E	0.049	1	351.635	0.825								
P:H	0.683	1	348.336	0.409								
P:E	0.103	1	345.239	0.748	0.000	1	140.890	0.984	0.334	1	262.989	0.564
P:H:E	0.416	1	342.961	0.519								
lambda												
tgfb1												
Р	0.222	1	387.874	0.638	0.036	1	161.325	0.850	0.283	1	188.625	0.595
н	19.134	1	405.593	<0.001								
E	0.045	1	410.252	0.833	0.187	1	165.268	0.666	0.266	1	200.551	0.606
H:E	0.999	1	404.370	0.318								
P:H	0.060	1	400.193	0.806								
P:E	0.098	1	397.349	0.754	2.984	1	158.261	0.086	1.865	1	193.337	0.174
P:H:E	5.331	1	395.175	0.021								
lambda	-1.133				-1.825							
tafa												
D	0 350	4	338 070	0 550	0 200	4	154 000	0 640	0 000	4	250 252	0.867
і Ц	0.009		252 150	~ 0.000	0.200	I	104.090	0.049	0.020	I	209.000	0.007
п с	21.231	1 -	000.40Z		0.050	4	157 674	0 000	0.005	4	076.050	0 600
	0.311	 	333.833 DEE 045	0.5/8	0.059	I	157.674	0.808	0.235	I	210.302	0.028
	0.202	 	300.945	0.005								
P:H	0.009	1	350.429	0.925								

|--|

			Both		Lake Stream					Stream		
Treatment	F	Df	Df.res	Р	F	Df	Df.res	Р	F	Df	Df.res	Р
P:E	0.068	1	347.053	0.795	1.731	1	151.356	0.190	1.017	1	265.825	0.314
P:H:E	3.602	1	347.552	0.059								
lambda	-2.135				-2.987							
с7												
Р	1.415	1	324.996	0.235	0.001	1	76.885	0.978	3.936	1	233.854	0.048
Н	17.446	1	339.677	<0.001								
E	0.034	1	341.469	0.854	0.032	1	77.286	0.859	0.334	1	249.164	0.564
H:E	0.469	1	340.305	0.494								
P:H	1.939	1	336.232	0.165								
P:E	0.428	1	332.776	0.514	0.840	1	77.162	0.362	0.027	1	239.873	0.870
P:H:E	0.714	1	332.556	0.399								
lambda	-0.183											
c9												
Р	1.782	1	507.855	0.183	4.143	1	331.673	0.043	0.051	1	239.233	0.821
н	9.855	1	527.083	0.002								
Е	2.493	1	532.368	0.115	0.380	1	338.688	0.538	2.709	1	254.905	0.101
H:E	0.831	1	528,162	0.362								
P:H	1.138	1	520.350	0.286								
P:E	0.019	1	519.865	0.890	0.939	1	327.410	0.333	0.353	1	245.354	0.553
P:H:E	1.038	1	515.730	0.309						-		
lambda		•	0101100	0.000								
ian io dia												
iahm												
P	3.607	1	501.626	0.058	0.004	1	358.074	0.948	9.969	1	177.127	0.002*
н	1.929	1	520.912	0.165								
E	0.953	1	525.823	0.330	0.541	1	365.422	0.462	0.355	1	188.642	0.552
– H·F	0 109	1	521 473	0 742	0.011	•		01.02	0.000	•		0.001
P·H	3 579	1	514 064	0.059								
P·F	0.283	1	513 358	0.595	0 404	1	355 423	0 525	0.005	1	181 700	0 946
	0.200	1	500 450	0.000	0.404		000.420	0.020	0.000		101.700	0.040
F.⊓.∟ Iambda	0.224	1	509.450	0.030	0 420							
lambua	0.071				0.429							
lv75												
р.	0 409	1	477 602	0 523	0 1 1 6	1	240 899	0 734	0 308	1	189 951	0 579
Ч	8 101	1	106 12/	0.020	0.110		240.000	0.704	0.000		100.001	0.070
	0.101	י 1	430.124 500.476	0.005	0.006	-	246 522	0 759	0.062	-	202 020	0 803
	0.002	י ו	407 027	0.907	0.090	I.	240.002	0.756	0.002	I	202.030	0.003
	0.195	1	497.937	0.059								
Р:Н D:F	0.027	ا د	490.272	0.8/0	1 550		000 000	0.010	0.010		104.050	0.400
	0.105	1	489.027	0.746	1.556	1	239.883	0.213	0.618	1	194.953	0.433
P:H:E	2.168	1	485.988	0.142					4 000			
lambda	-2.027				-1.769				-1.689			
il16												

		Both					Lake			S	tream	
Treatment	F	Df	Df.res	Р	F	Df	Df.res	Р	F	Df	Df.res	Р
Р	0.074	1	394.025	0.786	0.139	1	372.070	0.709	0.001	1	57.837	0.976
Н	3.833	1	410.374	0.051								
E	0.103	1	412.125	0.749	1.023	1	381.215	0.312	0.023	1	60.231	0.881
H:E	0.333	1	412.747	0.564								
P:H	0.048	1	406.292	0.826								
P:E	0.186	1	403.474	0.666	5.022	1	369.982	0.026	1.272	1	58.989	0.264
P:H:E	5.253	1	402.857	0.022								
lambda					-2.206							
mhcll												
Р	0.583	1	335.290	0.446	1.518	1	372.070	0.219	4.119	1	70.528	0.046
Н	1.307	1	349.635	0.254								
E	1.052	1	349.936	0.306	1.578	1	381.215	0.210	0.231	1	74.593	0.632
H:E	0.569	1	352.129	0.451								
P:H	4.962	1	346.680	0.027								
P:E	0.495	1	343.280	0.482	0.000	1	369.982	0.986	0.722	1	72.329	0.398
P:H:E	0.314	1	343.840	0.576								
lambda	-0.039				-0.731							

Table S3b: Continued

Table S4a. Multivariate analysis on gene expression profiles for lab-bred adults in a common garden setting. We tested the effects on each functional gene group (e.g. stress response, metabolism genes, etc). Treatments correspond to the effects of host ecotype (H), parasite exposure (P), and their interaction (H:P). Significant P values are highlighted in bold.

	Df	F	R^2	Р	F	R^2	Р	F	R^2	Р	F	R^2	Р
		All ger	nes		Stress	respons	e	Metabo	lism gen	es	Innate	cellular i	mmunity
Н	1	3.859	0.261	0.041	-0.159	-0.018	0.843	13.608	0.356	0.037	3.731	0.292	0.124
Р	1	1.307	0.088	0.323	2.043	0.229	0.305	5.39	0.141	0.153	0.065	0.005	0.625
H:P	1	1.617	0.109	0.232	-0.955	-0.107	0.927	11.201	0.293	0.041	0.998	0.078	0.375
Residuals	8		0.541			0.896			0.209			0.625	
Total	11		1			1			1			1	
		Innate	humora	l immunity	Innate	immune	signalling	Comple	ement sy	stem	Adaptiv	ve immu	nity
Н	1	0.156	0.015	0.511	0.537	0.067	0.505	-1.036	-0.162	0.923	-0.788	-0.089	0.926
Р	1	1.071	0.102	0.314	0.438	0.054	0.545	-0.012	-0.002	0.579	0.585	0.066	0.468
H:P	1	1.247	0.119	0.286	-0.896	-0.111	0.965	-0.535	-0.083	0.785	1.055	0.119	0.326
Residuals	8		0.764			0.99			1.247			0.904	
Total	11		1			1			1			1	

Table S4b. Univariate LMMs testing the effects of parasite exposure in lab-bred adults in a common garden setting. Treatments correspond to the effects of host ecotype (H), parasite exposure (P), and their interaction (H:P). Significant P values are highlighted in bold

	Df	F	Df.res	Ρ	F	Df.res	Ρ	F	Df.res	Ρ	F	Df.res	Р
			fabp2			gapdh			acadsb			rab11al	
Н	1	0.977	104.945	0.325	1.393	111.557	0.240	0.42	67.577	0.519	0.288	105.24	0.593
Р	1	1.824	108.689	0.18	0.025	106.28	0.875	1.392	62.986	0.242	1.2	106.371	0.276
H:P	1	2.095	107.737	0.151	0.503	115.925	0.479	0.315	67.005	0.577	0.453	110.794	0.502
lambda		-			-			3.288			-		
			ctrc			hsp70			hsp90			nr3c1	
Н	1	5.07	101.379	0.027	0.06	60.663	0.807	0.067	117.808	0.796	0.258	110.669	0.613
Р	1	0.026	94.285	0.8/1	3.027	60.85	0.087	0.322	105.678	0.5/1	0.494	111.909	0.484
H:P	1	1.133	105.029	0.29	0.518	61.376	0.4/5	0.071	133.639	0./91	0.025	105.1	0.875
lambda		-			2.505			-			-		
			0040			voafo			+4			olo1	
ц	1	1 404	102 622	0 220	1 1 1	110.057	0.204	2 5 1 5	01 021	0 1 2 9	0 022	518 I 106 075	0 957
D	1	1.404	103.000	0.233	1.11	103 181	0.234	0.446	10 00/	0.120	1 601	102.075	0.007
' Ц·D	1	0.636	104.00	0.22	0.128	111 079	0.213	0.440	21 302	0.312	0.071	110 877	0.130
lamhda	'	-	104.220	0.427	2 604	111.075	0.721	-0.118	21.002	0.437	-	110.077	0.731
lambua					2.004			0.110					
			ogfr			tlr2			f2			saal1	
ц	1	0.064	08 304	0.801	1 0/3	110 654	0 300	1 44	88 084	0 233	1 3 2 5	107 577	0 252
P	1	3 356	90.004 92 871	0.001	0.057	111 062	0.303	0.036	83 746	0.233	1.525	107.377	0.232
' H·P	1	0.000	94 094	0.38	0.007	114 405	0.870	0.000	87 919	0.001	0.23	113 792	0.633
lambda	'	-	54.054	0.00	-	114.400	0.070	-	07.010	0.470	-	110.752	0.000
lambaa			socs1			cd97			mif			il1b	
н	1	0.343	106.337	0.559	0.088	110.59	0.768	0.511	106.096	0.476	1.243	101.998	0.268
P	1	0.046	101.574	0.83	0.74	101.545	0.392	0.104	106.53	0.747	0.718	101.998	0.399
H:P	1	1.244	106.839	0.267	0.681	121.089	0.411	1.231	106.872	0.270	0.586	104.192	0.446
lambda		-			-			1.794			-		
			tgfb			tnfa			c7			c9	
Н	1	0.618	112.957	0.433	2.07	109.68	0.153	2.204	105.151	0.141	2.239	77.447	0.139
Р	1	2.162	108.015	0.144	2.963	106.657	0.088	1.067	105.931	0.304	0.127	65.709	0.723
H:P	1	0.304	113.36	0.582	0.551	111.676	0.459	0.335	106.701	0.564	0.299	72.738	0.586
lambda		-			-			-			-		
			lgM			ly75			il16			mhcll	
Н	1	0.053	106.105	0.819	0.187	96.186	0.667	1.471	100.644	0.228	1.138	105.828	0.289
Р	1	1.027	106.532	0.313	3.641	109.161	0.059	0.959	102.814	0.330	0.804	106.542	0.372
H:P	1	0.015	106.872	0.902	0.296	99.373	0.588	1.637	103.916	0.204	0.584	106.947	0.446
lambda		0.176			-			-			-		

Table S5a: Results of multivariate analyses from genes to ecosystems based on redundancy analyses (RDA). The multivariate response of gene expression (partial-RDA), diet composition (db-RDA), zooplankton community structure (db-RDA), and ecosystem properties (partial-RDA) were tested for the overall effects of the experimental treatment, and for the effects on each host ecotype as well as for each environmental treatment. In addition, ecosystem effects were divided into five major categories (e.g. physico-chemical properties, final nutrient concentrations, ecosystem functions and biological parameters). Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. HxE). Significant P values are highlighted in bold.

			All					by h	ost							by envi	ronm	ent		
							Lake			S	tream			I	High				Low	
Treatment	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^2	Df	F	Ρ	\mathbf{R}^2	Df	F	Ρ	\mathbf{R}^2
								Effects	on g	ene expr	ession									
Р	1	0.633	0.660	0.013	1	0.7	0.637	0.034	1	1.008	0.397	0.046	1	0.575	0.633	0.021	1	0.563	0.726	0.025
Н	1	9.229	< 0.001	0.189									1	5.528	0.003	0.197	1	4.527	0.006	0.203
E	1	0.796	0.515	0.016	1	1.011	0.394	0.050	1	0.691	0.638	0.032								
H:E	1	0.786	0.519	0.016																
H:P	1	1.135	0.294	0.023									1	1.325	0.246	0.047	1	1.482	0.208	0.067
P:E	1	0.476	0.812	0.010	1	1.858	0.096	0.091	1	0.627	0.712	0.029								
H:E:P	1	1.485	0.169	0.030																
Res	26			0.532	10			0.491	12			0.552	11			0.393	11			0.494
								Effects	on di	iet comp	osition									
Р	1	2.777	0.020	0.064	1	1.311	0.28	0.077	1	1.899	0.118	0.073	1	1.859	0.115	0.092	1	1.054	0.38	0.056
Н	1	0.846	0.522	0.020									1	0.345	0.881	0.017	1	0.834	0.503	0.044
E	1	1.145	0.348	0.027	1	0.843	0.539	0.050	1	0.857	0.47	0.033								
H:E	1	0.722	0.635	0.017																
H:P	1	0.435	0.816	0.010									1	0.244	0.942	0.012	1	0.525	0.767	0.028
P:E	1	0.449	0.801	0.010	1	0.208	0.985	0.012	1	0.584	0.737	0.022								
H:E:P	1	0.473	0.794	0.011																
Res	25			0.581	9			0.529	12			0.461	11			0.542	10			0.532
							Effects	on zoop	lankte	on comm	unity str	ucture								
Р	1	1.312	0.227	0.028	1	3.734	0.014	0.168	1	0.411	0.870	0.018	1	0.18	0.995	0.008	1	3.653	0.042	0.154
Н	1	1.549	0.162	0.033									1	3.024	0.033	0.138	1	2.201	0.085	0.093
E	1	1.003	0.373	0.021	1	1.847	0.117	0.083	1	3.097	0.027	0.137								

