Activation mode of the eukaryotic m²G10 tRNA methyltransferase Trm11 by its partner protein Trm112

Gabrielle Bourgeois¹, Julien Marcoux^{2*}, Jean-Michel Saliou^{2**}, Sarah Cianférani² and Marc Graille¹

¹ Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France

² Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France;

*Current Address: IPBS, CNRS, UMR 5089, 205 Route de Narbonne, 31077 Toulouse, France.

**Current address: Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, CNRS UMR 8204, INSERM U1019, Université Lille Nord de France, 1 rue du Pr. Calmette, 59000 Lille, France.

Corresponding author: Marc Graille. Tel: +33 (0)169334890. Email: marc.graille@polytechnique.edu

Keywords: tRNA modifying enzyme, methyltransferase, S-adenosyl-L-methionine, translation.

Running title: Insights into Trm11-Trm112 tRNA methyltransferase

Materials and methods Circular dichroism

CD spectra were recorded using a Jobin-Yvon Mark VI circular dichrograph at a scan speed of 0.2 nm/s using a Quartz cuvette with 0.1 cm path length. Blanks were run before each spectrum and subtracted from the raw data. Three spectra were averaged to increase the signal-to-noise ratio. The final protein concentration was 10 μ M in 10 mM Tris-HCl buffer (pH 8) containing 150 mM NaCl and the assays were carried out at 20°C. The results are presented as normalized $\Delta\epsilon$ values on the basis of the amino acid mean residue mass of 110 Da for protein. Taking into account a sensitivity of $\delta(\Delta A) = 10^{-6}$ for the apparatus, the biomolecule concentration and the optical path-length of the cuvette, measurements were obtained at a precision of $\delta(\Delta\epsilon) = +/-0.01 \text{ M}^{-1} \text{ cm}^{-1}$ per residue.

Size-exclusion chromatography – Multi-angle laser light scattering analysis (SEC-MALLS)

A sample of 100 μ L of ScTrm11-Trm112 complex (1 mg/mL) was injected at a flow rate of 0.75 mL/min on a SuperdexTM 200 Increase 10/300 GL column (GE-Healthcare) equilibrated in buffer A (20 mM Tris-HCl pH 7.5, 200 mM NaCl, 5 mM β -mercaptoethanol). Elution was followed by a UV-Visible spectrophotometer, a RID-20A refractive index detector (Shimadzu), a MiniDawn TREOS detector (Wyatt Technology). The data were collected and processed with the program AS-TRA 6.1 (Wyatt Technology). M_w was directly calculated from the absolute light scattering measurements using a dn/dc value of 0.183.

Figure legends

Figure S1: Sequence alignment between *Tko*Trm11 and *S. cerevisiae* Trm11.

Strictly conserved residues are in white on a black background. Partially conserved amino acids are boxed. Secondary structure elements assigned from the *Tko*Trm11 crystal structure are indicated above the alignment. Black stars indicate *Tko*Trm11 residues mutated by Hirata *et al.* (1).

Figure S2: Biophysical characterization of *S. cerevisiae* Trm11 protein and Trm11-Trm112 complex.

- A. CD spectrum of yeast Trm11 purified in the absence of Trm112.
- B. The Trm11-Trm112 complex is heterodimeric in solution. Left: SEC-MALLS analysis of yeast Trm11-Trm112 complex. The refractive index for the eluted sample is shown in blue, revealing the presence of a single peak. Right: Zoom on the main peak (refractive index in blue on the left y axis) and distribution of the molecular mass calculated from light scattering along this peak (red curve, right y axis).

Figure S3: Binding of SAM to S. cerevisiae Trm11-Trm112 complexes.

Upper panels: ITC data obtained by injecting SAM into corresponding Trm11-Trm112 complexes at 20°C. Lower panels show the fit to the binding curve using a binding site model.

Figure S4: Characterization of Trm11-Trm112 complex formation and of the effect of Trm112 on SAM binding to Trm11 by ITC.

- A. Control experiment showing that the injection of Trm112 into buffer at 10°C does not generate a signal comparable to that observed for the injection of Trm112 into Trm11 (Fig.3A).
- B. The Trm11 D286R mutant does not interact with wild-type Trm112. This experiment was performed at 10°C.
- C. The Trm112 R53E mutant does not interact with wild-type Trm11. This experiment was performed at 10°C.
- D. Titration of Trm11 (40 µM; left) or Trm112 (39 µM; right) by SAM (400 µM) at 10°C.

Figure S5: Schematic representation of Trm11 (top) and Trm112 (bottom) peptides monitored in our HDX-MX experiments.

Figure S6: HDX kinetics of all Trm11 peptides.

Red circles and blue boxes correspond to data extracted from Trm11 alone and Trm11-Trm112 complex, respectively. Error bars represent standard deviations from the mean of three replicates.

Figure S7: HXD kinetics of all Trm112 peptides.

