Supplementary data to

Restriction endonuclease Agel is a monomer which dimerizes to cleave DNA

Giedre Tamulaitiene*, Virginija Jovaisaite[¥], Gintautas Tamulaitis, Inga Songailiene, Elena Manakova, Mindaugas Zaremba, Saulius Grazulis, Shuang-yong Xu[#] and Virginijus Siksnys*

Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania ^{*} present address: Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland

[#] New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA

* To whom correspondence should be addressed. Tel: +370-5-2234357; Fax: +370-5-2234367; Email: eigie@ibt.lt

Correspondence may also be addressed to Virginijus Siksnys. Tel. +370-5-2234359; Fax: +370-5-2234367; Email: <u>siksnys@ibt.lt</u>

Substrate	Used for	Sequence
SP11 (specific) SP13 (specific)	crystallization	5'-TCG ACCGGT CG -3' 3'- GC TGGCCA GCT-5'
	crystallization	5'-TTCG <u>ACCGGT</u> CGA -3' 3'- AGC TGGCCA GCTT-5'
SP (specific)	DNA binding, hydrolysis and gelfiltration	5'-AGACCCACGCTC ACCGGT TCCAGATTTATC-3' 3'-TCTGGGTGCGAG TGGCCA AGGTCTAAATAG-5'
NC (non- canonical)	DNA binding	5'-AGACCCACGCTC ACCGG ATCCAGATTTATC-3' 3'-TCTGGGTGCGAG TGGCC TAGGTCTAAATAG-5'
NSP (non-specific)	DNA binding	5'-CAGCACAGTTCAGCAGCCCAGTGCTACGCT-3' 3'-GTCGTGTCAAGTCGTCGGGTCACGATGCGA-5'
Mutant		
Q86A	mutagenesis	5'-CGACCCAAGCGCTAGCTGGGTTCGCACGTCGGGCG-3' 5'-GCGAACCCAGCTAGCGCTTGGGTCGGTTCCGATCTTC-3'
S138A	mutagenesis	5'-CGCGTCGGCGCCCGCAAGGTTGACGTGATGATCG-3' 5'-CAACCTTGCGGGCGCCGACGCGGTCGGCCACAC-3'
D142A	mutagenesis	5'-CTCGCAAGGTTGCCGTCATGATCGAGAAGCAGGGAGGCGG-3' 5'-CTTCTCGATCATGACGGCAACCTTGCGAGAGCCGACGCGG-3'
D177A	mutagenesis	5'-GGGTCTCGGCCGACATACCCGCCAGCAGGATC-3' 5'-CGGGTATGTCGGCCGAGACCCTCTCGGCTAG-3'
D178A	mutagenesis	5'-GTCTCGGACGCCATACCCGCCAGCAGGATCATG-3' 5'-CTGGCGGGTATGGCGTCCGAGACCCTTTCGGCTAGGCTC-3'
D223A	mutagenesis	5 ' -CCGGCCCTCGGCGAAGAGGAATTACATTGAGGGACAC-3 ' 5 ' -GTAATTCCTCTTCGCCGAGGGCCCGGTCGGGCGTGCC-3 '

Supplementary Table S1. Oligoduplexes used in this study

Agel recognition sequence (5'-ACCGGT-3') is underlined. In NC only nucleotides, which coincide with the recognition sequence, are underlined.

	Space		Cryo-protection
Crystal form	group	Crystallization conditions	conditions
Agel+SP11	Form I P6₁22	Na Malonate7.0 0.2M, PEG3500 19% protein concentration 8.3 mg/ml, Agel:DNA ratio 1:1.2	Mother liquor supplemented with 20% PEG400
Agel+SP11	Form II P2 ₁ 2 ₁ 2 ₁	0.2 M NaCl, 0.1 M BisTRIS 5.5, 17- 19% PEG3500 (protein concentration 8.3 mg/ml, Agel:DNA ratio 1:1.2)	stepwise transfer into mother liquor containing 2-5-10-15% ethylene glycol
Agel+SP13	Form III P2 ₁	0.2M NaCl, 0.1M BisTRIS 5.5, 17-19% PEG3500 protein concentration 7.2 mg/ml, Agel:DNA ratio 1:1.2	stepwise transfer into mother liquor containing 2-5-10-15% ethylene glycol
Agel	P2 ₁ 2 ₁ 2 ₁	0.1 M Na-Hepes (pH 7.5), 0.2 M NaCl, 25% PEG3350, 3% ethylene glycol (protein concentration 5.7 mg/ml)	stepwise transfer into mother liquor containing 5-10-15% ethylene glycol

Supplementary Table S2. Crystallization and cryo-protection conditions

Data collection parameters		
X-ray wave length, nm	0.124	
Sample to detector distance, m	3.1	
Detector	Pilatus 2M	
s range, nm ⁻¹	0.0290642-4.488440	
Exposure time, s	0.05	
Collected frames	20	
Sample storage temperature, °C	10	
Data collection temperature, °C	20	

Supplementary Table S3. SAXS data collection parameters and shape models description.