							Lake			Sti	ream			ŀ	ligh			l	ow	
Treatment	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^{2}	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^2
H:E	1	3.901	0.011	0.083																
H:P	1	3.141	0.028	0.067									1	2.834	0.041	0.130	1	1.185	0.305	0.050
P:E	1	1.912	0.128	0.041	1	0.925	0.425	0.042	1	2.301	0.079	0.102								
H:E:P	1	1.243	0.247	0.027																
Res	28			0.597	12			0.540	12			0.531	12			0.549	12			0.505
							0\	verall eff	ects o	on the eco	osystem									
Р	1	0.468	0.967	0.008	1	0.777	0.698	0.027	1	0.551	0.890	0.021	1	1	0.436	0.040	1	0.754	0.743	0.035
Н	1	1.225	0.227	0.022									1	1.864	0.030	0.074	1	1.057	0.344	0.050
Е	1	7.443	< 0.001	0.134	1	3.833	< 0.001	0.133	1	4.678	0.003	0.181								
H:E	1	1.475	0.121	0.027																
H:P	1	0.962	0.476	0.017									1	1.439	0.136	0.057	1	0.445	0.974	0.021
P:E	1	1.415	0.140	0.026	1	1.625	0.093	0.056	1	0.865	0.564	0.033								
H:E:P	1	1.087	0.340	0.020																
Res	27			0.487	11			0.382	12			0.465	11			0.437	12			0.565
						Effe	cts on phy	sico-che	emica	l properti	es of the	e ecosys	stem							
Р	1	0.570	0.628	0.008	1	0.669	0.621	0.021	1	0.520	0.657	0.014	1	0.885	0.507	0.038	1	0.507	0.746	0.024
Н	1	0.840	0.456	0.012									1	1.364	0.236	0.059	1	1.128	0.347	0.052
E	1	21.750	< 0.001	0.306	1	7.459	< 0.001	0.237	1	14.443	0.003	0.400								
H:E	1	0.956	0.418	0.013																
H:P	1	0.726	0.532	0.010																
P:E	1	0.811	0.492	0.011	1	1.009	0.435	0.032	1	0.328	0.776	0.009	1	1.100	0.381	0.047	1	0.239	0.922	0.011
H:E:P	1	0.850	0.452	0.012																
Res	27			0.380	11			0.35	12			0.332	11			0.473	12			0.556

Table S5a: (continued)

							Lake			St	ream			ŀ	ligh			l	ow	
Treatment	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^2	Df	F	Р	\mathbf{R}^{2}	Df	F	Р	\mathbf{R}^2
						Effe	cts on fina	I nutrien	t con	centratio	ns of the	e ecosys	tem							
Р	1	0.894	0.482	0.016	1	1.028	0.400	0.044	1	0.419	0.923	0.015	1	1.973	0.059	0.067	1	1.364	0.214	0.060
Н	1	2.414	0.024	0.044									1	2.371	0.032	0.080	1	0.700	0.652	0.031
E	1	2.030	0.048	0.037	1	0.982	0.412	0.042	1	1.454	0.200	0.052								
H:E	1	0.443	0.910	0.008																
H:P	1	1.07	0.385	0.020									1	2.328	0.040	0.079	1	0.545	0.815	0.024
P:E	1	2.587	0.019	0.048	1	1.505	0.149	0.064	1	2.897	0.003	0.103								
H:E:P	1	1.683	0.119	0.031																
Res	27			0.497	11			0.470	12			0.428	11			0.371	12			0.523
							Et	ffects on	ecos	system fu	nctions									
Р	1	0.152	0.987	0.003	1	0.486	0.831	0.013	1	0.825	0.511	0.036	1	0.494	0.777	0.018	1	0.261	0.943	0.011
Н	1	0.454	0.843	0.009									1	0.601	0.733	0.022	1	1.242	0.296	0.055
E	1	2.399	0.037	0.045	1	1.811	0.102	0.049	1	2.155	0.079	0.095								
H:E	1	1.320	0.265	0.025																
H:P	1	1.165	0.327	0.022									1	0.985	0.457	0.035	1	0.531	0.731	0.023
P:E	1	0.545	0.728	0.010	1	0.800	0.569	0.022	1	0.195	0.970	0.009								
H:E:P	1	0.298	0.934	0.006																
Res	27			0.508	11			0.299	12			0.529	11			0.394	12			0.527
						E	Effects on	biologica	al par	ameters	of the ec	osystem	ı							
_																				
Р	1	0.279	0.945	0.006	1	0.796	0.522	0.030	1	0.825	0.511	0.036	1	0.754	0.615	0.036	1	0.892	0.472	0.050
H	1	1.115	0.366	0.024									1	3.111	0.011	0.148	1	1.147	0.341	0.064
E	1	7.054	< 0.001	0.151	1	5.784	< 0.001	0.218	1	2.155	0.079	0.095								
H:E	1	3.107	0.009	0.067																
H:P	1	0.822	0.558	0.018									1	1.459	0.236	0.07	1	0.476	0.827	0.027
P:E	1	1.599	0.147	0.034	1	3.123	0.036	0.118	1	0.195	0.97	0.009								
H:E:P	1	1.491	0.212	0.032																
Res	27			0.580	11			0.415	12			0.529	11			0.524	12			0.670

Table S5a: (continued)

Table S5b: Univariate LMMs testing effects of experimental treatments on each prey category, zooplankton category, and ecosystem measurement. Codes represent: confidence intervals (CI_{lower} and CI_{upper}), standardized effect sizes (ES), standard errors (SE \pm), and relative importance (RI). Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. H:E). P-values lower than 0.05 are highlighted in bold and significant P-values after FDR correction according to Benjamini-Yekutieli are marked with *.

Treatment	F	$\mathrm{Df}_{\mathrm{res}}$	$\mathrm{CI}_{\mathrm{lower}}$	$\mathrm{CI}_{\mathrm{upper}}$	ES	SE (\pm)	RI	Ρ
		Ef	facts on prev	(itoms (Diot)				
Collembola			lects on prey	ntenis (Diet)				
P	0 167	717 596	-0.034	0.053	0.010	0.022	0.020	0.683
Н	0.023	724 232	-0.046	0.000	-0.003	0.022	0.018	0.879
F	0.977	700 723	-0.021	0.065	0.000	0.022	0.030	0.323
L H:F	0.304	723.656	-0.057	0.118	0.030	0.044	0.000	0.582
H·P	0.412	729.860	-0.064	0.112	0.024	0.044	0.000	0.521
P·F	1 257	719 505	-0.136	0.037	-0.050	0.044	0.000	0.263
H:E:P	1.947	730.451	-0.051	0.302	0.126	0.089	0.000	0.163
Nymph								
Nympn								
Р	3.777	136.802	-0.137	-0.001	-0.069	0.034	0.178	0.054
Н	1.252	144.816	-0.109	0.032	-0.039	0.036	0.051	0.265
E	0.586	136.700	-0.101	0.039	-0.031	0.035	0.042	0.445
H:E	0.007	144.241	-0.163	0.130	-0.017	0.074	0.000	0.931
H:P	0.272	144.257	-0.104	0.179	0.037	0.071	0.001	0.603
P:E	0.254	139.400	-0.102	0.178	0.038	0.071	0.000	0.615
H:E:P	0.123	143.668	-0.251	0.361	0.055	0.154	0.000	0.727
Chironomic	ds							
P	0.319	161.247	-0.184	0.092	-0.046	0.070	0.071	0.573
н	1.876	170.501	-0.045	0.228	0.092	0.069	0.127	0.173
E	4.660	160.792	-0.276	-0.011	-0.144	0.067	0.344	0.032
H:E	0.076	169.659	-0.222	0.309	0.044	0.134	0.006	0.784
H:P	0.769	169.918	-0.166	0.387	0.110	0.140	0.001	0.382
P:E	0.425	164.149	-0.348	0.193	-0.078	0.136	0.003	0.516
H:E:P	0.030	169.071	-0.607	0.507	-0.050	0.281	0.000	0.862
Ostracoda								
P	1 341	266 529	-0.156	0.032	-0.062	0.048	0.086	0 248
Н	1 849	279.189	-0.026	0.160	0.067	0.047	0.000	0.175
F	1 648	263 634	-0.152	0.034	-0.060	0.047	0.100	0.200
– H:F	0.144	277.042	-0.152	0.220	0.032	0.095	0.001	0.704
H:P	0.430	278 751	-0.263	0.117	-0.073	0.096	0.001	0.513
P:E	0.001	269.723	-0.198	0.183	-0.007	0.096	0.000	0.982
H:E:P	0.350	276.967	-0.523	0.280	-0.122	0.202	0.000	0.555
Chydoridae)							

Treatment	F	$\mathrm{Df}_{\mathrm{res}}$	CI _{lower}	CIupper	ES	SE (±)	RI	Р
Р	0.082	129.553	-0.128	0.180	0.026	0.078	0.065	0.775
Н	1.437	137.162	-0.249	0.051	-0.099	0.076	0.131	0.233
E	0.481	129.534	-0.103	0.203	0.050	0.077	0.077	0.489
H:E	1.429	136.657	-0.489	0.112	-0.188	0.152	0.003	0.234
H:P	0.018	136.614	-0.333	0.288	-0.022	0.157	0.001	0.895
P:E	0.085	132.038	-0.358	0.274	-0.042	0.160	0.001	0.771
H:E:P	0.30	136.100	-0.824	0.462	-0.181	0.324	0.000	0.585
Cyclopoida								
Р	3.861	148.078	0.005	0.292	0.149	0.072	0.331	0.050
Н	0.450	156.688	-0.105	0.191	0.043	0.075	0.072	0.504
E	< 0.01	147.826	-0.144	0.152	0.004	0.074	0.062	1.000
H:E	2.578	155.994	-0.032	0.542	0.255	0.145	0.002	0.110
H:P	0.012	156.115	-0.314	0.277	-0.018	0.149	0.003	0.913
P:E	0.008	150.830	-0.324	0.267	-0.028	0.149	0.002	0.931
H:E:P	0.662	155.407	-0.344	0.840	0.248	0.299	0.000	0.417
	-		-		-			
			Effects on Zo	oplankton				
Cladocera								
Р	2.566	28	-0.120	0.013	-0.054	0.033	0.664	0.120
Н	6.770	28	-0.155	-0.020	-0.088	0.033	0.908	0.015*
E	0.191	28	-0.052	0.082	0.015	0.033	0.301	0.665
H:E	0.191	28	-0.162	0.104	-0.029	0.065	0.062	0.665
H:P	2.566	28	-0.022	0.238	0.108	0.064	0.326	0.120
P:E	2.065	28	-0.226	0.033	-0.097	0.064	0.096	0.162
H:E:P	2.065	28	-0.052	0.439	0.193	0.120	0.004	0.162
Bosmina								
Р	2.158	28	-0.163	0.022	-0.071	0.046	0.520	0.153
Н	0.449	28	-0.125	0.061	-0.032	0.046	0.340	0.508
E	1.629	28	-0.031	0.154	0.062	0.046	0.461	0.212
H:E	1.626	28	-0.304	0.058	-0.123	0.089	0.057	0.213
H:P	1.034	28	-0.084	0.280	0.098	0.089	0.049	0.318
P:E	0.029	28	-0.167	0.199	0.016	0.090	0.066	0.866
H:E:P	0.284	28	-0.249	0.455	0.103	0.172	0.000	0.599
Copepoda								
P	< 0.01	28	-0.082	0.081	-0.001	0.040	0.269	0.985
H	1.268	28	-0.126	0.036	-0.045	0.040	0.372	0.270
E	< 0.01	28	-0.081	0.082	0.001	0.040	0.267	0.985
H:E	< 0.01	28	-0.160	0.162	0.001	0.079	0.021	0.991
H:P	0.234	28	-0.200	0.122	-0.039	0.079	0.024	0.632
P:E	2.655	28	-0.290	0.027	-0.131	0.078	0.047	0.114
H:E:P	4.548	28	0.049	0.639	0.344	0.144	0.001	0.042

Treatment	F	$\mathrm{Df}_{\mathrm{res}}$	$\mathrm{CI}_{\mathrm{lower}}$	$\mathrm{CI}_{\mathrm{upper}}$	ES	SE (±)	RI	Р
Naupli								
Р	0.625	28	-0.181	0.449	0.134	0.155	0.343	0.436
Н	10.737	28	-0.873	-0.240	-0.556	0.156	0.988	0.003*
E	0.926	28	-0.478	0.151	-0.163	0.155	0.379	0.344
H:E	0.141	28	-0.755	0.500	-0.127	0.309	0.077	0.710
H:P	0.300	28	-0.814	0.442	-0.186	0.309	0.075	0.588
P:E	0.058	28	-0.707	0.544	-0.082	0.307	0.025	0.812
H:E:P	0.298	28	-0.870	1.611	0.370	0.607	0.000	0.590
Ootrooodo								
	2 5 4 0	20	0.002	0.006	0.047	0.024	0.660	0.070
	0.140	20	-0.002	0.090	0.047	0.024	0.000	0.070
	0.149	28	-0.059	0.040	-0.010	0.024	0.293	0.702
	0.091	20	-0.050	0.009	0.019	0.024	0.544	0.440
п.с 11-р	2.204	28	-0.171	0.022	-0.075	0.047	0.042	0.144
п.r р.с	0.149	28	-0.117	0.078	-0.019	0.048	0.054	0.702
	0.091	28	-0.059	0.135	0.038	0.048	0.000	0.440
H:E:P	2.204	28	-0.332	0.032	-0.150	0.089	0.001	0.144
Mix Arthrop	ods							
Р	1.084	28	-0.378	0.122	-0.128	0.123	0.377	0.307
н	0.129	28	-0.208	0.296	0.044	0.124	0.291	0.723
E	0.069	28	-0.219	0.284	0.032	0.124	0.263	0.795
H:E	1.334	28	-0.209	0.778	0.284	0.242	0.029	0.258
H:P	0.006	28	-0.516	0.478	-0.019	0.244	0.022	0.939
P:E	2.558	28	-0.093	0.880	0.394	0.239	0.065	0.121
H:E:P	4.034	28	-1.887	-0.090	-0.988	0.440	0.002	0.054
	<i>(</i> ,)							
Brachionida	ae (rotifer)							
Р	2.686	28	-1.005	0.075	-0.465	0.265	0.926	0.112
H	5.863	28	-1.235	-0.140	-0.687	0.269	0.971	0.022
E	1.725	28	-0.916	0.170	-0.373	0.267	0.882	0.200
H:E	9.463	28	0.669	2.824	1.746	0.530	0.599	0.005*
H:P	0.022	28	-0.990	1.160	0.085	0.528	0.106	0.883
P:E	0.155	28	-1.289	0.842	-0.224	0.523	0.108	0.697
H:E:P	1.275	28	-0.792	3.357	1.282	1.016	0.006	0.268
Lacanidae (rotifer)							
(Р	0.890	28	-0.675	0.225	-0.225	0.222	0.349	0.354
н	0.196	28	-0.559	0.347	-0.106	0.223	0.271	0.661
E	0.490	-0 28	-0.618	0.284	-0.167	0.222	0.309	0.489
H:E	0.962	28	-1.357	0.421	-0.468	0.437	0.028	0.335
H:P	0.077	28	-1.031	0.765	-0.133	0.442	0.020	0.783
P:E	0.621	-0 28	-0.512	1.264	0.376	0.437	0.031	0.437
H:E:P	0.212	28	-2.183	1.304	-0.439	0.854	0.000	0.649