Red circles and blue boxes correspond to data extracted from Trm112 alone and Trm11-Trm112 complex, respectively. Error bars represent standard deviations from the mean of three replicates.

Name	Purpose	Sequences		
oMG267	Cloning of tRNA ^{Ile} and transcript A (F)	TAATACGACTCACTATAGGGGGGTCTCTTGGCCC		
oMG335	Production of Transcript A (R)	TGGTCTCTAGCGGGATCGAACC		
oMG78	Production of Transcript B (F)	TAATACGACTCACTATAGGGGGGTCTCTTGGCCCAG		
oMG285	Production of Transcript B (R)	TCTCTAGCGGGATCGAACC		
oMG318	Mutation tRNA ^{Ile} -G10C/C25G (F)	CTTG <u>C</u> CCCAGTTGGTTAAGG <u>G</u> ACCGTGCTAA- TAACG		
oMG319	Mutation tRNA ^{Ile} -G10C/C25G (R)	CACGGT <u>C</u> CCTTAACCAACTGGG <u>G</u> CAAGA- GACCCCC		
oMG301	Mutation D238A Trm11 (F)	GGTTCGG <u>C</u> TATAGATGGCAGAATGATTCG		
oMG302	Mutation D238A Trm11 (R)	GCCATCTATAGCCGAACCAATCACTAAAGAACC		
oMG303	Mutation D286R Trm11 (F)	CTTGTCATT <u>CG</u> TACTATTTTGTGTGATCCTCC		
oMG304	Mutation D286R Trm11 (R)	CAAAATAGTA <u>CG</u> AATGACAAGATTGTTTC		
oMG305	Mutation D291A Trm11 (F)	GTGTG <u>C</u> TCCTCCATATGGTATC		
oMG306	Mutation D291A Trm11 (R)	CCATATGGAGGA <u>G</u> CACACAAAATAGTATC		
y-trm11- eag1- poly	Cloning of ScTrm11 in pKHS (F)	TTTTC GGCCGATTAATTTAAGAAGGAGATATATAT ATG AAGAAATATCTGCTG		
y-trm11- not1- poly	Cloning of ScTrm11 in pKHS (R)	TTTTTGC GGC CGC GTTAAAATTATTGAAGTACCG		

Table S1: Primers used in this study.

Name	Vector	Product	Marker	Tag	Reference
pMG526	pKHS	Trm11	Kanamycin	His6 (Cter)	This work
pVH451	pET11a	Trm112	Kanamycin	His6 (Cter)	(2)
pMG513	pACYC- Duet1	Trm112	Chloramphenicol	No	Kind gift from Dr V. Heurgué-Ha- mard
pMG729	pET11a	Trm112 N123R	Ampicillin	No	(3)
pMG730	pET11a	Trm112 A106E	Ampicillin	No	(3)
pMG731	pET11a	Trm112 I118E	Ampicillin	No	(3)
pMG732	pET11a	Trm112 Y120D	Ampicillin	No	(3)
pMG735	pET11a	Trm112 E107K	Ampicillin	No	(3)
pMG745	pKHS	Trm11 D238A	Kanamycin	His6 (Cter)	This work
pMG476	pKHS	Trm11 D286R	Kanamycin	His6 (Cter)	This work
pMG747	pKHS	Trm11 D291A	Kanamycin	His6 (Cter)	This work
pILE	pUC18	tRNA ^{Ile}	Ampicillin		Kind gift from Dr B. Collinet
pMG755	pUC18	tRNA ^{Ile} G10C/C25G	Ampicillin		This work

Table S2: Plasmids used in this study

Bibliography

1. Hirata, A., Nishiyama, S., Tamura, T., Yamauchi, A. and Hori, H. (2016) Structural and functional analyses of the archaeal tRNA m2G/m22G10 methyltransferase aTrm11 provide mechanistic insights into site specificity of a tRNA methyltransferase that contains common RNA-binding modules. *Nucleic Acids Res*, **44**, 6377-6390.

2. Heurgue-Hamard, V., Graille, M., Scrima, N., Ulryck, N., Champ, S., van Tilbeurgh, H. and Buckingham, R.H. (2006) The zinc finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast. *J Biol Chem*, **281**, 36140-36148.

3. Liger, D., Mora, L., Lazar, N., Figaro, S., Henri, J., Scrima, N., Buckingham, R.H., van Tilbeurgh, H., Heurgue-Hamard, V. and Graille, M. (2011) Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. *Nucleic Acids Res*, **39**, 6249-6259.

Figure S2 A

Figure S3: Titration of various Trm11-trm112 complexes by SAM

0,0

0,5

1,0

Molar Ratio

0,0

0,5

1,0

Molar Ratio

60

2,0

1,5

Trm112 E107K-Trm11

Total: 96.3%Coverage, 4.29 Redundancy

Figure S6 (to be continued)

Figure S6 (continued)

Exposure Time (minutes)