Structural parameters of models			
Parameter	Agel	Agel+DNA	
Protein concentration, mg/ml	1.3 and 3.1	2.8	
s range of P(r) calculated by GNOM, $Å^{-1}$	0.0229 – 0.2986	0.0111 – 0.3435	
Real space Rg calculated by GNOM, Å	21.29 ± 0.050	24.00 ± 0.022	
D _{max} used by GNOM, Å	67	74	
Porod volume calculated by GNOM, $Å^3$	65894	53576	
Averaged volume of DAMMIN models, \AA^3	56078 ± 1247	73930 ± 2012	

	SP-complex residue subunits A/B	preSP-complex residue subunits A/B
DNA	13 bp	11 bp
Dimer <i>buried surface</i> area, Å ²	630	400
DNA binding <i>buried</i> surface area, Å ²	5823	5215
Major groove contacts	E173 +/+ R174 +/+ K200 +/+ E214 +/+ K224 +/+	E173 -/- R174 +/- K200 +/+ E214 +/+ K224 +/-
Minor groove contacts	Q86 +/+ R90 +/+	Q86 +/+ R90 +/+
Active site	E97 +/+ D142 +/+ K168 +/+ D178 +/+	E97 +/+ D142 +/+ K168 +/ - D178 -/ -

Supplementary Table S4. Comparison DNA recognition and active site residues of SP- and preSP- complexes

+/+ Identical contacts to DNA are made in both subunits of both complexes or the conformation of residues in both subunits are similar to the SP-complex

+/- Only one subunit of a dimer makes contacts similar to the SP-complex

-/- None of the subunits of preSP-complex makes contacts similar to the SP-complex

Residues, making different contacts to DNA in the SP-complex and at least in one subunit of the preSP-complex are shown in boldface

Phosphate #	# Interacting el residues from SP- site) complex*	Interacting residues from preSP-complex		
(base of Agel recognition site)		both subunits	only A	only B
-2	_			
-1	_			
0	K224			
	D223(H ₂ O)			
1 (A)	K224(H ₂ O)			R139
2 (C)		K140		
3 (C)	V169		V169(H ₂ O)	V169
	R174			
4 (G)	H68	H68		
	S170	S170		
	W88	W88		
5 (G)	Y72	Y72		
	R73(H ₂ O)	R73(H ₂ O)		
	S201(H ₂ O)	S201(H ₂ O)		
6 (T)	D83	D83	H206	
	T82	T82		
7	T82	T82		
	S87	S87		
	K79(H ₂ O)	K79(H ₂ O)		
8	S43(H ₂ O)	S43(H ₂ O)		
	R44(H ₂ O)	R44(H ₂ O)		
9	R44	R44**		
	K42			

Supplementary Table S5. Agel contacts with phosphates in SP- and preSP-complexes

 $^{*}(H_{2}O)$ – the residue makes water-mediated hydrogen bond. Similar contacts are shaded in grey. $^{**}R44$ makes hydrogen bond to O3^{*} atom of G8.

Apo Agel concentration, µM	Estimated M _w , kDa
35	24.9
20	28.8
10	24.9
7	26.3
5	26.0
Agel:DNA ratio	Estimated M _w , kDa
1:0.5	65.3
1:1	64.3
1:5	67.1
1:10	66.3
1:20	67.2
DNA	Estimated M _w , kDa
SP	44

Supplementary Table S6. Gel filtration of Agel.

Calculated theoretical M_w for Agel monomer 32.5 kDa, dimer 65 kDa, DNA 18.4 kDa.

Supplementary Figure S1. Similarity between Agel and BsaWI. (A) Pairwise alignment of Agel and BsaWI sequences. Secondary structure elements of AgeI and BsaWI are shown above and below the alignment, respectively. DNA recognition, active site and Agel dimerization residues are marked. The figure was prepared with ESPript (http://espript.ibcp.fr). (B) Structural overlay of Agel and BsaWI dimers. BsaWI subunits are coloured blue, N-domains of Agel are orange, C-domains are green. Orange and green arrows show overlay of the same Agel subunit with the domains of BsaWI from different subunits.

Supplementary Figure S2. Comparison of Agel structures. (A-C) Conformational differences of Agel in different structures. (A) Overlay of apo-Agel (grey) and A subunit of SP-complex (orange). Parts of the apo-subunit which do not overlay with the subunit of SP-complex are blue. Numbers indicate non-overlapping residues. (B-C) Overlay of A subunit of SP-complex (orange) and A subunit of preSP-complex (green, B) or B subunit of preSP-complex (dark green, C). Parts of the preSP-complex subunit which do not overlay with the subunit of SP-complex are blue. Cα atoms of S138 from the SP-complex subunit (orange) and the preSP-complex subunit (blue) are shown. (D) Comparison of Agel contacts with DNA in the SP- and preSP-complexes. Schematic representation of the Agel-DNA contacts: residues from the subunit A are coloured light green, from the subunit B - dark green; residues making contacts in the major groove are shown in ellipses; red spheres represent water molecules. Scissile phosphates are coloured orange. Missing contacts in the preSP-complex are shaded in grey, new contacts are boxed in orange.