Table S5b: continued

Table S5b: co	ontinued
---------------	----------

Treatment	F	$\mathrm{Df}_{\mathrm{res}}$	$\mathrm{CI}_{\mathrm{lower}}$	CI_{upper}	ES	SE (±)	RI	Р
Euclanidae	(rotifer)							
Р	0.414	28	-0.656	0.315	-0.170	0.239	0.287	0.525
Н	0.005	28	-0.506	0.470	-0.018	0.240	0.241	0.947
E	0.117	28	-0.578	0.397	-0.090	0.240	0.254	0.735
H:E	0.289	28	-1.256	0.686	-0.285	0.478	0.014	0.595
H:P	0.002	28	-0.995	0.950	-0.023	0.478	0.015	0.966
P:E	0.118	28	-0.787	1.152	0.182	0.477	0.016	0.734
H:E:P	0.04	28	-1.724	2.149	0.213	0.948	0.000	0.842
Lepadellida	e (rotifer)							
Р	3.832	28	-1.594	-0.001	-0.797	0.391	0.914	0.060
Н	2.074	28	-1.382	0.209	-0.587	0.390	0.918	0.161
E	0.395	28	-0.532	1.044	0.256	0.387	0.845	0.535
H:E	8.244	28	0.789	3.889	2.339	0.761	0.749	0.008*
H:P	6.444	28	0.516	3.620	2.068	0.762	0.766	0.017*
P:E	3.423	28	-3.032	0.017	-1.507	0.748	0.485	0.075
H:E:P	0.316	28	-3.893	2.060	-0.916	1.457	0.068	0.578
Asplanchni	dae (rotifer)							
Р	0.895	28	-0.451	0.161	-0.145	0.151	0.368	0.352
Н	1.511	28	-0.493	0.116	-0.188	0.150	0.448	0.229
E	0.440	28	-0.206	0.409	0.102	0.151	0.306	0.513
H:E	1.386	28	-0.959	0.237	-0.361	0.294	0.052	0.249
H:P	1.942	28	-0.166	1.021	0.427	0.292	0.078	0.174
P:E	0.005	28	-0.629	0.586	-0.022	0.298	0.023	0.944
H:E:P	2.742	28	-0.105	2.136	1.016	0.548	0.001	0.109
Trichotridae	9							
Р	0.128	28	-0.442	0.302	-0.070	0.183	0.277	0.723
Н	3.640	28	0.007	0.742	0.374	0.181	0.710	0.067
E	0.023	28	-0.342	0.402	0.030	0.183	0.273	0.880
H:E	0.825	28	-1.084	0.371	-0.357	0.358	0.058	0.371
H:P	0.109	28	-0.863	0.604	-0.129	0.361	0.041	0.744
P:E	1.097	28	-0.322	1.144	0.411	0.360	0.026	0.304
H:E:P	0.007	28	-1.499	1.369	-0.065	0.702	0.000	0.935
		Effect	s on ecosys	tem propertie	S			
		 Ph	vsico-chemic	al properties	•			
UV absorpt	ion			a proportioo				
P	0.055	28	-0.393	0.501	0.054	0.220	0.272	0.816
н	0.109	28	-0.371	0.523	0.076	0.220	0.276	0.743
E	0.016	28	-0.417	0.475	0.029	0.220	0.271	0.901
H:E	1.690	28	-0.276	1.472	0.598	0.430	0.034	0.204
H:P	0.929	28	-0.438	1.325	0.443	0.433	0.024	0.343
P:E	2.135	28	-1.542	0.199	-0.672	0.428	0.042	0.155

2.167

0.488

0.822

0.000

0.600

H:E:P

0.281

28

-1.192

Treatment	F	$\mathrm{Df}_{\mathrm{res}}$	$\mathrm{CI}_{\mathrm{lower}}$	$\mathrm{CI}_{\mathrm{upper}}$	ES	SE (±)	RI	Р
рН								
Р	0.026	28	-0.149	0.126	-0.012	0.068	0.274	0.874
Н	0.218	28	-0.170	0.103	-0.034	0.067	0.316	0.644
E	70.088	28	-0.738	-0.463	-0.600	0.068	1.000	< 0.001*
H:E	0.939	28	-0.410	0.132	-0.139	0.133	0.092	0.341
H:P	1.137	28	-0.422	0.116	-0.153	0.132	0.029	0.295
P:E	0.218	28	-0.341	0.207	-0.067	0.135	0.058	0.644
H:E:P	1.228	28	-0.206	0.842	0.318	0.257	0.000	0.277
Dissolved (O_2							
Р	2.363	28	-0.080	0.711	0.316	0.195	0.572	0.135
Н	1.526	28	-0.143	0.650	0.254	0.195	0.464	0.227
E	31.753	28	-1.558	-0.755	-1.157	0.198	1.000	< 0.001*
H:E	0.010	28	-0.835	0.753	-0.041	0.390	0.079	0.921
H:P	0.954	28	-1.176	0.374	-0.401	0.381	0.088	0.337
P:E	0.170	28	-0.960	0.622	-0.169	0.389	0.118	0.684
H:E:P	2.304	28	-0.254	2.746	1.246	0.734	0.002	0.140
Conductivi	ty							
Р	0.674	28	-2.538	6.388	1.925	2.196	0.267	0.419
Н	1.753	28	-7.518	1.308	-3.105	2.172	0.578	0.196
E	105.187	28	19.559	28.551	24.055	2.214	1.000	< 0.001*
H:E	2.183	28	-1.728	15.588	6.930	4.258	0.344	0.151
H:P	0.286	28	-6.236	11.256	2.510	4.295	0.042	0.597
P:E	0.101	28	-10.425	7.444	-1.490	4.392	0.067	0.753
H:E:P	0.038	28	-18.957	15.317	-1.820	8.391	0.000	0.848
		_						
		. Fi	nal nutrient co	oncentrations				
Dissolved p	belagic Pho	sphorus	0.000	0.004	0.000	0.000	0 150	0.004
P	1.318	28	-0.096	0.024	-0.036	0.030	0.456	0.261
н -	0.070	28	-0.053	0.069	0.008	0.030	0.133	0.793
E	1.318	28	-0.024	0.096	0.036	0.030	0.456	0.261
H:E	0.582	28	-0.072	0.167	0.048	0.059	0.032	0.452
H:P	0.582	28	-0.167	0.072	-0.048	0.059	0.032	0.452
P:E	2.709	28	-0.218	0.013	-0.102	0.057	0.264	0.111
H:E:P	0.070	28	-0.260	0.194	-0.033	0.111	0.000	0.793
Total pelag	ic phospho	rus						
Р	1.452	28	-1.179	5.085	1.953	1.542	0.474	0.238
Н	4.324	28	-6.507	-0.234	-3.370	1.545	0.770	0.047
E	0.067	28	-2.756	3.596	0.420	1.563	0.149	0.797
H:E	0.324	28	-8.097	4.409	-1.844	3.074	0.047	0.574
H:P	1.679	28	-10.299	1.899	-4.200	3.000	0.268	0.206
P:E	0.246	28	-4.641	7.855	1.607	3.070	0.027	0.624
H:E:P	1.678	28	-20.241	3.445	-8.398	5.799	0.001	0.206

Table	S5b:	continued
i abio	000.	001101000

Table S5b: co	ontinued
---------------	----------

Treatment	F	$\mathrm{Df}_{\mathrm{res}}$	$\mathrm{CI}_{\mathrm{lower}}$	$\mathrm{CI}_{\mathrm{upper}}$	ES	SE (±)	RI	Р
Total benthi	ic phosp	horus						
Р	0.078	28	-161.529	119.027	-21.251	69.004	0.950	0.783
Н	0.048	28	-159.960	126.545	-16.707	70.416	0.257	0.828
E	4.541	28	20.875	304.442	162.659	69.758	0.876	0.042
H:E	0.005	28	-273.361	295.763	11.201	139.716	0.041	0.942
H:P	0.078	28	-238.187	323.583	42.698	137.875	0.043	0.782
P:E	9.205	28	-741.576	-184.812	-463.194	136.928	0.840	0.005*
H:E:P	0.041	28	-619.302	496.174	-61.564	273.097	0.001	0.842
Dissolved p	elagic n	itrogen						
Р	0.669	28	-21.291	8.665	-6.313	7.371	0.364	0.420
Н	9.266	28	-38.550	-8.442	-23.496	7.415	0.966	0.005*
E	1.034	28	-22.786	7.091	-7.848	7.352	0.409	0.318
H:E	1.066	28	-13.492	45.365	15.937	14.472	0.120	0.311
H:P	1.086	28	-13.411	45.594	16.091	14.507	0.107	0.306
P:E	0.015	28	-27.704	31.533	1.915	14.549	0.028	0.902
H:E:P	1.353	28	-92.318	20.480	-35.919	27.616	0.001	0.255
	_							
Total pelagi	c nitroge	en						
Р	0.089	28	-26.328	19.439	-3.444	11.258	0.294	0.768
H	6.940	28	-53.285	-7.567	-30.426	11.257	0.918	0.014*
E	0.411	28	-29.929	15.121	-7.404	11.083	0.476	0.527
H:E	3.765	28	1.000	88.647	44.824	21.552	0.314	0.062
H:P	1.742	28	-14.169	75.148	30.489	21.953	0.110	0.198
P:E	0.356	28	-58.326	30.757	-13.784	21.869	0.033	0.555
H:E:P	0.545	28	-118.492	50.290	-34.101	41.322	0.002	0.467
Ammonium	NH_4	20	0.010	0 100	0.160	1 400	0.000	0.045
Р	0.011	28	-2.818	3.138	0.160	1.466	0.260	0.915
H F	< 0.01	28	-2.955	3.003	0.024	1.467	0.257	0.987
E	5.017	28	-6.281	-0.407	-3.344	1.447	0.790	0.033
H:E	0.061	28	-5.132	6.608	0.738	2.887	0.042	0.807
H:P	0.778	28	-3.253	8.521	2.634	2.893	0.019	0.385
P:E	0.202	28	-7.200	4.516	-1.342	2.881	0.045	0.657
H:E:P	3.873	28	-22.660	-0.844	-11.752	5.341	0.001	0.059
)raania (Carbon						
			0.946	0 565	0.141	0.249	0.959	0 711
ı' H	0.140 0.890	20 20	-0.840	0.000 1.059	-0.141	0.048	0.200	0.711
п Е	0.002	28	-0.347	0.200	0.303	0.343	0.991	0.000
L L·E	0.040	20	-1.005	0.999	-0.302	0.540	0.323 0.029	0.429
п.с	0.002	28	-1.902	0.800	-0.013	0.078	0.032	0.402
п.г D.E	0.000	28	-1.437	1.342	-0.058	0.088	0.019	0.939
г.с ц.с.р	0.1/0	28	-1./10	1.081	-0.317	0.088	0.019	0.070
п.с.r	0.212	28	-2.055	3.439	0.692	1.345	0.000	0.049

Treatment	F	$\mathrm{Df}_{\mathrm{res}}$	$\mathrm{CI}_{\mathrm{lower}}$	$\mathrm{CI}_{\mathrm{upper}}$	ES	SE (±)	RI	Ρ
			Riological r	arameters				
Zooplankto	n average	size	Diological p	arameters				
P	3.403	28	-0.837	0.027	-0.405	0.212	0.694	0.076
Н	4.738	28	-0.913	-0.044	-0.478	0.214	0.883	0.038
E	0.408	28	-0.567	0.287	-0.140	0.210	0.688	0.528
H:E	6.605	28	0.294	1.964	1.129	0.411	0.573	0.016*
H:P	1.396	28	-0.320	1.359	0.519	0.412	0.204	0.247
P:E	0.660	28	-1.188	0.475	-0.357	0.408	0.120	0.424
H:E:P	0.089	28	-1.343	1.867	0.262	0.786	0.005	0.768
Pelagic chlo	orophyll a							
Р	0.399	28	-0.231	0.468	0.118	0.172	0.301	0.533
Н	0.036	28	-0.315	0.386	0.036	0.173	0.257	0.85
E	2.863	28	-0.663	0.029	-0.317	0.170	0.628	0.102
H:E	0.367	28	-0.916	0.462	-0.227	0.339	0.039	0.55
H:P	0.001	28	-0.688	0.711	0.012	0.344	0.015	0.975
P:E	0.432	28	-0.932	0.439	-0.246	0.337	0.048	0.516
H:E:P	0.006	28	-1.427	1.312	-0.057	0.670	0.000	0.939
Benthic chl	orophvll a							
P	0.554	28	-0.534	0.237	-0.148	0.190	0.294	0.463
Н	0.755	28	-0.207	0.553	0.173	0.187	0.502	0.392
Е	43.534	28	-1.702	-0.928	-1.315	0.191	1.000	<0.001*
H:E	3.156	28	-1.454	0.038	-0.708	0.367	0.322	0.087
H:P	0.005	28	-0.731	0.784	0.027	0.372	0.030	0.947
P:E	0.190	28	-0.944	0.596	-0.174	0.378	0.066	0.666
H:E:P	1.088	28	-2.287	0.625	-0.831	0.713	0.001	0.306
		-						
LNA (small)	bacteria							
Р	0.323	28	-12450.075	7145.400	-2652.338	4819.114	0.479	0.574
Н	2.127	28	-16661.385	3055.660	-6802.863	4851.024	0.609	0.156
E	0.131	28	-8139.602	11519.610	1690.004	4834.177	0.281	0.720
H:E	3.358	28	-1540.376	35730.093	17094.858	9149.112	0.173	0.078
H:P	5.262	28	2597.050	40200.967	21399.008	9237.427	0.395	0.030
P:E	2.885	28	-2569.672	34262.088	15846.208	9036.201	0.134	0.100
H:E:P	3.766	28	-70291.674	-2128.093	-36209.883	16688.170	0.044	0.062
HNA (big) b	acteria							
P	0.983	28	-1232.979	3867.779	1317.400	1254.563	0.375	0.330
н	0.716	-0 28	-3633.085	1384.018	-1124.533	1234.090	0.952	0.405
E	7.549	20 28	-6211.264	-1090.736	-3651.000	1260.436	0.603	0.010*
– H:F	4.486	20 28	724 204	10534 062	5629 133	2412 134	0.442	0.043
H:P	0.009	20 28	-5229.036	4728.370	-250,333	2444.572	0.041	0.926
P:E	0.236	20 28	-3779.302	6361.302	1291.000	2491.762	0.074	0.631

Treatment	F	$\mathbf{Df_{res}}$	$\mathrm{CI}_{\mathrm{lower}}$	$\mathrm{CI}_{\mathrm{upper}}$	ES	SE (±)	RI	Р
H:E:P	< 0.01	28	-9785.789	9632.722	-76.533	4754.143	0.001	0.989
			Ecosystem	processes				
Gross Prim	ary Produc	ctivity						
Р	0.062	28	-320.658	415.678	47.510	181.359	0.255	0.805
Н	0.687	28	-206.523	522.543	158.010	179.571	0.354	0.414
E	0.190	28	-448.851	282.795	-83.028	180.192	0.295	0.666
H:E	2.405	28	-114.344	1296.572	591.114	346.971	0.066	0.132
H:P	0.954	28	-347.672	1092.127	372.227	354.001	0.030	0.337
P:E	0.001	28	-742.831	720.773	-11.029	359.779	0.015	0.977
H:E:P	0.079	28	-1607.177	1177.742	-214.717	681.819	0.000	0.78
Ecosystem	Respiratio	on						
Р	0.107	28	-306.559	425.350	59.395	180.182	0.357	0.746
Н	0.077	28	-312.896	413.614	50.359	178.836	0.303	0.784
E	1.070	28	-175.843	551.440	187.799	179.076	0.412	0.310
H:E	3.510	28	-15.540	1376.192	680.326	342.131	0.118	0.071
H:P	3.232	28	-45.820	1351.322	652.751	343.354	0.082	0.083
P:E	0.285	28	-521.740	909.674	193.967	351.699	0.030	0.597
H:E:P	0.302	28	-1725.360	927.752	-398.804	649.549	0.001	0.587
Carbon-oxy	gen mass	exchange						
Р	0.570	28	-66.403	145.384	39.491	52.088	0.474	0.457
Н	0.023	28	-98.218	114.075	7.929	52.202	0.212	0.881
E	19.737	28	-340.522	-124.196	-232.359	53.265	0.998	<0.00
H:E	0.218	28	-259.781	162.177	-48.802	103.653	0.077	0.644
H:P	4.246	28	-418.137	-12.954	-215.546	99.493	0.151	0.049
P:E	2.412	28	-369.929	45.006	-162.462	101.982	0.362	0.132
H:E:P	2.297	28	-65.070	699.238	317.084	187.122	0.007	0.141
Ecosystem	Respiratio	on 20° C						
Р	0.102	28	-17.502	24.027	3.262	10.223	0.370	0.752
Н	0.054	28	-18.225	22.998	2.387	10.146	0.313	0.817
E	1.022	28	-10.303	31.006	10.352	10.170	0.416	0.321
H:E	3.821	28	0.590	79.469	40.030	19.389	0.132	0.061
H:P	3.550	28	-0.953	78.115	38.581	19.430	0.095	0.070
P:E	0.424	28	-27.101	53.777	13.338	19.869	0.033	0.520
H:E:P	0.371	28	-99.749	49.871	-24.939	36.631	0.001	0.547
Bacterial R	espiration	16° C						
Р	0.075	28	-0.005	0.007	0.001	0.003	0.294	0.786
Н	1.336	28	-0.002	0.010	0.004	0.003	0.416	0.257
E	0.879	28	-0.003	0.009	0.003	0.003	0.360	0.356
H:E	0.568	28	-0.007	0.016	0.005	0.006	0.045	0.457
H:P	1.747	28	-0.004	0.020	0.008	0.006	0.055	0.197

Treatment	F	$\mathbf{Df_{res}}$	$\mathbf{CI}_{\mathbf{lower}}$	$\mathbf{CI}_{\mathbf{upper}}$	ES	SE (\pm)	RI	Р
P:E	1.628	28	-0.020	0.004	-0.008	0.006	0.040	0.213
H:E:P	0.084	28	-0.019	0.026	0.004	0.011	0.000	0.774
Sedimentat	ion							
Р	0.346	28	-0.417	0.215	-0.101	0.156	0.279	0.561
Н	0.004	28	-0.328	0.306	-0.011	0.156	0.241	0.949
E	0.020	28	-0.341	0.293	-0.024	0.156	0.241	0.890
H:E	0.057	28	-0.717	0.553	-0.082	0.312	0.012	0.813
H:P	0.262	28	-0.454	0.806	0.176	0.310	0.016	0.612
P:E	0.029	28	-0.574	0.690	0.058	0.311	0.014	0.867
H:E:P	0.381	28	-1.679	0.831	-0.424	0.615	0.000	0.542
Light diffus	ion (${ m K_d}$)							
Р	< 0.01	28	-0.153	0.154	0.000	0.076	0.185	0.997
Н	1.096	28	-0.066	0.235	0.084	0.074	0.464	0.304
E	6.782	28	0.058	0.362	0.210	0.075	0.925	0.015
H:E	1.837	28	-0.513	0.076	-0.219	0.145	0.257	0.186
H:P	0.104	28	-0.354	0.250	-0.052	0.148	0.023	0.750
P:E	0.031	28	-0.277	0.334	0.029	0.150	0.046	0.861
H:E:P	0.019	28	-0.545	0.635	0.045	0.289	0.000	0.890

Table S6: Introduction and survival of phase 2 fish. Two cohorts of juvenile fish (i.e. lake, hybrids, and stream) were added to each tank after removing the adult fish (i.e. lake and stream) of phase 1. Survival of juveniles at the end of phase 2 is shown for each tank.