Supplementary Figure S3. Relaxed specificity of the D177A mutant analyzed using (A) phage λ DNA (13 Agel sites) and (B) plasmid pUC18 DNA (0 Agel site). The DNA cleavage reactions were performed and analyzed as described in 'Materials and Methods'. In (A) the final protein concentrations are indicated below the gels; a downward-facing triangle indicates the minimal enzyme concentration needed for complete digestion at the cognate recognition sites; a star indicates the minimal enzyme concentration needed for complete DNA digestion. In (B) the rate constant values (2.6±0.1×10⁻³ s⁻¹ for Wt Agel and 2.0±0.1×10⁻² s⁻¹ for D177A) were obtained by fitting a single exponential to the time-courses of supercoiled form depletion.

Supplementary Figure S4. Agel structure in solution. (A) Gel filtration analysis of Agel. Apo Agel (black line) elutes from the column as a 26 kDa protein with a molecular weight close to the calculated Mw of the monomer (calculated Mw of apo Agel 32kDa). SP DNA (red) elutes from the column at a volume corresponding to 44 kDa possibly due to the elongated form of the molecule (calculated Mw is 18.4 kDa). Agel-DNA complex elutes from the column as a 64 kDa species (blue and green). Experimentally determined Mw's are shown on the graph. Gel filtration was carried out as described in 'Materials and Methods'. (B) Averaged DAMMIN models of apo-Agel (transparent green spheres) and Agel-SP13 complex (light blue transparent spheres) complex were superimposed with the apo (monomer) and SP-complex (dimer) crystal structures, respectively (shown as backbone with different monomer colours). (C). SAXS data of apo-Agel (red curves) and Agel-SP13 complex (blue curves). (D). Theoretical scattering curves (green) calculated from crystal structures of apo-Agel (left panel) and SP-complex (right panel) by CRYSOL (35) compared with the experimental scattering curves.

		N/Q * *	
Bse634I	68	SGAFSNTRGTWFEVMIAIQSWNYRVKRELN 97	
Cfr10I	58	DGSFNKCNGDWY <mark>E</mark> WLIGIRAIEFFLESETN 87	
NgoMIV	58	ERLPGQTSGNAFEAICSEFVQSAFEKLQHI 87	
SgrAI	91	SNAKAKVAGDIFEIVSSAVMWNCAARWNSL 120	
BsaWI	80	ENSWKKSSGHAFEEMIKLLGNSSLEEYGMR 109	
AgeI	85	SQSWVRTSGEAF <mark>E</mark> VALVERYNPVLARHGIR 114	
Ec118kI	113	T <mark>Q</mark> SRRSRAGKE <mark>FE</mark> SILELLMMGAGIPVDVQ 142	
PspGI	93	QQARFSRGGKA <mark>FE</mark> IIFTKLLNKFGIRYEHD 122	
EcoRII	259	SNRRKSRAGKSLELHLEHLFIEHGLRHFAT 288	
Bse634T	145	PDLLITROKDITKSEYNLPINKLTHENIDVALTIEKDIE. GKCKWDSLVAGVGLKTSLRPDRELOLVHEGN	214
Cfr10T	133	PDFSILDIRGBREELKSMLKDISFSNISLSTISEIDNLYKNFIDYAELEHIKSFLSVKTTFRPDR.LO.LAHEGS	206
NaoMIV	139	PDIIVTENLIADAEINENEFLVDENIATYASLERA	209
SqrAI	187	KDGLGLPTSTPDLAVVVLPEEFONDEMWREEIAGLTRPNOILLSGAYORLOGRVOPGEISLAVAFKRSLRSDRLYOPLYEAN	268
BsaWI	144	FDLYITVRNNDKEYVFGCIOSKTSIR-DRVTRDREPSM	181
AgeI	141	VDVMIEKOGGGRSPDAEGFGVVGGIHAKVSLA-ERVSDDIPASR	184
Ec118kI	159	VDLVMPGVVQYTSNKRNTMLISAKTTLR-ERWOEVPEEVN	198
PspGI	137	PDFI1PSVRAFLNDPSSAILITVKRKVR-ERWREAVGEAQ	176
FCORT	298	PDFLEPSAGAYHDTEFPVE.	340

Supplementary Figure S5. Conserved sequence motifs of the CCGG-family restriction endonucleases containing residues belonging to the active site (coloured red marked by red stars), CCGG recognition (blue) and minor groove contact with the outer base pair (coloured magenta and marked by magenta triangle).

Supplementary Figure S6. Conserved N/Q residues in the superimposed AgeI (5DWB), BsaWI (4FSZ), Ecl18kI (2FQZ), EcoRII-C (3HQG), PspGI (3BM3) and SgrAI (3DW9) structures.

Supplementary Figure S7. Outer bp recognition by AgeI. (A) *In silico* models of AgeI interaction with the non-cognate C1:G6, G1:C6 and T1:A6 base pairs. X represents no possibility to form hydrogen bonds between two donors. (B) Outer bp recognition elements of AgeI (green) and NgoMIV (violet) in the overlaid structures. DNA from NgoMIV complex is transparent.