Image Image Image Image N N N N N N N N N N N N N N N N P Ferrate 1 1 2 2 4 8 4 16 12 4 4 14 14 14 14 14 14 14 14 3 0 2 3 4 8 4 16 19 0 4 5 10 Stream N P Ferrate 5 4 2 5 4 8 4 16 22 1 3 3 10			1*	1^{st} cohort introduced 2^{sd} cohort introduced						Total ₁	Survival					Phase 1 treatment				
1 1 2 2 4 8 4 16 24 0 5 4 0 9 Lake +N +P Female 3 1 3 0 2 3 4 8 4 16 12 2 4 4 14 Lake +N +P Female 3 1 3 0 2 3 4 8 4 16 13 5 2 11 N P Female 5 4 2 1 3 5 7 10 4 8 4 16 22 1 4 4 1 10 Lake N +P Female 7 1 0 3 5 7 11 4 8 4 16 27 1 2 9 1 13 Lake N P Female 10 2 3 5 7 11 4 8 4 16 27 5 7 <th>Tank</th> <th>Block</th> <th>Lake₁</th> <th>$Hybrid_1$</th> <th>Stream₁</th> <th>\mathbf{N}_1</th> <th>$Lake_2$</th> <th>$Hybrid_2$</th> <th>Stream₂</th> <th>N_2</th> <th>N_{1+2}</th> <th>Lake</th> <th>Hybrid</th> <th>Stream</th> <th>Unidentified</th> <th>Total</th> <th>н</th> <th>Е</th> <th>Ρ</th> <th>Sex</th>	Tank	Block	Lake ₁	$Hybrid_1$	Stream ₁	\mathbf{N}_1	$Lake_2$	$Hybrid_2$	Stream ₂	N_2	N_{1+2}	Lake	Hybrid	Stream	Unidentified	Total	н	Е	Ρ	Sex
2 1 2 1 3 0 2 3 4 8 4 16 19 0 4 4 4 14 Lake N P Female 4 1 3 2 4 7 4 8 4 16 23 3 4 11 5 23 Stream N P Female 6 1 3 5 7 10 4 8 4 16 27 1 2 9 1 13 Lake N P Female 7 1 0 3 5 7 11 4 8 4 16 22 5 4 4 1 10 Lake N P Female 1 2 3 5 7 11 4 8 4 16 27 5 4 4 15 Lake N P Male 12 2 3 5 7 9 21 4	1	1	2	2	4	8	4	8	4	16	24	0	5	4	0	9	Lake	+N	+P	Female
3 1 3 0 2 3 4 8 4 16 19 0 4 5 2 111 Stream N P Fenale 5 4 2 1 3 5 4 8 4 16 23 3 4 11 5 23 Stream N P Fenale 6 1 3 5 7 10 4 8 4 16 23 8 2 14 Stream N P Fenale 7 1 0 3 5 11 4 8 4 16 22 1 4 4 10 Lake N P Fenale 9 2 0 8 10 15 4 8 4 16 31 2 5 7 9 P P Male 11 2 5 7 9 21 4 8 4 16 33 9 1 15 1	2	1	2	1	3	5	4	8	4	16	21	2	4	4	4	14	Lake	-N	-P	Female
4 1 3 2 4 7 4 8 4 16 23 3 4 11 5 23 Stream N P Fenale 6 1 3 5 7 10 4 8 4 16 21 1 3 8 2 14 Stream N +P Fenale 7 1 0 3 5 10 4 8 4 16 22 2 9 1 13 Lake +N +P Fenale 8 1 4 8 4 16 27 1 2 9 1 13 Lake +N +P Fenale 10 2 3 5 7 11 4 8 4 16 27 1 10 9 1 13 Lake +N +P Male 11 2 4 11 4 8 4 16 37 1 10 3 13 Lake </td <td>3</td> <td>1</td> <td>3</td> <td>0</td> <td>2</td> <td>3</td> <td>4</td> <td>8</td> <td>4</td> <td>16</td> <td>19</td> <td>0</td> <td>4</td> <td>5</td> <td>2</td> <td>11</td> <td>Stream</td> <td>-N</td> <td>-P</td> <td>Female</td>	3	1	3	0	2	3	4	8	4	16	19	0	4	5	2	11	Stream	-N	-P	Female
5 4 2 1 3 5 4 8 4 16 21 1 8 4 3 16 Lake +N -P Female 7 1 0 3 5 11 4 8 4 16 22 1 2 9 1 13 Lake -N +P Female 9 2 0 8 10 9 4 8 4 16 22 2 5 4 4 10 10 Lake +N +P Male 10 2 4 8 10 15 4 8 4 16 27 0 3 1 13 Lake +N +P Male 12 2 4 6 11 4 8 4 16 37 1 5 8 2 16 Stream N +P Male 11 14 14 14 14 14 14 14 14 16 16	4	1	3	2	4	7	4	8	4	16	23	3	4	11	5	23	Stream	+N	+P	Female
6 1 3 5 7 10 4 8 4 16 26 1 3 8 2 14 Stream N +P Female 8 1 4 0 2 6 4 8 4 16 22 1 4 4 1 10 Lake +N +P Female 9 2 0 8 10 9 4 8 4 16 27 0 3 9 1 13 Lake +N +P Male 11 2 4 8 10 15 4 8 4 16 37 1 10 9 1 21 Lake +N +P Male 13 2 5 7 9 21 4 8 4 16 37 1 5 8 2 16 Stream +N +P Male 15 2 3 13 Lake +N +P Male 15 3 </td <td>5</td> <td>4</td> <td>2</td> <td>1</td> <td>3</td> <td>5</td> <td>4</td> <td>8</td> <td>4</td> <td>16</td> <td>21</td> <td>1</td> <td>8</td> <td>4</td> <td>3</td> <td>16</td> <td>Lake</td> <td>+N</td> <td>-P</td> <td>Female</td>	5	4	2	1	3	5	4	8	4	16	21	1	8	4	3	16	Lake	+N	-P	Female
7 1 0 3 5 11 4 8 4 16 22 1 2 9 1 13 Lake N P Female 9 2 0 8 10 9 4 8 4 16 22 1 4 4 1 10 Lake N P Female 10 2 3 5 7 11 4 8 4 16 27 2 5 7 1 15 Lake N P Male 11 2 2 4 6 11 4 8 4 16 37 1 5 8 2 16 Stream N P Male 12 2 3 8 10 17 4 8 4 16 30 1 1 12 Stream N P Male 16 22 4 3 11 Stream N P Male 16 22 3 </td <td>6</td> <td>1</td> <td>3</td> <td>5</td> <td>7</td> <td>10</td> <td>4</td> <td>8</td> <td>4</td> <td>16</td> <td>26</td> <td>1</td> <td>3</td> <td>8</td> <td>2</td> <td>14</td> <td>Stream</td> <td>-N</td> <td>+P</td> <td>Female</td>	6	1	3	5	7	10	4	8	4	16	26	1	3	8	2	14	Stream	-N	+P	Female
8 1 4 0 2 6 4 8 4 16 25 2 5 4 4 1 10 Lake N P Female 10 2 3 5 7 11 4 8 4 16 27 0 3 9 1 13 Lake N P Male 11 2 4 8 10 15 4 8 4 16 27 1 10 9 1 21 Lake N P Male 13 2 5 7 9 21 4 8 4 16 37 1 5 8 2 16 Stream N P Male 14 2 7 6 8 10 17 4 8 4 16 33 1 5 7 3 16 Stream N P Male 17 3 1 2 4 8 4 16 </td <td>7</td> <td>1</td> <td>0</td> <td>3</td> <td>5</td> <td>11</td> <td>4</td> <td>8</td> <td>4</td> <td>16</td> <td>27</td> <td>1</td> <td>2</td> <td>9</td> <td>1</td> <td>13</td> <td>Lake</td> <td>-N</td> <td>+P</td> <td>Female</td>	7	1	0	3	5	11	4	8	4	16	27	1	2	9	1	13	Lake	-N	+P	Female
9 2 0 8 10 9 4 8 4 16 27 0 3 9 1 13 Lake N +P Male 11 2 4 8 10 15 4 8 4 16 31 2 5 7 1 15 Lake +N +P Male 12 2 2 4 6 11 4 8 4 16 37 1 10 9 1 21 Lake +N +P Male 14 2 7 6 8 23 4 8 4 16 33 1 5 7 3 16 Stream N +P Male 16 2 6 5 7 20 4 8 4 16 30 6 2 3 1 1 Stream N +P Male 1 10 Lake N +P Male 1 10 1 1	8	1	4	0	2	6	4	8	4	16	22	1	4	4	1	10	Lake	+N	-P	Female
10 2 3 5 7 11 4 8 4 16 37 0 3 9 1 13 Lake +N -P Male 12 2 2 4 6 11 4 8 4 16 37 1 10 9 1 21 Lake +N +P Male 13 2 5 7 9 21 4 8 4 16 37 1 5 8 2 16 Stream +N +P Male 15 2 3 8 10 17 4 8 4 16 33 1 5 7 3 16 Stream +N +P Male 16 2 6 5 7 20 4 8 4 16 30 6 2 3 11 Stream +N +P Male 17 3 1 4 6 12 4 8 4 16	9	2	0	8	10	9	4	8	4	16	25	2	5	4	4	15	Stream	-N	+P	Male
11 2 4 8 10 15 4 8 4 16 21 2 5 7 1 15 Lake N P Male 13 2 5 7 9 21 4 8 4 16 37 1 5 8 2 16 Stream N P Male 14 2 7 6 8 23 4 8 4 16 33 1 5 7 3 16 Stream N P Male 16 2 6 5 7 20 4 8 4 16 27 2 2 4 3 11 Stream N P Male 18 3 5 6 8 14 4 8 4 16 22 4 3 1 12 Stream N P Male 20 3 1 4 6 12 4 8 4 16	10	2	3	5	7	11	4	8	4	16	27	0	3	9	1	13	Lake	+N	-P	Male
12 2 2 4 6 11 4 8 4 16 27 1 10 9 1 21 Lake -N +P Male 13 2 5 7 6 8 23 4 8 4 16 39 2 4 4 3 13 Lake -N +P Male 15 2 3 8 10 17 4 8 4 16 33 1 5 7 3 16 Stream +N +P Male 17 3 1 2 4 11 4 8 4 16 30 1 1 12 Stream +N +P Male 18 3 5 6 8 16 16 22 4 0 1 4 9 Stream N +P Male 20 3 1 4 6 12 4 8 4 16 28 4 1	11	2	4	8	10	15	4	8	4	16	31	2	5	7	1	15	Lake	+N	+P	Male
13 2 5 7 9 21 4 8 4 16 37 1 5 8 2 16 Stream +N +P Male 14 2 7 6 8 23 4 8 4 16 39 2 4 4 3 13 Lake -N +P Male 15 2 3 8 10 17 4 8 4 16 39 2 4 4 Stream -N +P Male 16 2 6 5 7 20 4 8 4 16 36 0 1 1 2 4 Stream N -P Male 18 3 5 6 8 14 8 4 16 28 4 1 4 1 N P Male 20 3 1 4 6 12 8 4 16 28 4 1 4 N	12	2	2	4	6	11	4	8	4	16	27	1	10	9	1	21	Lake	-N	-P	Male
14 2 7 6 8 23 4 8 4 16 39 2 4 4 3 13 Lake -N +P Male 15 2 3 8 10 17 4 8 4 16 33 1 5 7 3 16 Stream +N -P Male 17 3 1 2 4 11 4 8 4 16 30 6 2 3 11 Stream +N -P Male 18 3 5 6 8 14 16 22 4 0 1 4 9 Stream -N +P Male 20 3 0 8 10 18 4 8 4 16 28 4 1 10 Lake -N +P Male 21 3 0 8 10 18 4 8 4 16 29 0 4 2 11	13	2	5	7	9	21	4	8	4	16	37	1	5	8	2	16	Stream	+N	+P	Male
15 2 3 8 10 17 4 8 4 16 33 1 5 7 3 16 Stream +N -P Male 16 2 6 5 7 20 4 8 4 16 36 0 1 1 2 4 Stream -N -P Male 18 3 5 6 8 14 4 8 4 16 22 2 4 3 11 Stream -N -P Male 20 3 1 4 6 12 4 8 4 16 28 4 1 4 9 Stream N -P Male 21 3 0 8 10 18 4 8 4 16 28 4 1 4 9 Stream N P Male 22 3 2 4 6 13 4 8 4 16 29 3	14	2	7	6	8	23	4	8	4	16	39	2	4	4	3	13	Lake	-N	+P	Male
16 2 6 5 7 20 4 8 4 16 36 0 1 1 2 4 Stream N -P Male 17 3 1 2 4 11 4 8 4 16 30 6 2 3 1 12 Stream N -P Male 19 3 0 3 5 6 4 8 4 16 22 4 0 1 4 9 Stream N -P Male 20 3 1 4 6 12 4 8 4 16 28 4 1 4 1 10 Lake N -P Male 21 3 0 4 6 13 4 8 4 16 29 2 3 4 2 11 Lake +N +P Male 22 3 2 4 6 13 4 8 4 1	15	2	3	8	10	17	4	8	4	16	33	1	5	7	3	16	Stream	+N	-P	Male
17 3 1 2 4 11 4 8 4 16 27 2 2 4 3 11 Stream +N +P Male 18 3 5 6 8 14 4 8 4 16 20 3 1 12 Stream -N +P Male 20 3 1 4 6 12 4 8 4 16 22 4 0 1 4 9 Stream -N +P Male 21 3 0 8 10 20 4 8 4 16 34 5 4 6 4 19 Stream +N +P Male 22 3 2 4 6 13 4 8 4 16 29 2 4 2 11 Lake +N +P Male 23 3 0 4 8 4 16 21 1 6 4 2	16	2	6	5	7	20	4	8	4	16	36	0	1	1	2	4	Stream	-N	-P	Male
18 3 5 6 8 14 4 8 4 16 30 6 2 3 1 12 Stream -N -P Male 19 3 0 3 5 6 4 8 4 16 22 4 0 1 4 9 Stream -N +P Male 21 3 0 8 10 18 4 8 4 16 34 5 4 6 4 19 Stream +N +P Male 22 3 2 8 10 18 4 8 4 16 29 2 4 7 13 Lake +N +P Male 23 2 4 6 13 4 8 4 16 29 2 3 4 2 11 Lake +N +P Male 25 1 1 3 5 5 4 8 4 16 24	17	3	1	2	4	11	4	8	4	16	27	2	2	4	3	11	Stream	+N	+P	Male
19 3 0 3 5 6 4 8 4 16 22 4 0 1 4 9 Stream -N +P Male 20 3 1 4 6 12 4 8 4 16 28 4 1 4 1 10 Lake -N -P Male 22 3 2 8 10 12 4 8 4 16 36 0 2 4 7 13 Lake -N +P Male 23 3 0 4 6 13 4 8 4 16 29 0 4 2 2 8 Lake +N +P Male 24 3 2 4 6 13 4 8 4 16 24 2 0 9 2 13 Stream +N +P Female 25 1 1 3 5 5 4 8 4 <	18	3	5	6	8	14	4	8	4	16	30	6	2	3	1	12	Stream	-N	-P	Male
20 3 1 4 6 12 4 8 4 16 28 4 1 4 1 10 Lake -N -P Male 21 3 0 8 10 18 4 8 4 16 34 5 4 6 4 19 Stream -N +P Male 22 3 2 8 10 20 4 8 4 16 29 0 4 2 2 8 Lake +N +P Male 23 3 0 4 6 13 4 8 4 16 29 0 4 2 2 8 Lake +N +P Male 24 3 2 4 6 13 4 8 4 16 24 2 0 9 2 13 Stream +N +P Female 27 4 3 2 4 8 4 16 22	19	3	0	3	5	6	4	8	4	16	22	4	0	1	4	9	Stream	-N	+P	Male
21 3 0 8 10 18 4 8 4 16 34 5 4 6 4 19 Stream +N -P Male 22 3 2 8 10 20 4 8 4 16 36 0 2 4 7 13 Lake -N +P Male 23 3 0 4 6 13 4 8 4 16 29 0 4 2 2 8 Lake +N +P Male 25 1 1 3 5 5 4 8 4 16 24 2 0 9 2 13 Stream +N +P Female 26 4 1 3 5 5 4 8 4 16 24 0 6 4 4 14 Stream +N +P Female 27 4 3 5 12 4 8 4 16 </td <td>20</td> <td>3</td> <td>1</td> <td>4</td> <td>6</td> <td>12</td> <td>4</td> <td>8</td> <td>4</td> <td>16</td> <td>28</td> <td>4</td> <td>1</td> <td>4</td> <td>1</td> <td>10</td> <td>Lake</td> <td>-N</td> <td>-P</td> <td>Male</td>	20	3	1	4	6	12	4	8	4	16	28	4	1	4	1	10	Lake	-N	-P	Male
22 3 2 8 10 20 4 8 4 16 36 0 2 4 7 13 Lake -N +P Male 23 3 0 4 6 13 4 8 4 16 29 0 4 2 2 8 Lake +N +P Male 24 3 2 4 6 13 4 8 4 16 29 2 3 4 2 11 Lake +N +P Male 25 1 1 3 5 5 4 8 4 16 24 2 0 9 2 13 Stream +N +P Female 27 4 3 5 6 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 28 4 1 4 8 4 16 22 5 8	21	3	0	8	10	18	4	8	4	16	34	5	4	6	4	19	Stream	+N	-P	Male
23 3 0 4 6 13 4 8 4 16 29 2 3 4 2 11 Lake +N -P Male 24 3 2 4 6 13 4 8 4 16 29 2 3 4 2 11 Lake +N +P Male 25 1 1 3 5 5 4 8 4 16 24 2 0 9 2 13 Stream +N +P Female 26 4 1 3 5 5 4 8 4 16 24 0 6 4 4 14 Stream +N +P Female 27 4 3 5 6 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 28 4 1 4 2 0 2 6 4 16	22	3	2	8	10	20	4	8	4	16	36	0	2	4	7	13	Lake	-N	+P	Male
24 3 2 4 6 13 4 8 4 16 29 2 3 4 2 11 Lake +N +P Male 25 1 1 3 5 8 4 8 4 16 24 2 0 9 2 13 Stream +N +P Female 26 4 1 3 5 5 4 8 4 16 21 1 6 1 3 11 Stream +N +P Female 27 4 3 5 6 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 28 4 4 6 9 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 29 4 1 1 3 6 4 8 4 16 22 <td>23</td> <td>3</td> <td>0</td> <td>4</td> <td>6</td> <td>13</td> <td>4</td> <td>8</td> <td>4</td> <td>16</td> <td>29</td> <td>0</td> <td>4</td> <td>2</td> <td>2</td> <td>8</td> <td>Lake</td> <td>+N</td> <td>-P</td> <td>Male</td>	23	3	0	4	6	13	4	8	4	16	29	0	4	2	2	8	Lake	+N	-P	Male
25 1 1 3 5 8 4 16 24 2 0 9 2 13 Stream +N -P Female 26 4 1 3 5 5 4 8 4 16 21 1 6 1 3 11 Stream +N +P Female 27 4 3 2 4 8 4 8 4 16 24 0 6 4 4 14 Stream +N +P Female 28 4 4 3 5 6 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 29 4 1 4 6 9 4 8 4 16 22 1 5 3 3 12 Stream +N +P Female 31 4 2 0 2 6 4 8 4 16 22	24	3	2	4	6	13	4	8	4	16	29	2	3	4	2	11	Lake	+N	+P	Male
26 4 1 3 5 5 4 8 4 16 21 1 6 1 3 11 Stream -N +P Female 27 4 3 2 4 8 4 8 4 16 24 0 6 4 4 14 Stream +N +P Female 28 4 4 3 5 6 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 29 4 1 4 6 9 4 8 4 16 25 0 0 0 -N +P Female 30 4 5 3 5 12 4 8 4 16 22 1 5 3 3 12 Stream +N +P Female 31 4 2 0 3 5 8 4 16 22 5 9	25	1	1	3	5	8	4	8	4	16	24	2	0	9	2	13	Stream	+N	-P	Female
27 4 3 2 4 8 4 16 24 0 6 4 4 14 Stream +N +P Female 28 4 4 3 5 6 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 29 4 1 4 6 9 4 8 4 16 22 5 8 0 0 13 Stream +N +P Female 30 4 5 3 5 12 4 8 4 16 22 1 5 3 3 12 Lake -N +P Female 31 4 2 0 2 6 4 8 4 16 22 1 5 3 3 12 Stream +N +P Female 32 4 1 1 3 5 8 4 16 22 5<	26	4	1	3	5	5	4	8	4	16	21	1	6	1	3	11	Stream	-N	+P	Female
28 4 4 3 5 6 4 8 4 16 22 5 8 0 0 13 Stream -N -P Female 29 4 1 4 6 9 4 8 4 16 25 0 0 0 -N -P Female 30 4 5 3 5 12 4 8 4 16 28 2 6 2 2 12 Lake -N +P Female 31 4 2 0 2 6 4 8 4 16 22 5 9 4 0 18 Lake -N +P Female 32 4 1 1 3 6 4 8 4 16 22 5 9 4 0 18 Lake +N +P Female 33 5 0 3 5 10 4 8 4 16 25 5	27	4	3	2	4	8	4	8	4	16	24	0	6	4	4	14	Stream	+N	+P	Female
29 4 1 4 6 9 4 8 4 16 25 0 0 0 Lake -N -P Female 30 4 5 3 5 12 4 8 4 16 28 2 6 2 2 12 Lake -N +P Female 31 4 2 0 2 6 4 8 4 16 22 1 5 3 3 12 Stream +N +P Female 32 4 1 1 3 6 4 8 4 16 22 5 9 4 0 18 Lake +N +P Female 33 5 0 3 5 8 4 16 25 5 3 9 1 18 Lake +N +P Male 34 5 6 2 4 9 4 8 4 16 26 3 7	28	4	4	3	5	6	4	8	4	16	22	5	8	0	0	13	Stream	-N	-P	Female
30 4 5 3 5 12 4 8 4 16 28 2 6 2 2 12 Lake -N +P Female 31 4 2 0 2 6 4 8 4 16 22 1 5 3 3 12 Stream +N -P Female 32 4 1 1 3 6 4 8 4 16 22 5 9 4 0 18 Lake +N +P Female 33 5 0 3 5 8 4 8 4 16 22 5 9 4 0 18 Lake +N +P Female 34 5 6 2 4 9 4 8 4 16 25 5 3 9 1 18 Lake +N +P Male 35 5 0 3 7 4 8 4 16	29	4	1	4	6	9	4	8	4	16	25	0	0	0			Lake	-N	-P	Female
31 4 2 0 2 6 4 8 4 16 22 1 5 3 3 12 Stream +N -P Female 32 4 1 1 3 6 4 8 4 16 22 5 9 4 0 18 Lake +N +P Female 33 5 0 3 5 8 4 8 4 16 22 5 9 4 2 9 Lake +N +P Female 34 5 6 2 4 9 4 8 4 16 25 5 3 9 1 18 Lake +N +P Male 35 5 0 3 5 10 4 8 4 16 26 3 7 6 2 18 Stream +N +P Male 36 5 6 1 3 7 4 8 4	30	4	5	3	5	12	4	8	4	16	28	2	6	2	2	12	Lake	-N	+P	Female
32 4 1 1 3 6 4 8 4 16 22 5 9 4 0 18 Lake +N +P Female 33 5 0 3 5 8 4 8 4 16 24 1 2 4 2 9 Lake +N +P Male 34 5 6 2 4 9 4 8 4 16 25 5 3 9 1 18 Lake +N +P Male 35 5 0 3 5 10 4 8 4 16 26 3 7 6 2 18 Stream +N -P Male 36 5 6 1 3 7 4 8 4 16 23 1 4 2 9 Lake -N +P Male 37 5 2 4 6 11 4 8 4 16 2	31	4	2	0	2	6	4	8	4	16	22	1	5	3	3	12	Stream	+N	-P	Female
33 5 0 3 5 8 4 16 24 1 2 4 2 9 Lake -N -P Male 34 5 6 2 4 9 4 8 4 16 25 5 3 9 1 18 Lake +N +P Male 35 5 0 3 5 10 4 8 4 16 26 3 7 6 2 18 Stream +N -P Male 36 5 6 1 3 7 4 8 4 16 23 1 4 2 2 9 Lake -N +P Male 37 5 2 4 6 11 4 8 4 16 27 0 2 7 2 11 Stream -N -P Male 38 5 3 1 3 9 4 8 4 16 25	32	4	1	1	3	6	4	8	4	16	22	5	9	4	0	18	Lake	+N	+P	Female
34 5 6 2 4 9 4 8 4 16 25 5 3 9 1 18 Lake +N +P Male 35 5 0 3 5 10 4 8 4 16 26 3 7 6 2 18 Stream +N -P Male 36 5 6 1 3 7 4 8 4 16 23 1 4 2 2 9 Lake -N +P Male 36 5 6 1 3 7 4 8 4 16 23 1 4 2 2 9 Lake -N +P Male 37 5 2 4 6 11 4 8 4 16 27 0 2 7 2 11 Stream N -P Male 38 5 3 1 3 9 4 8 4 16<	33	5	0	3	5	8	4	8	4	16	24	1	2	4	2	9	Lake	-N	-P	Male
35 5 0 3 5 10 4 8 4 16 26 3 7 6 2 18 Stream +N -P Male 36 5 6 1 3 7 4 8 4 16 23 1 4 2 2 9 Lake -N +P Male 37 5 2 4 6 11 4 8 4 16 27 0 2 7 2 11 Stream -N -P Male 38 5 3 1 3 9 4 8 4 16 25 1 4 2 4 11 Lake +N -P Male 38 5 3 1 3 9 4 8 4 16 25 1 4 2 4 11 Lake +N -P Male 39 5 2 3 5 8 4 16 24 <td< td=""><td>34</td><td>5</td><td>6</td><td>2</td><td>4</td><td>9</td><td>4</td><td>8</td><td>4</td><td>16</td><td>25</td><td>5</td><td>3</td><td>9</td><td>1</td><td>18</td><td>Lake</td><td>+N</td><td>+P</td><td>Male</td></td<>	34	5	6	2	4	9	4	8	4	16	25	5	3	9	1	18	Lake	+N	+P	Male
36 5 6 1 3 7 4 8 4 16 23 1 4 2 2 9 Lake -N +P Male 37 5 2 4 6 11 4 8 4 16 27 0 2 7 2 11 Stream -N -P Male 38 5 3 1 3 9 4 8 4 16 25 1 4 2 4 11 Lake +N -P Male 38 5 3 1 3 9 4 8 4 16 25 1 4 2 4 11 Lake +N -P Male 39 5 2 3 5 9 4 8 4 16 25 1 4 5 1 11 Stream -N +P Male 40 5 2 3 5 8 4 8 4 16	35	5	0	3	5	10	4	8	4	16	26	3	7	6	2	18	Stream	+N	-P	Male
37 5 2 4 6 11 4 8 4 16 27 0 2 7 2 11 Stream -N -P Male 38 5 3 1 3 9 4 8 4 16 25 1 4 2 4 11 Lake +N -P Male 39 5 2 3 5 9 4 8 4 16 25 1 4 5 1 11 Stream -N +P Male 39 5 2 3 5 9 4 8 4 16 25 1 4 5 1 11 Stream -N +P Male 40 5 2 3 5 8 4 16 24 4 5 0 3 12 Stream +N +P Male	36	5	6	1	3	7	4	8	4	16	23	1	4	2	2	9	Lake	-N	+P	Male
38 5 3 1 3 9 4 8 4 16 25 1 4 2 4 11 Lake +N -P Male 39 5 2 3 5 9 4 8 4 16 25 1 4 5 1 11 Lake +N -P Male 39 5 2 3 5 9 4 8 4 16 25 1 4 5 1 11 Stream -N +P Male 40 5 2 3 5 8 4 8 4 16 24 4 5 0 3 12 Stream +N +P Male	37	5	2	4	6	11	4	8	4	16	27	0	2	7	2	11	Stream	-N	-P	Male
39 5 2 3 5 9 4 8 4 16 25 1 4 5 1 11 Stream -N +P Male 40 5 2 3 5 8 4 8 4 16 24 4 5 0 3 12 Stream +N +P Male	38	5	3	1	3	9	4	8	4	16	25	1	4	2	4	11	Lake	+N	-P	Male
40 5 2 3 5 8 4 8 4 16 24 4 5 0 3 12 Stream +N +P Male	39	5	2	3	5	9	4	8	4	16	25	1	4	5	1	11	Stream	-N	+P	Male
	40	5	2	3	5	8	4	8	4	16	24	4	5	0	3	12	Stream	+N	+P	Male

		S	urviv	al	Se	electi	on	Infecti	on in	tensity	C	Condition	
Juvenile Group	Factor	\mathbf{X}^2	Df	Р	\mathbf{X}^2	Df	Р	\mathbf{X}^2	Df	P	F	\mathbf{Df}_{res}	Р
All	P H E:H P:E H:E P:H:E	0.084 0.242 3.697 1.197 0.607 0.816 3.177	1 1 1 1 1 1	0.771 0.622 0.055 0.274 0.436 0.366 0.075				1.815 2.027 0.46 1.819 0.333 0.392 0.395	1 1 1 1 1	0.178 0.155 0.498 0.177 0.564 0.531 0.530			
Lake	P H E:H P:H H:E P:H:E	0.31 1.609 0.234 0.001 0.92 0.108 4.835	1 1 1 1 1 1	0.578 0.205 0.628 0.979 0.338 0.743 0.028	0.174 1.145 0.005 0.083 0.521 0.351 6.109	1 1 1 1 1 1	0.677 0.285 0.943 0.774 0.471 0.554 0.013				0.003 2.183 0.273 2.897 0.789 0.538 1.065	18.493 18.06 18.406 19.86 17.362 19.458 18.899	0.955 0.157 0.607 0.104 0.387 0.472 0.315
Hybrids	P H P:H P:E H:E P:H:E	0.198 0.084 4.358 1.622 0.007 0.164 0.722	1 1 1 1 1	0.656 0.771 0.037 0.203 0.932 0.686 0.396	0.014 2.988 0.25 0.007 0.051 0.247 0.676	1 1 1 1 1 1	0.904 0.084 0.617 0.933 0.821 0.619 0.411	1.482 1.245 0.979 1.335 0.825 0.881 0.749	1 1 1 1 1 1	0.223 0.264 0.322 0.248 0.364 0.348 0.387	0.006 0.655 0.147 2.086 17.606 1.477 0.063	16.028 16.87 17.011 16.788 16.613 19.173 17.901	0.938 0.430 0.706 0.167 0.001 0.239 0.804
Stream	P H E P:H P:E H:E P:H:E	0.164 0.606 1.815 0.006 0.042 0.55 0.032	1 1 1 1 1	0.685 0.436 0.178 0.941 0.837 0.458 0.859	0.038 2.014 0.948 0.572 0.415 0.449 0.009	1 1 1 1 1 1	0.845 0.156 0.330 0.449 0.520 0.503 0.924	0.963 0.761 0.772 0.857 0.772 0.696 0.672	1 1 1 1 1	0.326 0.383 0.380 0.355 0.380 0.404 0.412	2.248 4.127 0.038 5.438 0.047 0.012 0.44	18.156 18.711 20.082 19.376 19.24 19.93 19.376	0.151 0.057 0.848 0.031 0.831 0.914 0.515

Table S7: Effects of phase 1 on survival, selection and body condition of juveniles in phase 2. Effects on survival and selection tested by GLMMs. Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. HxE). Significant P values are highlighted in bold.

Table S8a: Multivariate perMANOVAs testing the effects of the experimental treatments from phase 1 on gene expression profiles of juvenile fish in phase 2. We tested the effects on each functional gene group (e.g. stress response, metabolism genes, etc). Tests were performed for each juvenile ecotype separately (i.e. lake, hybrid, and stream). Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. HxE). Stocking, in the **Factor** column, refers to the number of juveniles introduced at the start of phase 2 and is therefore tank specific. Significant P values are highlighted in bold.

		l	_ake			н	ybrid			S	tream	
Factor	Df	F	R2	Р	Df	F	R2	Р	Df	F	R2	Р
						All genes	6					
Р	1	1.466	0.065	0.323	1	6.787	0.181	0.006	1	1.26	0.028	0.374
Н	1	4.021	0.18	0.027	1	0.637	0.017	0.537	1	6.201	0.138	0.011
E	1	2.503	0.112	0.176	1	0.45	0.012	0.582	1	3.38	0.075	0.11
P:H	1	0.106	0.005	0.728	1	-0.326	-0.009	0.92	1	3.342	0.075	0.1
P:E	1	1.311	0.059	0.372	1	0.776	0.021	0.463	1	1.155	0.026	0.425
H:E	1	-0.433	-0.019	0.948	1	2.348	0.062	0.146	1	2.098	0.047	0.272
P:H:E	1	0.897	0.04	0.369	1	0.112	0.003	0.785	1	2.017	0.045	0.276
Residuals	13		0.581		23		0.612		25		0.558	
Total	21		1		31		1		33		1	
stocking	1	-0.478	-0.021	0.822	1	3.808	0.101	0.001	1	0.341	0.008	0.904
				S	stress	response	e genes					
Р	1	-2.652	-0.063	0.981	1	2.115	0.048	0.211	1	5.153	0.127	0.024
Н	1	10.708	0.254	0.020	1	1.871	0.043	0.216	1	1.144	0.028	0.311
E	1	7.925	0.188	0.052	1	2.73	0.062	0.212	1	-0.075	-0.002	0.686
P:H	1	-3.689	-0.087	0.995	1	0.05	0.001	0.64	1	-1.009	-0.025	0.887
P:E	1	-0.035	-0.001	0.656	1	-0.861	-0.02	0.817	1	-0.894	-0.022	0.87
H:E	1	5.559	0.132	0.105	1	3.442	0.079	0.128	1	0.599	0.015	0.392
P:H:E	1	4.714	0.112	0.086	1	1.629	0.037	0.3	1	10.234	0.252	0.007
Residuals	13		0.308		23		0.526		25		0.616	
Total	21		1		31		1		33		1	
stocking	1	6.682	0.158	0.067	1	9.715	0.222	0.226	1	0.424	0.01	0.118
_					Meta	abolism g	enes					
Р	1	0.83	0.026	0.547	1	17.314	0.354	0.007	1	2.047	0.045	0.332
H	1	12.305	0.381	0.009	1	-0.736	-0.015	0.82	1	10.364	0.226	0.061
E	1	5.911	0.183	0.105	1	0.849	0.017	0.363	1	5.807	0.127	0.153
P:H	1	-0.337	-0.01	0.646	1	1.608	0.033	0.238	1	5.955	0.13	0.162
P:E	1	3.311	0.103	0.193	1	1.921	0.039	0.265	1	-2.663	-0.058	0.914
H:E	1	-3.314	-0.103	0.998	1	-1.159	-0.024	0.912	1	-3.646	-0.08	0.954
P:H:E	1	1.763	0.055	0.272	1	-1.458	-0.03	0.925	1	3.097	0.068	0.259
Residuals	13		0.403		23		0.47		25		0.545	
Total	21		1		31		1		33		1	
stocking	1	-1.2	-0.037	0.887	1	7.579	0.155	0.001	1	-0.115	-0.003	0.892

Innate cellular immunity

	Table	S8a	contir	nued
--	-------	-----	--------	------

			Lake			н	lybrid			S	tream	
Factor	Df	F	R2	Р	Df	F	, R2	Р	Df	F	R2	Р
Р	1	0.159	0.009	0.665	1	-0.106	-0.004	0.731	1	1.608	0.048	0.381
Н	1	2.369	0.136	0.21	1	-0.299	-0.012	0.771	1	4.427	0.131	0.124
E	1	-0.549	-0.031	0.878	1	1.114	0.046	0.423	1	4.504	0.133	0.125
P:H	1	-0.332	-0.019	0.867	1	-0.453	-0.019	0.823	1	-2.483	-0.073	0.958
P:E	1	1.759	0.101	0.207	1	-0.477	-0.02	0.795	1	-0.156	-0.005	0.62
H:E	1	0.25	0.014	0.637	1	-0.183	-0.008	0.680	1	-1.696	-0.05	0.892
P:H:E	1	1.036	0.059	0.26	1	0.33	0.014	0.550	1	2.765	0.082	0.24
Residuals	13		0.745		23		0.953		25		0.739	
Total	21		1		31		1		33		1	
stocking	1	-0.251	-0.014	0.697	1	1.206	0.05	0.376	1	-0.135	-0.004	0.9
				In	nate ł	numoral i	mmunity					
Р	1	0.787	0.053	0.507	1	-0.128	-0.004	0.526	1	6.882	0.191	0.115
Н	1	0.929	0.063	0.44	1	2.689	0.086	0.240	1	8.718	0.241	0.06
E	1	-0.915	-0.062	0.843	1	-2.326	-0.074	0.914	1	6.213	0.172	0.106
P:H	1	-0.185	-0.013	0.712	1	0.241	0.008	0.455	1	-3.672	-0.102	0.962
P:E	1	-0.387	-0.026	0.709	1	0.468	0.015	0.412	1	-5.496	-0.152	0.988
H:E	1	0.516	0.035	0.395	1	2.995	0.096	0.156	1	-2.11	-0.058	0.862
P:H:E	1	1.459	0.099	0.424	1	-0.951	-0.03	0.754	1	0.409	0.011	0.441
Residuals	13		0.878		23		0.736		25		0.692	
Total	21		1		31		1		33		1	
stocking	1	-0.401	-0.027	0.925	1	5.243	0.168	0.023	1	0.178	0.005	0.265
				1			innelline					
D	4	0 4 4 5	0.017	0.659				0 742	4	0 1 4 7	0.002	0 626
г Ц	1	-0.445	-0.017	0.000	1	-0.074	-0.003	0.743	1	0.147	0.003	0.020
	- 1	1 070	0.094	0.100	1	2 605	0.010	0.004	- 1	1 206	0.043	0.200
с D·U	1	-1.270	-0.049	0.927	1	-2.005	-0.093	0.993	1	-1.290	-0.023	0.00
г.п D.E	- 1	2.001	0.079	0.230	1	0.050	0.002	0.070	- 1	-0.015	-0.014	0.775
г.с Ц.Е	1	6 702	0.00	0.114	1	-0.755 8 /80	0.020	0.004	1	12 /5	0.100	0.020
	1	1 306	0.233	0.007	1	-0 208	-0.011	0.788	1	13.43	0.235	0.005
r .r .∟ Rosiduals	12	1.500	0.05	0.177	23 I	-0.230	0.011	0.700	25	4.052	0.005	0.105
Total	21		0.430		20		0.02		23 23		0.430	
stocking	2 i 1	0 198	0 008	0 827	1	-0 301	-0.011	0.853	1	3 989	0.07	0 159
Stocking		0.150	0.000	0.027	I	-0.001	-0.011	0.000		0.000	0.07	0.100
					Com	olement s	system					
Р	1	1.033	0.066	0.426	1	0.459	0.019	0.399	1	2.523	0.065	0.213
Н	1	-0.189	-0.012	0.66	1	0.53	0.022	0.416	1	6.877	0.177	0.050
E	1	0.145	0.009	0.531	1	-4.507	-0.187	0.987	1	6.683	0.172	0.047
P:H	1	-0.321	-0.02	0.746	1	0.288	0.012	0.431	1	-3.586	-0.092	0.983
P:E	1	-0.276	-0.018	0.774	1	-0.148	-0.006	0.557	1	-1.689	-0.043	0.892
H:E	1	0.005	0	0.462	1	-0.4	-0.017	0.630	1	1.714	0.044	0.258
P:H:E	1	2.297	0.146	0.315	1	0.495	0.021	0.460	1	1.362	0.035	0.262
Residuals	13		0.828		23		0.956		25		0.643	

		I	ake			H	ybrid			S	tream	
Factor	Df	F	R2	Р	Df	F	R2	Р	Df	F	R2	Р
Total	21		1		31		1		33		1	
stocking	1	0.003	0	0.756	1	4.354	0.181	0.037	1	-0.003	0	0.478
					Adap	otive imm	unity					
Р	1	0.374	0.024	0.506	1	7.433	0.158	0.015	1	-2.342	-0.063	0.948
Н	1	1.712	0.111	0.352	1	5.98	0.127	0.014	1	4.329	0.117	0.129
E	1	-1.419	-0.092	0.824	1	-0.508	-0.011	0.805	1	1.49	0.04	0.37
P:H	1	0.544	0.035	0.634	1	-2.748	-0.059	0.999	1	1.784	0.048	0.317
P:E	1	-0.407	-0.027	0.659	1	11.902	0.253	0.002	1	2.18	0.059	0.259
H:E	1	1.214	0.079	0.416	1	0.162	0.003	0.601	1	0.495	0.013	0.458
P:H:E	1	0.628	0.041	0.45	1	0.221	0.005	0.537	1	3.077	0.083	0.16
Residuals	13		0.847		23		0.49		25		0.677	
Total	21		1		31		1		33		1	
stocking	1	-0.289	-0.019	0.522	1	1.516	0.032	0.147	1	0.893	0.024	0.46

Table S8b: Univariate LMMs testing the effects of experimental treatments from phase 1 on each gene of juvenile fish in phase 2. Tests were performed for each juvenile ecotype separately (i.e. lake, hybrid, and stream). Treatments correspond to the effects of host (H), environment (E), parasite exposure (P), and their interactions (e.g. HxE). P-values lower than 0.05 are highlighted in bold and significant P-values after FDR correction according to Benjamini-Yekutieli are marked with *.

			Lake			Hybrid			Stream	
Treatment	F	Df	Df.res	Р	F	Df.res	Р	F	Df.res	Р
fabp2										
Р	0.379	1	88.829	0.540	0.030	144.156	0.863	1.072	205.739	0.302
Н	1.562	1	130.261	0.214	0.021	149.616	0.885	0.013	202.295	0.908
E	1.085	1	96.322	0.300	0.512	196.342	0.475	0.845	202.254	0.359
H:E	0.001	1	144.039	0.978	0.673	201.116	0.413	0.152	215.250	0.697
P:H	0.006	1	149.611	0.940	0.055	152.153	0.815	0.093	219.162	0.761
P:E	0.869	1	89.241	0.354	3.186	220.696	0.076	0.574	233.549	0.450
P:H:E	0.095	1	139.143	0.759	0.092	221.812	0.762	0.654	211.046	0.420
lambda	3.073				4.731			3.979		
gapdh										
Р	0.863	1	41.546	0.358	0.037	124.467	0.847	4.614	206.118	0.033
Н	0.152	1	52.095	0.699	0.471	126.057	0.494	1.472	202.493	0.226
E	0.079	1	45.519	0.779	0.304	166.413	0.582	0.871	202.809	0.352
H:E	0.140	1	58.561	0.709	1.506	164.669	0.221	1.274	214.998	0.260
P:H	0.300	1	61.867	0.586	0.226	127.300	0.635	3.749	218.848	0.054
P:E	0.176	1	41.570	0.677	0.054	182.535	0.816	1.164	232.548	0.282
P:H:E	0.005	1	55.316	0.946	0.536	182.521	0.465	0.442	211.017	0.507
lambda								0.586		
acadsb										
Р	2.211	1	67.140	0.142	0.033	71.577	0.856	0.932	206.133	0.335
E	0.733	1	68.379	0.395	0.001	88.961	0.971	0.200	202.833	0.655
Н	0.161	1	90.329	0.689	0.043	71.650	0.836	2.526	202.501	0.114
H:E	1.210	1	98.833	0.274	0.438	91.865	0.510	0.005	214.989	0.942
P:H	0.247	1	100.777	0.621	0.799	74.375	0.374	0.335	218.837	0.564
P:E	0.000	1	61.803	0.995	0.272	98.894	0.603	0.237	232.511	0.627
P:H:E	0.886	1	108.899	0.349	0.570	97.534	0.452	0.370	211.017	0.544
lambda										
rab11al										
Р	1.239	1	66.383	0.270	0.002	132.302	0.962	0.801	112.212	0.373
H	0.108	1	91.679	0.743	0.030	136.965	0.863	1.286	106.237	0.259
E	0.749	1	71.969	0.390	0.734	179.219	0.393	0.008	115.188	0.93
H:E	0.851	1	104.103	0.358	0.029	184.910	0.864	0.182	114.787	0.67
P:H	0.060	1	108.648	0.807	1.901	140.115	0.170	0.039	113.593	0.844
P:E	1.264	1	65.945	0.265	3.898	202.313	0.050	0.426	121.136	0.515
P:H:E	0.187	1	99.985	0.666	0.034	201.536	0.853	0.077	112.670	0.782
lambda								3.384		

		Lake				Hybrid				
Treatment	F	Df	Df.res	Р	F	Df.res	Р	F	Df.res	Р
ctrc										
Р	0.374	1	97.119	0.542	2.499	144.426	0.116	0.530	65.667	0.469
Н	2.982	1	144.416	0.086	0.058	150.160	0.81	2.585	61.969	0.113
E	1.352	1	105.400	0.247	2.319	197.250	0.129	1.100	68.779	0.298
H:E	0.005	1	157.422	0.944	0.471	202.754	0.493	0.004	67.159	0.953
P:H	0.004	1	163.387	0.950	5.639	152.944	0.019*	2.132	65.221	0.149
P:E	1.353	1	98.068	0.248	0.025	222.034	0.875	2.333	70.294	0.131
P:H:E	0.858	1	152.203	0.356	0.226	222.634	0.635	1.301	65.988	0.258
lambda	-0.149									
hsp70										
Р	0.021	1	48.219	0.885	1.492	136.522	0.224	1.343	205.658	0.248
Н	2.781	1	61.334	0.101	1.631	136.133	0.204	0.693	202.252	0.406
E	1.986	1	51.817	0.165	0.468	187.224	0.495	0.000	202.137	0.999
H:E	0.014	1	69.751	0.905	0.980	174.978	0.323	0.862	215.314	0.354
P:H	0.191	1	72.080	0.663	1.167	135.632	0.282	0.004	219.242	0.948
P:E	0.785	1	46.873	0.380	2.649	198.130	0.105	0.281	233.786	0.597
P:H:E	0.301	1	68.177	0.585	1.262	190.327	0.263	5.331	211.059	0.022*
lambda					1.457					
hsp90										
Р	0.012	1	96.526	0.912	2.098	142.652	0.150	0.074	206.313	0.785
н	0.756	1	140.989	0.386	2.853	146.645	0.093	0.000	202.594	0.988
Е	0.116	1	104.142	0.734	0.118	192.449	0.731	0.003	203.101	0.957
H:E	0.991	1	155.702	0.321	0.171	193.503	0.679	0.243	214.895	0.623
P:H	0.348	1	160.792	0.556	1.325	148.128	0.252	0.176	218.720	0.675
P:E	11.320	1	96.943	<0.001*	1.333	214.009	0.250	0.028	232.098	0.868
P:H:E	0.409	1	151.429	0.524	0.018	216.577	0.892	0.601	211.022	0.439
lambda								5.096		
nr3c1										
Р	0.956	1	76.133	0.331	0.008	111.918	0.930	2.809	150.075	0.096
н	0.760	1	104.823	0.385	0.665	114.575	0.416	1.433	144.571	0.233
Е	0.005	1	81.063	0.944	0.248	148.256	0.619	0.385	151.217	0.536
H:E	1.633	1	120.155	0.204	1.524	152.988	0.219	0.275	154.927	0.600
P:H	0.188	1	122.885	0.666	0.888	117.796	0.348	0.178	155.546	0.674
P:E	1.515	1	74.294	0.222	0.484	167.284	0.488	0.163	164.619	0.687
P:H:E	1.160	1	118.889	0.284	0.050	165.687	0.823	0.062	151.928	0.803
lambda										
sod2										
Р	0.425	1	97.119	0.516	0.412	79.348	0.523	1.142	218.126	0.286
Н	1.425	1	144.416	0.234	0.446	79.726	0.506	0.805	206.939	0.371
Е	0.424	1	105.400	0.516	0.658	100.089	0.419	0.482	218.889	0.488

	Lake				Hybrid					
Treatment	F	Df	Df.res	Р	F	Df.res	Р	F	Df.res	Р
H:E	0.260	1	157.422	0.611	0.689	103.310	0.409	0.563	220.853	0.454
P:H	0.019	1	163.387	0.89	4.590	82.629	0.035	1.075	225.158	0.301
P:E	0.149	1	98.068	0.701	0.270	111.771	0.604	0.102	237.367	0.749
P:H:E	0.517	1	152.203	0.473	0.005	110.184	0.943	0.060	217.921	0.806
lambda										
vegfa										
Р	1.903	1	43.975	0.175	0.063	106.168	0.803	3.200	173.733	0.075
Н	0.213	1	54.675	0.646	0.398	108.324	0.529	0.016	170.321	0.900
E	1.375	1	45.246	0.247	0.607	139.610	0.437	0.000	171.943	0.984
H:E	1.598	1	60.264	0.211	0.325	144.063	0.569	0.116	183.652	0.734
P:H	0.442	1	61.480	0.508	0.170	111.532	0.681	0.092	186.045	0.762
P:E	3.622	1	40.608	0.064	0.887	157.382	0.348	0.020	199.584	0.889
P:H:E	0.128	1	65.477	0.721	0.576	155.673	0.449	0.001	178.994	0.977
lambda								3.099		
tf										
Р	0.092	1	36.543	0.763	2.089	84.373	0.152	0.000	111.859	0.989
Н	0.368	1	44.941	0.547	0.130	84.294	0.719	2.944	105.606	0.089
E	0.122	1	40.239	0.728	0.609	107.878	0.437	0.039	114.954	0.844
H:E	0.516	1	50.024	0.476	0.194	108.791	0.661	0.580	114.141	0.448
P:H	0.292	1	52.996	0.591	2.675	86.309	0.106	0.035	112.892	0.852
P:E	0.192	1	36.808	0.664	0.079	118.853	0.779	1.313	120.459	0.254
P:H:E	0.704	1	46.980	0.406	0.043	116.789	0.836	0.009	112.084	0.923
lambda	0.286									
sla1										
Р	0.742	1	90.452	0.391	0.263	71.863	0.61	3.107	215.820	0.079
Н	1.428	1	124.595	0.234	1.014	71.945	0.317	0.024	206.285	0.878
E	0.023	1	93.112	0.879	0.863	89.367	0.355	1.196	216.237	0.275
H:E	1.047	1	136.440	0.308	0.128	92.283	0.722	3.389	219.024	0.067
P:H	0.548	1	138.229	0.461	0.026	74.678	0.872	1.310	223.121	0.254
P:E	0.261	1	86.100	0.611	0.775	99.365	0.381	7.234	234.269	0.008*
P:H:E	0.081	1	144.197	0.777	0.100	97.994	0.753	0.804	216.337	0.371
lambda								-0.792		
ogfr										
Р	0.306	1	67.806	0.582	0.003	144.674	0.959	3.941	150.834	0.049
Н	0.005	1	91.209	0.941	0.602	150.665	0.439	1.215	146.841	0.272
E	0.161	1	71.910	0.689	0.021	198.158	0.885	0.203	150.751	0.653
H:E	0.758	1	104.836	0.386	1.099	204.355	0.296	0.387	158.347	0.535
P:H	0.036	1	106.893	0.849	0.208	153.696	0.649	0.436	159.328	0.510
P:E	2.183	1	65.397	0.144	1.396	223.308	0.239	0.054	169.997	0.816
P:H:E	0.167	1	104.612	0.683	0.040	223.352	0.842	0.060	154.477	0.806

			Lake			Hybrid			Stream	
Treatment	F	Df	Df.res	Р	F	Df.res	Р	F	Df.res	Р
lambda								3.549		
tlr2										
Р	0.002	1	96.654	0.964	0.271	142.307	0.603	3.972	175.819	0.048
Н	0.542	1	141.690	0.463	0.166	145.986	0.684	0.008	166.932	0.927
E	0.492	1	104.410	0.485	2.553	191.786	0.112	1.109	177.601	0.294
H:E	1.039	1	156.078	0.310	2.088	192.057	0.15	0.190	178.655	0.663
P:H	0.006	1	161.351	0.940	2.608	147.289	0.108	0.139	180.396	0.710
P:E	4.214	1	97.186	0.043	0.352	212.663	0.553	1.320	190.542	0.252
P:H:E	0.323	1	151.597	0.571	1.532	215.264	0.217	0.036	175.935	0.849
lambda										
f2										
Р	0.659	1	40.707	0.422	0.429	114.090	0.514	2.382	198.135	0.124
Н	0.073	1	50.873	0.788	0.091	116.945	0.763	3.366	189.333	0.068
E	0.002	1	44.633	0.968	0.088	151.534	0.767	0.467	199.011	0.495
H:E	0.162	1	57.105	0.689	1.078	156.371	0.301	0.004	201.429	0.948
P:H	0.117	1	60.359	0.733	1.329	120.167	0.251	1.029	204.473	0.312
P:E	0.335	1	40.769	0.566	0.008	171.026	0.927	0.274	214.992	0.601
P:H:E	0.106	1	53.894	0.746	0.112	169.485	0.738	0.120	198.709	0.729
lambda								0.545		
saal1										
Р	0.258	1	49.124	0.614	1.692	137.150	0.195	0.205	130.049	0.651
Н	0.553	1	62.303	0.460	0.053	142.328	0.818	0.108	125.021	0.743
E	1.554	1	51.487	0.218	0.476	186.634	0.491	1.175	131.800	0.280
H:E	0.009	1	70.047	0.925	1.484	192.533	0.225	0.408	134.709	0.524
P:H	1.478	1	71.064	0.228	2.718	145.438	0.101	0.011	134.437	0.917
P:E	0.013	1	46.161	0.909	3.687	210.577	0.056	0.168	142.871	0.683
P:H:E	0.491	1	72.425	0.486	0.757	210.093	0.385	0.776	131.880	0.380
lambda								-0.389		
	0.075	4	00 105	0 795	0.056	107 462	0.614	1 004	200 501	0 179
P	0.075	1	03.120	0.765	0.200	107.403	0.014	1.024	208.391	0.178
H F	0.009	1	115.213	0.924	4.206	109.729	0.043	0.378	203.695	0.539
E	2.694	1	83.389	0.104	2.373	141.554	0.126	0.414	206.561	0.521
H:E	1.316	1	121.051	0.254	2.397	146.069	0.124	0.001	214./12	0.970
P:H	0.006	1	127.476	0.937	0.019	112.942	0.89	3.164	218.434	0.077
P:E	0.016	1	/6./68	0.901	1.81/	159.612	0.180	2.155	229.390	0.143
P:H:E	2.512	1	136.560	0.115	1.683	157.923	0.196	0.980	211.722	0.323
lambda										
cd97										
	2 020	4	87 000	0 159	0 000	103 045	0 803	0 025	205 526	0 363
Ľ	2.020	I	01.229	0.100	0.022	103.943	0.000	0.000	200.000	0.302

		Lake				Hybrid		Stream		
Treatment	F	Df	Df.res	Р	F	Df.res	Р	F	Df.res	Р
Н	0.525	1	120.998	0.470	1.428	104.534	0.235	0.125	202.050	0.724
E	2.201	1	88.149	0.141	0.173	136.564	0.678	0.098	202.105	0.755
H:E	2.085	1	127.563	0.151	0.363	136.252	0.548	0.799	214.902	0.372
P:H	0.196	1	132.568	0.659	0.554	106.287	0.459	0.039	218.785	0.844
P:E	0.601	1	81.363	0.441	0.177	150.182	0.674	2.323	233.002	0.129
P:H:E	0.025	1	141.556	0.874	0.071	148.628	0.79	0.039	210.744	0.844
lambda										
mif										
P	4 121	1	92 226	0 045	2 237	140 486	0 137	1 674	218 126	0 197
н	1 681	1	127 141	0.197	0.012	146 022	0.107	0.296	206 939	0.107
F	0.005	1	96.053	0.107	1 885	191 7/0	0.0171	3 605	218 889	0.007
	0.000	1	1/2 00/	0.541	0.780	107 776	0.171	2 254	220.853	0.000
□.∟	0.103	4	142.034	0.002	1 050	140.000	0.370	0.070	220.000	0.120
г.п р.г	0.450	-	143.013	0.504	0.500	149.099	0.176	0.279	223.150	0.096
P:E	2.100	1	89.013	0.151	0.566	216.235	0.453	0.062	237.307	0.804
P:H:E	0.909	I	146.031	0.342	0.233	215.974	0.630	0.530	217.921	0.467
lambda	5.788							-1.934		
il1b										
Р	0.076	1	64.391	0.784	0.510	84.175	0.477	1.030	193.528	0.311
Н	0.000	1	85.681	0.984	1.918	84.289	0.170	0.191	186.375	0.663
E	0.988	1	66.360	0.324	3.051	107.404	0.084	1.556	193.833	0.214
H:E	1.809	1	95.588	0.182	5.161	109.048	0.025	4.859	197.647	0.029
P:H	0.758	1	96.575	0.386	0.626	86.579	0.431	0.279	200.455	0.598
P:E	0.977	1	59.814	0.327	1.653	118.883	0.201	0.724	210.395	0.396
P:H:E	0.016	1	102.188	0.899	0.880	117.029	0.350	1.916	194.912	0.168
lambda										
tafb1										
P	2 433	1	34 113	0 128	0.008	102 058	0.928	4 224	157 727	0.042
Н	0.358	1	40 750	0.553	0.280	103 879	0.598	0 479	153 302	0 490
F	0 170	1	36 178	0.683	0.200	133 463	0.556	0.011	157 634	0.916
L H·F	1 803	1	44 820	0.000	1 005	137 718	0.318	1 072	164 515	0.302
D.H	0.235	1	46 002	0.100	0 106	107.068	0.310	0 103	165 718	0.302
F.N D.E	2.062	1	40.002 22.656	0.030	0.100	150 210	0.740	0.103	176 042	0.740
	0.002	1	32.000 4E 400	0.090	0.072	140 500	0.352	0.140	1/0.042	0.701
P:H:E	0.200	I	45.438	0.657	0.160	148.560	0.690	0.000	160.882	0.994
lamboa								2.633		
tnfa										
Р	1.223	1	59.360	0.273	0.016	67.851	0.900	2.998	206.437	0.085
Н	0.459	1	77.816	0.500	1.231	67.816	0.271	0.086	202.659	0.769
E	0.161	1	61.717	0.689	0.001	83.688	0.974	0.144	203.288	0.705
H:E	0.967	1	87.705	0.328	0.051	86.449	0.823	0.654	214.839	0.420
P:H	0.011	1	88.573	0.918	0.044	70.440	0.834	0.287	218.649	0.592

Table S8	3 b: co	ontinued
----------	----------------	----------

			Lake	1		Hybrid			Stream	
Treatment	F	Df	Df.res	Р	F	Df.res	Ρ	F	Df.res	Р
P:E	0.776	1	55.482	0.382	0.043	92.797	0.836	2.780	231.832	0.097
P:H:E	0.053	1	91.917	0.818	0.015	91.576	0.904	0.005	211.031	0.946
lambda										
c7										
Р	0.271	1	97.119	0.604	0.002	81.072	0.963	1.250	202.109	0.265
Н	1.696	1	144.416	0.195	0.289	81.532	0.593	0.838	191.610	0.361
E	2.820	1	105.400	0.096	0.374	102.582	0.542	0.016	203.337	0.899
H:E	0.010	1	157.422	0.921	1.219	105.876	0.272	0.047	204.787	0.828
P:H	0.577	1	163.387	0.448	0.268	84.469	0.606	1.985	208.084	0.160
P:E	2.187	1	98.068	0.142	0.534	114.656	0.466	1.550	219.580	0.214
P:H:E	0.266	1	152.203	0.606	5.802	113.030	0.018*	0.188	201.920	0.665
lambda										
C9	0.400	4	66.005	0 401	0.017	100 114	0.240	1 1 1 1	150.050	0.007
P	0.460	1	00.395	0.491	0.917	109.114	0.340	1.141	103.300	0.287
H	0.188	1	91.698		0.049	109.466	0.826	2.852	148.444	0.093
E	0.090	1	/1.981	0.765	0.630	144.534	0.429	0.850	153.895	0.358
H:E	0.266	1	104.124	0.607	0.780	142.264	0.379	1.003	159.141	0.318
P:H	0.134	1	108.670	0.715	0.953	110.728	0.331	0.537	160.021	0.465
P:E	0.557	1	65.956	0.458	0.029	157.496	0.865	0.012	169.590	0.914
P:H:E	0.216	1	100.006	0.643	0.007	155.574	0.935	0.004	155.848	0.949
lambda										
ighm										
P	0.317	1	43.708	0.577	1.307	141.344	0.255	1.008	201.596	0.317
н	0.790	1	54.373	0.378	1.072	144.184	0.302	0.045	191.119	0.833
E	0.027	1	46.316	0.870	1.064	190.264	0.304	0.049	202.838	0.825
H:F	1.257	1	61.027	0.267	0.937	188.428	0.334	2.068	204.272	0.152
P:H	1.115	1	62.322	0.295	0.182	145.069	0.670	0.018	207.537	0.894
P·F	0.027	1	41 621	0.869	0.207	209 231	0.650	0 461	219 011	0 498
P·H·F	0.282	1	61 688	0.597	0.465	211 431	0.496	0.005	201 408	0.946
lambda	0.202		01.000	0.007	-0.451	211.101	0.100	-0.088	2011.100	0.010
lambda					0.101			0.000		
ly75										
Р	1.082	1	20.530	0.310	0.005	104.048	0.945	1.351	205.572	0.246
Н	0.001	1	23.980	0.978	0.530	105.204	0.468	0.246	202.208	0.620
E	0.006	1	23.084	0.937	0.277	136.426	0.600	0.064	202.014	0.801
H:E	0.147	1	25.202	0.705	0.158	137.991	0.692	0.036	215.385	0.851
P:H	0.009	1	26.684	0.924	0.173	107.499	0.678	1.586	219.331	0.209
P:E	0.166	1	21.272	0.688	1.523	151.594	0.219	0.014	234.045	0.904
P:H:E	0.044	1	23.066	0.835	0.268	150.342	0.606	1.447	211.076	0.230
lambda		-								

			Lake	1		Hybrid			Stream	
Treatment	F	Df	Df.res	Р	F	Df.res	Р	F	Df.res	Р
il16										
Р	0.684	1	59.795	0.411	0.132	92.735	0.717	2.472	146.101	0.118
н	1.053	1	78.525	0.308	2.944	93.873	0.089	0.445	138.140	0.506
E	0.309	1	61.986	0.581	0.260	119.627	0.611	1.280	148.670	0.260
H:E	0.251	1	88.203	0.618	0.110	123.442	0.741	1.353	148.595	0.247
P:H	0.681	1	89.067	0.411	0.127	96.984	0.722	1.574	148.745	0.212
P:E	0.298	1	55.717	0.587	1.317	134.369	0.253	4.190	157.833	0.042
P:H:E	0.295	1	93.123	0.588	0.077	132.590	0.782	0.327	146.106	0.568
lambda										
mhcll										
Р	0.514	1	97.119	0.475	2.101	72.616	0.152	4.971	160.281	0.027
Н	1.857	1	144.416	0.175	6.114	72.724	0.016*	1.894	151.653	0.171
E	0.221	1	105.400	0.639	1.600	90.439	0.209	1.862	162.559	0.174
H:E	0.007	1	157.422	0.936	0.014	93.384	0.907	1.816	162.830	0.180
P:H	0.032	1	163.387	0.859	0.011	75.476	0.917	3.340	163.700	0.069
P:E	2.535	1	98.068	0.115	2.074	100.604	0.153	8.706	173.394	0.004*
P:H:E	1.847	1	152.203	0.176	0.463	99.208	0.498	4.335	160.214	0.039
lambda										

References

- Raeymaekers JAM, Wegner KM, Huyset T, Volckaert FAM (2011) Infection dynamics of the monogenean parasite Gyrodactylus gasterostei on sympatric and allopatric populations of the three-spined stickleback Gasterosteus aculeatus. Folia Parasitol. 58(1):27–34.
- [2] Zietara MS, Huyse T, Lumme J, Volckaert FA (2002) Deep divergence among subgenera of *Gyrodactylus* inferred from rDNA ITS region. *Parasitology* 124(Pt 1):39–52.
- [3] Kriska G, Tittizer T (2009) Wirbellose Tiere in den Binnengewaessern Zentraleuropas: ein Bestimmungsbuch. (Weissdorn-Verlag).
- [4] Streble H, Krauter D (2006) Das Leben im Wassertropfen. (Kosmos Gesellschaft der Naturfreunde Franckh'sche Verlagshandlung) Vol. 10.
- [5] Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2000) *Invertébrés d'eau douce: systématique, biologie, écologie.* (CNRS éditions Paris).
- [6] Lenz TL, Eizaguirre C, Rotter B, Kalbe M, Milinski M (2013) Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis. *Mol. Ecol.* 22(3):774–786.
- [7] Hibbeler S, Scharsack JP, Becker S (2008) Housekeeping genes for quantitative expression studies in the threespined stickleback gasterosteus aculeatus. *BMC Mol. Biol.* 9:18.
- [8] Lenz TL, Eizaguirre C, Becker S, Reusch TBH (2009) RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback gasterosteus aculeatus. *BMC Evol. Biol.* 9:57.
- [9] Arvidsson S, Kwasniewski M, Riaño Pachón DM, Mueller-Roeber B (2008) QuantPrime-a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9:465.
- [10] Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qbase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. *Genome Biol.* 8(2):R19.
- [11] Kalbe M et al. (2009) Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proceedings of the Royal Society of London B: Biological Sciences 276(1658):925–934.
- [12] Team RC (2014) The R project for statistical computing. *R Foundation for Statistical Computing web-site. www. R-project. org.* 9.
- [13] Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4):1165–1188.
- [14] Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24(4):699–711.
- [15] Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. *Stat. Med.* 27(15):2865–2873.
- [16] Yuan JS, Reed A, Chen F, Stewart, Jr CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85.
- [17] Hamilton M (2009) Population Genetics. (Wiley).
- [18] Froese R (2006) Cube law, condition factor and weight–length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol. 22(4):241–253.

- [19] Fay MP (2010) Confidence intervals that match fisher's exact or blaker's exact tests. *Biostatistics* 11(2):373–374.
- [20] Fay MP (2010) Two-sided exact tests and matching confidence intervals for discrete data. R J. 2(1):53–58.